Auditable Data Provenance in Streaming Data Processing

AFONSO BATE", Instituto Superior Técnico, Portugal

Stream processing has gained prominence in Big Data analysis due to the
demand for real-time analysis of unbounded data. Errors in data processing
systems can lead to incorrect results, necessitating thorough examination of
data flow and transformations. Data provenance is crucial for understanding
errors and justifying results in stream processing, but it presents challenges
due to the dynamic nature of the process. Existing solutions are often in-
complete, lacking fine-grained provenance. In this work, a survey of stream
processing and data provenance is conducted, proposing a solution involving
three interconnected pipelines with Python modules. Testing in controlled
environments emphasizes performance metrics, demonstrating the system’s
ability to preserve data provenance and offer insights for real-world scenar-
ios. The results signify a significant advancement in reliable data tracing
and management for stream processing systems.

Additional Key Words and Phrases: Stream Processing, Data Provenance

1 INTRODUCTION

With the rise of information-gathering devices like IoT sensors and
smartphones, the demand for real-time data analysis has grown
significantly. Batch processing, the conventional approach, falls
short in dealing with this continuous influx of data. Stream process-
ing, on the other hand, offers timely insights from unbounded data
streams. Its advantages include the ability to handle never-ending
data streams, reduced resource usage, and real-time processing, as
opposed to storing data for batch processing. Common applications
of stream processing include real-time fraud detection, IoT edge
analytics, and personalized marketing.

This work addresses the need for data provenance in real-time
streaming data processing. In a world flooded with streaming data,
ensuring its reliability, integrity, and accountability is paramount.
Traditional data lineage techniques aren’t sufficient for the chal-
lenges posed by streaming data [8]. The focus is on ensuring au-
ditable data provenance in real-time streams to track data’s origin
and history accurately. This is essential in domains like finance,
healthcare, and security, where erroneous real-time data can have
profound consequences [7, 12, 16, 17].

Auditable data provenance safeguards data from corruption, tam-
pering, and unauthorized changes, reinstating confidence in its
accuracy. It also enables the reproduction and verification of real-
time results, crucial for various tasks like forensics and compliance
with data protection laws [4].

In complex real-time systems, debugging is challenging. Auditable
data provenance serves as a diagnostic tool, helping engineers and
analysts trace data processing steps and identify discrepancies. This
research aims to develop innovative solutions for auditable data
provenance tailored to the dynamic nature of streaming data. By
addressing these challenges, this work enhances the capabilities of
data stream processing and extends its applicability across various
domains.

“Supervisors: Luis Veiga, Paulo Carreira

Author’s address: Afonso Bate, afonso.bate@tecnico.ulisboa.pt, Instituto Superior Téc-
nico, Lisbon, Portugal.

Existing data provenance solutions for streaming data processing
face several limitations. These challenges include:

Latency and overhead;
Scalability;

Handling of complex events;
Privacy and security;
Dynamic semantics;
Resource utilization.

Addressing these limitations is essential for the advancement of
auditable data provenance in streaming data processing. Recogniz-
ing these shortcomings allows for the development of innovative
solutions to address them effectively, ensuring data trustworthiness
and transparency in the age of streaming data. The proposed frame-
work, inspired by existing solutions, is designed to overcome these
challenges and offers acceptable performance.

The framework is based on a sophisticated multi-pipeline system
for continuous video stream processing, with a focus on data in-
tegrity, transparency, and result accuracy. Each pipeline comprises
four modules (Module 0, Module 1, Module 2, and Module 3) with
similar executions and functionalities. This modular structure en-
hances scalability and simplifies the addition of new functionalities.

Module 0 plays a fundamental role in ensuring data integrity by
hashing both data sources and subsequent code files, guaranteeing
that results align with the underlying codebase.

Module 1 is responsible for proactive anomaly detection, actively
scanning video frames for irregularities and automatically triggering
the second pipeline if an anomaly is detected. The second pipeline
leverages periodic checkpoints and stored frames to recreate and val-
idate results from the first pipeline, prioritizing, if needed, accuracy
over performance.

For auditability and transparency, the third pipeline can be man-
ually initiated by the user. It meticulously examines outcomes pro-
duced in the second pipeline, offering a comprehensive view of data
lineage and processing steps, valuable for auditing and in-depth
result analysis.

Apache Kafka serves as the communication backbone, facilitat-
ing seamless data exchange and tracking between pipelines and
modules, emphasizing transparency and data provenance.

In summary, the proposed solution addresses existing system limi-
tations by prioritizing data integrity, real-time processing, proactive
anomaly detection, and precise, verifiable results. This comprehen-
sive approach ensures trustworthiness and transparency in complex
streaming data processing scenarios.

This work aims to contribute both theoretically and practically
to the field of data provenance in data stream processing:

State-of-the-Art Survey A comprehensive study and anal-
ysis of the state of the art in stream processing and data
provenance was conducted. This research spans the areas of
Stream Processing and Data Audit, Lineage, and Provenance.
By examining existing work and solutions, we identify their
strengths and weaknesses. This analysis informs the design



of an architectural framework for complete and accurate au-
ditable data provenance in a stream processing environment,
ensuring acceptable performance and resource utilization.

Real-World Implementation The practical implementation
and deployment of the proposed architecture within a real-
life use case validates the effectiveness and feasibility of the
auditable data provenance framework in addressing complex
challenges in streaming data processing. The chosen use case
involves processing continuous video streams in dynamic
environments where individuals move within a physical
space. This scenario presents numerous challenges, includ-
ing real-time detection, tracking, and anomaly identification.
By successfully implementing the proposed architecture in
such a context, this work demonstrates its adaptability and
problem-solving capabilities in dynamic scenarios.

Integration of Diverse Technologies The implementation
integrates diverse technologies, including computer vision
for object detection, deep learning models for tracking, Apache
Kafka for communication, and state management for au-
ditability. Additionally, it empowers users to configure the
system for improved performance and provides tools for
analyzing results through data and visual evidence.

Test Environment Design A test environment was designed
to validate the correctness and assess the performance of
our implementation. Relevant stream processing metrics,
such as latency, throughput, and resource utilization, are
rigorously analyzed. The accuracy and completeness of the
solution are verified through this evaluation.

The rest of the paper is structured as follows. Section 2 describes
briefly the fundamental and state of the art works in the Stream
Processing and Data Provenance areas. Section 3 presents the archi-
tecture, the requirements for its implementation and the technolog-
ical stack used. Section 4 presents the quantitative and qualitative
evaluation to our solution. Finally, Section 5 wraps up the paper
with our main conclusions.

2 RELATED WORK

This section represents all the work we found to be relevant to the
creation of our proposed solution. We will divide this section into
the two main topics of our work: Stream Processing and Data
Audit, Lineage, and Provenace.

2.1 Stream Processing

The typical framework of a Stream Processing System is comprised
of five disctinct layers:

Data Stream Ingestion Layer
Data Stream Processing Layer
Storage Layer

Resource Management Layer
Output Layer

Nowadays, a wide variety of Stream Processing engines are avail-
able to handle the rising needs for processing streaming data. Based
on some works [1, 6, 9, 13] we proposed a taxonomy, to evaluate the
existing solutions, that takes into consideration the classification
and main characteristics of stream processing engines, which are,

System Openness, Type of System, Architecture, Program-
ming Model, Data Partitioning Strategy, State Management,
Execution Semantics, Fault Tolerance and Deployment. We
also included some relevant metrics, such as, Scalability, Perfor-
mance and Resource Utilization.

From the observed works [1-3, 6, 9-11, 13, 15, 20], we conclude
that the most notable open-source stream processing engines are
Apache Spark, Apache Flink, Apache Storm and Apache Kafka
Streams.

Apache Spark is a versatile stream processing engine used for
batch processing, interactive queries, and large-scale data stream
processing. It supports multiple programming languages and has
a large community. While it’s mature and fault-tolerant, it’s not a
true stream processing engine and may have a few seconds of la-
tency and high memory usage. To handle stream processing, Apache
Spark introduced Spark Streaming, a micro-batch processing frame-
work. Later, Structured Streaming, an upgraded module, used micro-
batches and expressed streaming computation similarly to batch
processing using Dataset/DataFrame APIs. Apache Spark and its
modules provide end-to-end exactly-once processing guarantees.

Apache Flink is a native stream processing framework used
for both batch and stream processing. It’s capable of handling
unbounded or bounded data streams from various sources. Flink
provides exactly-once processing guarantees, offers high through-
put with low latency, dynamically optimizes tasks, and has a user-
friendly interface. However, it may have scaling limitations, supports
only Scala and Java, and has limited community support.

Apache Storm is a stream processing engine known for its effi-
cient real-time processing capabilities. It handles large data volumes
with low latency. Its architecture is based on spouts and bolts, cre-
ating a directed acyclic graph (DAG) to process data. Storm offers a
simple API, supports multiple languages, and is highly flexible and
extensible. However, it lacks some features found in other stream
processing engines, such as built-in windowing and state manage-
ment. It provides at-least-once processing semantics but doesn’t
guarantee data ordering.

Apache Kafka Streams is a Java API for stream processing
associated with Apache Kafka. It simplifies the creation of real-time
data pipelines and applications, enabling operations like filtering,
joining, aggregating, and grouping without extensive coding. Kafka
Streams is easily integrable with existing applications, ensuring low
latency and eliminating the need for conventional message brokers.
However, it has limitations like reduced analytics capabilities, the
absence of point-to-point queuing and other messaging paradigms,
and challenges in managing numerous queues in a Kafka cluster.

2.2 Data Audit, Lineage, and Provenace

Data provenance is important to guarantee data quality by under-
standing the data’s lifecycle, but that is not its only benefit. It can
also be used to check the data’s integrity, and help understand and
justify the occurrence of some errors by providing an audit trail.
However, as we can see from several works [5, 14, 24, 27] on
the topic of data provenance, this is not an easy feature to imple-
ment or to add to a stream processing system, as it poses numerous
challenges. To trace data’s lineage is an inherently heavy process



and ties the efficiency of the whole system to its own, since it can
implicate an increase in latency, a reduction of throughput and com-
plications in memory storage. We can conclude the main challenges
are:

e Storage
e Latency and Throughput
e Determinism

Through extensive research we were able to find works that
propose solutions to the previously mentioned challenges while still
providing correct data provenance in stream processing systems.

GenealLog [18], as presented by Palyvos-Giannas, focuses on fine-
grained data provenance in deterministic stream processing engines.
Its key contributions involve reducing storage costs. It achieves this
by utilizing a small, fixed set of meta-attributes shared across all
data streaming operators, minimizing the memory overhead per
tuple, which is common in data provenance systems. Additionally,
Genealog optimizes memory management to identify source tu-
ples that contribute to the application output, discarding irrelevant
data and conserving temporary storage. GeneaLog was prototyped
on Liebre and Flink stream processing engines, with evaluations
confirming its correctness and performance. The results showed
that GeneaLog provides accurate data provenance while minimizing
throughput and latency overheads compared to other state-of-the-
art provenance systems.

Ananke [19] introduces a unique approach to address the lack
of streaming-based tools for forward lineage tracing. It extends fine-
grained backward provenance tools and creates a live bipartite graph
of fine-grained forward provenance. Ananke not only identifies the
source tuples contributing to each output but also determines which
of these source tuples can still generate future distinct outputs,
thus preventing duplication and reducing memory costs. This is
achieved by leveraging native operators of the underlying stream
processing engine and implementing specialized-operator-based
and modular solutions. The authors implemented two variations
of Ananke in Flink, one focusing on parallelization for handling
larger amounts of provenance data and the other optimizing the
labeling of expired source data for efficiency. The results confirm
Ananke’s correctness and demonstrate its efficiency in terms of rate,
latency, throughput, memory usage, and CPU utilization. It offers
live forward lineage tracing with minimal overhead, comparable to
state-of-the-art backward lineage tracing tools, and it outperforms
the Genealog system, which Ananke extends for backward lineage
tracing.

The s2p [27] provenance solution combines both fine-grained and
coarse-grained provenance in stream processing systems. It follows
a philosophy inspired by lambda architecture. Online provenance
traces and maps lineage from source data to result data, providing
coarse-grained provenance. Offline provenance offers detailed in-
formation about intermediate results or transformation processes,
offering fine-grained provenance. The approach of s2p is to focus
on detailed lineage for a limited set of data that is considered rel-
evant, rather than tracking the transformation and lineage for all
input data. This selective approach minimizes overhead and costs.
The system also takes into account operator states and considers
the semantics of each operator when analyzing data relationships.

One unique aspect is that s2p manages data locally and aggregates
selected data only if a lineage query occurs, reducing data trans-
formation costs. The authors implemented a prototype of s2p on
Flink and conducted three experiments, showing that it increases
end-to-end cost, reduces throughput, and has memory storage lim-
itations. However, when compared to other existing provenance
solutions, the runtime overhead is acceptable, considering that s2p
targets more provenance-related data. It’s important to note that
s2p is limited to stream processing engines consisting entirely of
deterministic operators.

Ariadne [5] is an early system designed for fine-grained prove-
nance in stream processing. It achieves this by modifying operator
behavior through a technique called Reduced-Eager operator in-
strumentation. This method propagates lineage information during
query execution and then reconstructs it independently of the origi-
nal network execution. Ariadne’s approach, while incurring a higher
cost for storing and reconstructing tuples, utilizes compressed rep-
resentations to offset this cost with improved runtime and latency
performance. It offers users the flexibility to request lineage trac-
ing for specific results and can handle non-deterministic operators
accurately. Additionally, Ariadne employs techniques like Replay-
Lazy and Lazy-Retrieval to optimize lineage computation separately
from stream processing. The authors conducted experimental evalu-
ations that considered various parameters and workloads, assessing
computational cost and latency. The results validate Ariadne’s cor-
rectness and effectiveness while showing that, despite some minor
overhead, it outperforms the state-of-the-art technique at the time,
query rewrite.

Spark-Atlas-Connector (SAC) [23] is a system that facilitates
interactive data provenance in stream processing systems, and it ex-
tends the functionality of Apache Atlas. One notable feature of SAC
is its seamless integration with Apache Spark, requiring no modifi-
cations to the stream processing engine or additional user inputs.
SAC efficiently provides a query interface for managing captured
data lineage. It supports various data storage systems and stream
processing paradigms. Moreover, it offers a visual representation of
data lineage, allowing users to trace the flow of data from its source
to the output stream. The system has demonstrated the capability to
efficiently track data lineage for over 100GB per day in real-world
deployments. However, it’s important to note that SAC primarily
focuses on coarse-grained provenance, which distinguishes it from
other systems discussed here that mainly emphasize fine-grained
provenance.

Yazici and Aktas have introduced a real-time data lineage vi-
sualization method [26] that employs graphs to represent the
lineage of data. Their work provides forward and backward tracing,
allowing users to identify relationships of data tuples both before
and after a given data point. It offers the ability to condense exten-
sive provenance data to focus on the most relevant aspects, which
can be particularly helpful since such data can be quite large. Users
can also compare lineage graphs, which is valuable for identify-
ing anomalies and understanding data relationships. The authors
have implemented a prototype visualization tool and evaluated its
performance using two distinct datasets. The results show that the
proposed visualization methods introduce minimal processing over-
head and are scalable.



Zvara et al. [28, 29] have introduced a lineage tracing frame-
work designed for both batch and streaming data processing sys-
tems. This framework aims to enhance performance and reduce
overhead by identifying inefficiencies in lineage tracing. In this
approach, lineage is determined by wrapping each record and cap-
turing causality on a record-by-record basis. Additionally, incoming
records are randomly sampled to decrease overhead, which con-
tributes to efficiency optimization. The main advantages of this
solution are its applicability to both batch and streaming data pro-
cessing, as well as its ability to trace lineage in multiple systems
using the same framework. The authors implemented two proto-
types on Apache Spark, one for batch processing and another for
stream processing, to perform experimental evaluations. The results
demonstrate that this solution indeed enhances efficiency and re-
duces tail-latency. However, it also highlights that tracing lineage
for all data can be quite expensive and lead to substantial overhead.

Hug et al. [8] have devised a solution to address the storage chal-
lenges associated with fine-grained provenance by introducing a
provenance inference algorithm that combines a temporal data
model with coarse-grained provenance. The temporal data model
involves adding a temporal attribute, such as a timestamp, to each
data item, enabling the retrieval of the complete state of a data-
base at any specific time. When combined with the capacity to
reconstruct the original processing window, which is facilitated by
coarse-grained provenance, this approach ensures reproducibility
and enables the algorithm to infer fine-grained provenance. This
method is not tied to any specific dataset and becomes more storage-
efficient as the processing windows overlap. Nonetheless, it comes
with limitations. It can only provide precise lineage information
when processing windows consistently produce the same number
of output tuples. Furthermore, it offers highly accurate lineage in-
formation in a system that operates nearly instantaneously, which
is often unattainable in practical settings. In real-world systems,
where processing delays are common, the likelihood of inaccuracies
in the inferred fine-grained provenance is considerably high.

Sansrimahachai et al. [21, 22] propose a solution for fine-grained
provenance in stream processing, addressing the challenge of stor-
age consumption. Their approach relies on a reverse mapping func-
tion known as the Stream Ancestor Function, which identifies
dependency relationships for any data tuple within the stream, thus
offering fine-grained provenance and ensuring the reproducibility
of data processing. To resolve the storage issue associated with this
method, the authors optimized the function. This optimization in-
volved eliminating the necessity to store every intermediate stream
element and enabling dynamic performance of provenance queries.
Through an experimental evaluation, the authors confirmed the
correctness of their solution and evaluated its impact on storage
consumption and throughput. The results indicated that the solu-
tion not only reduced storage consumption but also introduced
acceptable processing overheads.

Yamada et al. [25] introduced the concept of augmented lineage,
a technique designed to ensure traceability of complex data analysis,
particularly involving User Defined Functions for processing, within
fields like Artificial Intelligence and Machine Learning. While their
work initially focused on more static data analysis, the authors
suggest that this framework can be extended to stream processing

environments. Given its efficiency and potential, this framework
could contribute to lineage tracing in stream processing in the future.

3 SOLUTION

Starting by the chosen use case, it involves user interaction through
a video stream as input. The primary pipeline comprises real-time
modules for people detection, tracking, area drawing, and area count-
ing. As frames are processed, the system identifies individuals, tracks
their movements, and calculates the number of people in specified
areas. Continuous monitoring for anomalies occurs during real-time
processing. If an anomaly, such as a person unexpectedly disappear-
ing, is detected, the system generates an alert. This alert activates
the secondary pipeline, which replays video frames starting from
the initial detection of the suspect person. It replicates the normal
processing steps to confirm if the same alert is triggered. If con-
firmed, the system permanently stores the relevant video frames
and state data. Verified alerts and their associated information are
registered, and the data gathered during alert validation empowers
the system to reproduce the data stream deterministically through
a third similar pipeline at any future time for audit or investigative
purposes.

The architectural design of a stream processing system is guided
by key requirements aimed at ensuring comprehensive data prove-
nance and accountability. These requirements in our design are as
follows:

Data Provenance and Lineage: The core objective is to es-
tablish and maintain data provenance by capturing lineage
information for all processed data. Essential data is stored
to enable segment replays, promoting transparency and re-
ducing resource usage.

Code Integrity: The architecture ensures code and algorithm
integrity by employing hash-based verification processes,
guaranteeing that results align precisely with the employed
code.

Dependency Management: Effectively managing dependen-
cies, especially in continuous streaming, is crucial. State
information is meticulously and periodically preserved to
facilitate replication.

Replicability for Validation: Replicability is crucial for re-
sult validation, achieved through secondary and tertiary
pipelines that recreate results for verification, made possible
by storing critical data.

User Involvement: While not the primary focus, user engage-
ment allows users to review and validate results, enhancing
the system’s transparency and precision.

Scalability: The architecture accommodates increasing data
volumes while upholding data lineage tracking. Modular-
ity within pipelines allows users to adapt the system by
adding or removing modules without compromising data
provenance.

Alerting: The system’s alerting mechanism detects anomalies
in real-time, enhancing anomaly detection while efficiently
managing resource usage through customized alerts.

Manual Auditing: Specific auditing processes can be initi-
ated manually, enabling comprehensive audits and data



stream analysis at a later time, providing users with flexibil-
ity for verification requirements.

Having these requirements in mind, an architectural framework
was designed, which comprises three pipelines with similar modules
and purposes but distinct roles. This section is organized into subsec-
tions for each pipeline, addressing communication, module interac-
tions, and storage. Our work draws inspiration from s2p [27] frame-
work, structured into an online phase with the first two pipelines
and an offline phase represented by the third pipeline.

3.1 Primary Pipeline or Continuous Video Processing
Pipeline

The continuous video processing pipeline is designed for real-time

video analysis with a focus on integrity and provenance. It includes

four modules:

Module 0 (Init): This module ensures code integrity by hash-
ing module code files and the video source. These hashes are
stored for verification, ensuring consistency and detecting
alterations in code.

Module 1 (Detection): Responsible for real-time detection
and tracking of individuals within video frames. It detects
persons, tracks their movement, and alerts if individuals dis-
appear unexpectedly. It maintains a state store for potential
replays and generates a register of detection times.

Module 2 (Visual representations): This module adds visual
cues to the video. It draws bounding boxes around detected
individuals, aiding transparency and result verification.

Module 3 (Counting): Manages people counting and area
analysis. It defines areas within frames for counting, and
continuously updates counts as individuals move. This mod-
ule provides analysis results to users, including entry/exit
registers and annotated videos.

The primary pipeline includes a final Apache Spark module re-
sponsible for aggregating results from previous modules. It gen-
erates an updated list of detected person activities, tracking their
entries and exits from the store and specific areas. This data is
continuously updated using Apache Spark Structured Streaming.

The architectural design emphasizes object detection, tracking,
and counting, along with modules for anomaly detection, visualiza-
tion, and user interaction. This approach ensures result consistency
with code, timely anomaly detection, and user engagement, en-
hancing the system’s reliability and transparency in real-time video
processing. Data flow within the pipeline, as well as communication
between modules and pipelines, is managed by Apache Kafka.

Module 0 initiates the system by hashing the video source and
code files of the pipeline’s remaining modules. It sends these hash
values and the video source to Module 1.

Module 1 receives the video source, processes frames for object
detection and tracking, and stores states and alerts for replay in the
State Store. Alerts trigger the secondary pipeline and, along with
entry/exit times and coordinates, are sent to this pipeline. Results,
frame count, and hash value are forwarded to the next module.

Module 2 adds bounding boxes around detected people and sends
annotated frames, detections, frame count, and hash value to the
following module.

Module 3 draws designated areas, counts people, and sends results
and hash value to the Spark Module. Annotated frames are used to
create a video with drawn areas and detected individuals.

3.2 Secondary Pipeline or Validation Pipeline

The secondary pipeline serves as a critical component, activated
in response to primary pipeline alerts. Its primary function is to
validate primary pipeline results, particularly anomaly detection,
ensuring their accuracy and reliability. It comprises interconnected
modules that replicate primary pipeline functions using stored state
information and images. Continuous video processing poses chal-
lenges, with real-time demands and dependencies. The primary
pipeline provides real-time insights but may encounter variations
in processing conditions due to unbroken video streams. The sec-
ondary pipeline acknowledges these challenges. Its uniqueness lies
in its commitment to accuracy. Even though it may generate slightly
different results due to inherent variations, if both the primary
and secondary pipelines trigger an alert for the same situation, it
strongly validates the alert’s genuineness. In summary, the sec-
ondary pipeline acts as an effective filter to confirm the validity of
primary pipeline alerts by leveraging these inherent variations in
continuous video processing.

The secondary pipeline is activated by an alert from the primary
pipeline. Module 0, upon receiving the alert, hashes video source
and code files to ensure system integrity. If the hash value matches
the primary pipeline’s stored value, the system proceeds; otherwise,
it’s interrupted. Module 0 sends alert information, such as suspect
person ID and entry/exit details, to Module 1. It also retrieves stored
states, frames, and alert details from the primary pipeline, facilitating
data processing. Module 1 cross-references entry coordinates to
identify the person to track and if the results of the replay confirm
the alert, it stores this alert in permanent memory. It also saves video
frames and necessary model states for replay. Module 2 processes
the data, drawing bounding boxes and sending results to Module 3.
Module 3, similar to the primary pipeline, draws designated areas
and calculates people per area by frame, storing results in a file.

3.3 Third Pipeline or Replay Pipeline

The third pipeline ensures result replication and verification, a key
aspect of data provenance. It replicates processes performed in the
secondary pipeline. Unlike the primary and secondary pipelines,
the third pipeline doesn’t trigger automatically. Instead, it remains
dormant until manually activated, typically for auditing purposes.
This means that in case of an anomaly confirmation, the associated
video section and state information are securely stored, ready to be
revisited and re-validated later. Essentially, it enables the user to
re-validate a previously detected alert by the two other pipelines
without disrupting them.

To activate the third pipeline, the user selects a stored alert and a
suspect’s ID for data stream replay. Module 0 then checks the alert’s
existence in memory. If confirmed, it retrieves the suspect’s entry
and exit times, the video source, and hashes it along with the code
files of the following modules. These resulting hash values are sent
to the next module, along with each video frame.



Module 1 receives this data and obtains the Object Detection
Model and Predictor associated with the alert from memory. After
processing the frames, it produces detailed detection results with
coordinates, storing them in a file for later analysis and sending
them, along with the hash value, to the following module.

Module 2 performs operations similar to previous pipelines and
sends frames with drawn areas, along with hash values and object
detections from Module 1, to Module 3.

Module 3 processes the data stream, yielding results of the sus-
pect per area by frame, which are stored in a file. Unlike the prior
pipelines, Module 3 retains video frames with annotated areas and
bounding boxes identifying the suspect person in memory. This en-
ables the user to visually analyze results confirmed by the secondary
pipeline by watching the resulting video or individual frames.

3.4 Data Structures

Data structures play a crucial role in our system for ensuring data
lineage, maintaining data quality, and enabling efficient querying
and replaying. A common aspect across all three pipelines is the use
of hash values. Module 0, in all pipelines, hashes the video source
and the files of subsequent modules using the SHA-256 algorithm
and saves these values in a designated file. These values are used at
the end of each pipeline to correlate incoming data with produced
results, guaranteeing data integrity.

Another reason for data structures being fundamental compo-
nents of our system, is the crucial role they play by representing
events, like entries and exits of individuals in specific areas of a
store or in the store itself, and alerts.

In our system, data structures are essential for storing data in the
state store, enabling replay functionality for the second and third
pipelines. The primary pipeline periodically saves data in the state
store, and this periodicity is user-defined. The key elements stored
in the state store include:

e Object Detection Model
e Object Detection Predictor
o Alerts

Additionally, a user-defined quantity of video frames is retained
in the state store. This frame retention ensures that a history of video
frames is continuously available, allowing the secondary pipeline
to replay from a chosen checkpoint, enabling vital functions like
result validation, auditing, and anomaly investigation. Some of these
frames are also stored in the system’s permanent memory during
alert validation, optimizing resource management.

As for the object detection models, even though they are deep
learning models with fixed neural network parameters, the check-
point is implemented to ensure the correct object detection model
and predictor are consistently used. This prevents a situation where
a change in the object detection module could lead to inconsistent
results when the second and third pipelines process queued alerts.
Furthermore, it’s important to store this data in a serialized format
like Torchscript, JSON, or Pickle for python-to-python cases like in
our system.

This usage of data structures is fundamental for ensuring prove-
nance and traceability in our system by ensuring:

e Granular Data Representation

e Temporal Traceability
e Spatial Traceability

e Action Classification

e Provenance Verification
e Replay and Audit

o Cross-Referencing

e Data Integrity

To summarize, the data structures responsible for recording entry
and exit events, including their associated details, combined with
the use of a state store to enable precise data stream replays, are the
foundational elements of our system’s provenance tracking and au-
ditability. These structures are crucial for maintaining a dependable
record of events, detecting anomalies, and confirming the accuracy
of processing steps. Their role in providing granular data and trace-
ability is essential for ensuring transparency, accountability, and
trustworthiness in our stream processing system.

4 EVALUATION

This chapter focuses on the comprehensive evaluation of the au-
ditable data provenance system in stream processing. The evalu-
ation process involves several phases, including local testing and
networked scenarios, to assess performance and efficiency.

The evaluation begins with local testing to understand latency,
throughput, and resource utilization. Apache Spark Structured Stream-
ing benchmarks are used to simulate real-world workloads with
different complexities. Prometheus and Grafana integration pro-
vides a detailed analysis of latency and throughput metrics within
the online phase of the system. This analysis covers individual mod-
ules in the first two pipelines and evaluates the overall pipeline
performance. Node Exporter is used to monitor CPU and memory
utilization, offering insights into resource requirements.

The testing strategy includes both local and networked scenarios.
Local testing isolates the system to examine its core performance
factors without network-related variables. Networked testing intro-
duces real-world network conditions, challenging the system in a
more complex environment.

This thorough evaluation process offers a comprehensive view of
the system’s performance, enabling meaningful conclusions and in-
sights for the practical implementation of the designed architecture.

In the remainder of this section we will present the obtained
results for the two phases of testing, Local Testing and Distributed
Pipeline Testing.

4.1 Local Testing

The initial phase of the evaluation aims to assess the system’s core
performance in an isolated environment. This phase serves as a
foundational step to understand the system’s behavior without the
influence of potential confounding variables like network latency.

Local testing offers the advantage of isolating the system from
network-related factors that can distort performance metrics. It pro-
vides a clean baseline of the system’s capabilities, free from external
influences. This phase helps establish a fundamental understanding
of the system’s strengths and weaknesses. The insights gained from
this phase serve as the basis for further evaluations, including those
conducted in more complex networked scenarios.



Two Apache Spark Structured Streaming benchmarks are used
to establish a performance benchmark for the system. These bench-
marks are designed to mimic real-world workloads, introducing
randomness to simulate unpredictable data, which is essential for
data provenance.

Benchmark A: is relatively simple but introduces random-
ness to test the system’s ability to handle unpredictable data
variations. It measures response time and resource utiliza-
tion.

Benchmark B: is more complex and includes advanced oper-
ations and randomness to stress-test the system’s processing
capabilities, resembling scenarios with intricate data trans-
formations.

Two datasets with 1000 events each are used in the benchmarks,
delivered via a Kafka stream. The results are crucial for compre-
hending the system’s performance under varying conditions and
external factors in the testing environment.

However, it’s crucial to note that the benchmarks and our im-
plementation have key distinctions. The benchmarks use Apache
Spark Structured Streaming with a micro-batching model, while our
implementation handles data frame by frame. Additionally, our im-
plemented system deals with more complex image data, impacting
resource utilization and performance differently.

These distinctions must be considered when interpreting the
results, especially when comparing resource utilization metrics.
Despite these differences, analyzing these metrics is valuable for
understanding how alternative data processing solutions perform
under controlled conditions.

Table 1. Benchmark testing results

[ [ Average CPU Usage [ Average RAM Usage ]

Benchmark A 85.5% 98.33%
Benchmark B 87.9% 98.83%
Normal Usage 4.5% 50.5%

The next step in the local testing phase was to analyse the latency,
throughput and resource utilization of our implementation’s
online phase pipelines.

The data for this analysis was collected from processing a 5-
minute video stream and was meticulously acquired through
Prometheus, Grafana, and Node Exporter, enabling a multifaceted
evaluation of the system’s capabilities.

The data collected allowed us to calculate the following measure-
ments:

e Average Latency
e Total Latency through 15 Seconds
o Percentiles for Latency (25th, 50th, 75th, 90th, 95th)
e Throughput Per Second
e CPU Usage
e RAM Usage
These analyses were conducted individually for each of the three
modules within the two pipelines that compose the online phase,

allowing for a fine-grained examination of how each module con-
tributes to the overall system performance. Furthermore, we as-
sessed the pipelines as a whole to gain insights into the end-to-end
performance of the system.
As for the results regarding resource usage during testing, they
were on average:
CPU Usage: 92.1%
RAM Usage: 70.7%
The results for latency testing are presented on the tables 2, 3, 6
and 7.
The results for throughput testing are presented on the tables 4
and 5.

Table 4. Throughput (frames per second) results for local testing on Primary
Pipeline

[ [ Average [ Max Average | Min Average |

Module 1 4.48 5.07 3.99
Module 2 4.44 5.13 3.60
Module 3 4.46 5.00 4.07
Pipeline 4.46 5.00 4.07

Table 5. Throughput (frames per second) results for local testing on Sec-
ondary Pipeline

[ [ Average [ Max Average [ Min Average ]

Module 1 4.70 5.21 4.13
Module 2 4.70 5.20 4.27
Module 3 4.71 5.27 4.27
Pipeline 4.71 5.27 4.27

Table 6. Latency Percentiles for Primary Pipeline and its Modules in local
testing

[ Percentile [ Module 1 (s) [ Module 2 (s) [ Module 3 (s) [ Pipeline (s) ]

25th 0.020 0.023 0.007 0.221
50th 0.031 0.038 0.011 0.256
75th 0.041 0.054 0.030 0.287
90th 0.047 0.080 0.048 0.329
95th 0.055 0.092 0.059 0.371

Table 7. Latency Percentiles for Secondary Pipeline and its Modules in local
testing

[ Percentile [ Module 1 (s) [ Module 2 (s) [ Module 3 (s) [ Pipeline (s) ]

25th 0.249 0.035 0.021 0.448
50th 0.291 0.057 0.032 0.537
75th 0.338 0.079 0.042 0.589
90th 0.404 0.092 0.052 0.641
95th 0.442 0.098 0.064 0.706

4.2 Distributed Pipeline Testing

In the second phase of our evaluation, known as Distributed Pipeline
Testing, we deploy both pipelines of our online system on separate
computing nodes within the same local network. This controlled yet
more realistic environment mimics real-world scenarios, providing



Table 2. Latency results for local testing on Primary Pipeline

[ AvgLat [ Max Avg Lat [ Min Avg Lat | AvgLat 15s [ Max Lat 15s | Min Lat 15s |

Module 1 0.061 s 0.139 s 0.024 s 295s 4.18 s 1.24 s
Module 2 0.041 s 0.047 s 0.037 s 1.89 s 2.34s 1.49 s
Module 3 0.017 s 0.024 s 0.012's 0.72's 0.94s 0.50 s
Pipeline 0.292 s 0.359 s 0.228 s 12.72 s 13.57 s 11.63 s

Table 3. Latency results for local testing on Secondary Pipeline

[ Avg Lat [ Max Avg Lat [ Min Avg Lat [ Avg Lat 15s [ Max Lat 15s [ Min Lat 15s

Module 1 0.213 s 0.240 s 0.191 s 14.96 s 15.27 s 14.68 s
Module 2 0.038 s 0.043 s 0.035 s 2.77s 2.96 s 248 s
Module 3 0.021 s 0.025 s 0.015 s 1.45s 1.77 s 1.15s
Pipeline 0.363 s 0.394 s 0.330 s 25.59s 26.54 s 24.15s

insights into the system’s performance in distributed, networked
conditions. The objective is to evaluate how the system handles
collaborative processing and distributed workloads, reflecting oper-
ational setups commonly encountered in practical applications.

During this testing phase, running each pipeline on different ma-
chines within the same local network added a layer of complexity
due to the need for network communication between them. Katka
remained the primary messaging system for transmitting alert mes-
sages from the primary pipeline to the secondary pipeline. However,
the secondary pipeline required access to more than just alert mes-
sages; it needed the state information stored by Module 1 in the
primary pipeline. These files contained critical data for replicating
frame processing and validating alerts.

To facilitate this data transfer, the SSH File Transfer Protocol
(SFTP) was employed because Kafka is not suitable for file transfers.
Machine B, responsible for the primary pipeline, transferred these
files to Machine A, which hosted the secondary pipeline. Machine A
played a crucial role in managing the state store essential for repli-
cating and thoroughly assessing data processing. This meticulous
data transfer process aimed to create a testing environment more
closely resembling real-world scenarios, enhancing the system’s
effectiveness and efficiency validation.

The metrics and measurements for performance analysis in this
phase remain the same as in the previous stage, acquired through
the same process and tools.

The results for latency testing are presented on the tables 9, 10,
13 and 14.

The results for throughput testing are presented on the tables 11
and 12.

Table 11. Throughput (frames per second) results for distributed pipeline
testing on Primary Pipeline

[ [ Average [ Max Average [ Min Average ]

Module 1 3.53 4.40 2.33
Module 2 3.63 4.93 2.40
Module 3 3.42 4.73 1.87
Pipeline 3.42 4.73 1.87

Table 12. Throughput (frames per second) results for distributed pipeline
testing on Secondary Pipeline

[ [ Average [ Max Average [ Min Average ]

Module 1 7.63 8.07 5.87
Module 2 7.64 8.08 6.07
Module 3 7.65 8.11 5.93
Pipeline 7.65 8.11 5.93

Table 13. Latency Percentiles for Primary Pipeline and its Modules in dis-
tributed pipeline testing

[ Percentile [ Module 1 (s) [ Module 2 (s) [ Module 3 (s) [ Pipeline (s) ]

25th 0.020 0.021 0.011 0.401
50th 0.030 0.034 0.025 0.499
75th 0.041 0.046 0.046 0.618
90th 0.047 0.067 0.071 0.680
95th 0.051 0.079 0.082 0.755

Table 14. Latency Percentiles for Secondary Pipeline and its Modules in
distributed pipeline testing

[ Percentile | Module 1(s) [ Module 2 (s) | Module 3 (s) [ Pipeline (s) |

25th 0.113 0.020 0.018 0.226
50th 0.128 0.030 0.028 0.252
75th 0.143 0.040 0.039 0.278
90th 0.152 0.046 0.046 0.296
95th 0.159 0.048 0.048 0.323

4.3 Analysis of Experimental Results

Before analysing the results obtained from our two phases of testing,
it’s important to highlight a limitation. This limitation is the usage
of a single video data source for testing, which, due to the video’s
nature, resulted in a higher frequency of alerts than typical real-
world situations, impacting system performance but allowing for
worst-case scenario testing.

In the Local Testing phase, resource usage is compared with
benchmark testing, showing slightly higher CPU usage but more
efficient RAM utilization. In the Distributed Pipeline Testing phase,
CPU usage is lower, indicating optimized utilization when dis-
tributing the workload. RAM usage improves on one machine and
marginally on the other.



Table 8. Resource Usage results during distributed pipeline testing

l

[ Machine A normal | Machine A testing | Machine B normal [ Machine B testing |

[ CPUUsage |

4.5%

60.6%

0.5%

58.7%

l

| RAM Usage |

50.5%

l

68.5%

l

10.2%

l

29.7%

l

Table 9. Latency results for distributed pipeline testing on Primary Pipeline

[ Avg Lat [ Max Avg Lat [ Min Avg Lat [ Avg Lat 15s [ Max Lat 15s [ Min Lat 15s

Module 1 0.061 s 0.118 s 0.024 s 3.14s 474s 1.23s
Module 2 0.032's 0.058 s 0.021's 1.71s 2.78's 0.95s
Module 3 0.023 s 0.038 s 0.014 s 1.186 s 1.60 s 0.65 s
Pipeline 1.064 s 2.460 s 0.353 s 51.89 s 143.00 s 18.61's

Table 10. Latency results for distributed pipeline testing on Secondary Pipeline

[ AvgLat | Max Avg Lat | Min Avg Lat | AvgLat 15s | Max Lat 15s [ Min Lat 15s

Module 1 | 0.131s 0.165 s 0.124s 14935 15115 1456 5

Module 2 | 0.022s 0.025 0.020 s 2.69s 271s 2195

Module 3 | 0.015s 0.016 s 0.013 s 1.67 s 1.88 s 1.42s

Pipeline 0.244 s 0.298 s 0.233 s 27.952's 28.97 s 26.61s
Latency in the Primary Pipeline remains similar in both phases, REFERENCES

but the overall pipeline latency increases in the Distributed Pipeline
Testing due to network latency and concurrent file transfers af-
fecting performance. The Secondary Pipeline shows improved per-
formance in the Distributed Pipeline Testing due to the reduced
competition for resources.

As for the qualitative analysis, it confirms that the Third Pipeline
consistently produces identical results to the Secondary Pipeline,
emphasizing result accuracy.

In summary, the system demonstrates efficient resource utiliza-
tion and reliable performance under various testing scenarios, with
an emphasis on result accuracy in data provenance-sensitive situa-
tions.

5 CONCLUSION

In our work we aimed to explore, design, and implement auditable
data provenance solutions tailored to the dynamic nature of stream-
ing data. By understanding the advantages and shortcomings of the
existing solutions, we designed an architecture framework for com-
plete and correct auditable data provenance in a stream processing
environment which was applied to a real-life use case. By processing
continuous video streams in a dynamic setting, we showed our sys-
tem can handle multiple complex challenges and be integrated with
diverse technologies, like computer vision for object detection, deep
learning models for tracking, Apache Kafka for communication and
state management for auditability. A test environment was also
designed to validate the correctness of our solution and evaluate its
performance. Through this test environment a quantitative analysis
was performed which allowed to evaluate the performance of our so-
lution in different conditions. A qualitative analysis was also made,
which allowed us to guarantee that our system offers dependable
and accurate data provenance in the context of a demanding stream
processing environment.

[1] Fuad Bajaber, Radwa Elshawi, Omar Batarfi, Abdulrahman Altalhi, Ahmed Bar-
nawi, and Sherif Sakr. 2016. Big data 2.0 processing systems: Taxonomy and open
challenges. Journal of Grid Computing 14 (2016), 379-405.

[2] Maycon Viana Bordin, Dalvan Griebler, Gabriele Mencagli, Claudio FR Geyer, and
Luiz Gustavo L Fernandes. 2020. DSPBench: A suite of benchmark applications for
distributed data stream processing systems. IEEE Access 8 (2020), 222900-222917.

[3] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves,
Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry
Peng, et al. 2016. Benchmarking streaming computation engines: Storm, flink
and spark streaming. In 2016 IEEE international parallel and distributed processing
symposium workshops (IPDPSW). IEEE, 1789-1792.

[4] Robert Eiss. 2020. Confusion over Europe’s data-protection law is stalling sci-
entific progress. Nature 584 (08 2020), 498-498. https://doi.org/10.1038/d41586-
020-02454-7

[5] Boris Glavic, Kyumars Sheykh Esmaili, Peter M Fischer, and Nesime Tatbul. 2014.
Efficient stream provenance via operator instrumentation. ACM Transactions on
Internet Technology (TOIT) 14, 1 (2014), 1-26.

[6] Darshankumar Vinubhai Gorasiya. 2019. Comparison of open-source data stream
processing engines: spark streaming, flink and storm. (2019).

[7] Fatih Giircan and Muhammet Berigel. 2018. Real-Time Processing of Big Data

Streams: Lifecycle, Tools, Tasks, and Challenges. In 2018 2nd International Sym-

posium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). 1-6.

https://doi.org/10.1109/ISMSIT.2018.8567061

Mohammad Rezwanul Huq, Andreas Wombacher, and Peter MG Apers. 2011. In-

ferring fine-grained data provenance in stream data processing: reduced storage

cost, high accuracy. In Database and Expert Systems Applications: 22nd Inter-

national Conference, DEXA 2011, Toulouse, France, August 29-September 2, 2011,

Proceedings, Part II 22. Springer, 118-127.

Haruna Isah, Tariq Abughofa, Sazia Mahfuz, Dharmitha Ajerla, Farhana Zulker-

nine, and Shahzad Khan. 2019. A survey of distributed data stream processing

frameworks. IEEE Access 7 (2019), 154300-154316.

[10] Ziya Karakaya, Ali Yazici, and Mohammed Alayyoub. 2017. A comparison of
stream processing frameworks. In 2017 International Conference on Computer and
Applications (ICCA). IEEE, 1-12.

[11] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri

Heiskanen, and Volker Markl. 2018. Benchmarking distributed stream data

processing systems. In 2018 IEEE 34th International Conference on Data Engineering

(ICDE). IEEE, 1507-1518.

Taiwo Kolajo, Olawande Daramola, and Ayodele Adebiyi. 2019. Big data stream

analysis: a systematic literature review. Journal of Big Data 6 (06 2019), 47.

https://doi.org/10.1186/s40537-019-0210-7

[13] Devesh Kumar Lal and Ugrasen Suman. 2019. Towards comparison of real

time stream processing engines. In 2019 IEEE Conference on Information and

Communication Technology. IEEE, 1-5.

Hyo-Sang Lim, Yang-Sae Moon, and Elisa Bertino. 2009. Research issues in data

provenance for streaming environments. In Proceedings of the 2nd SIGSPATIAL

ACM GIS 2009 International Workshop on Security and Privacy in GIS and LBS.

8

[

[12

[14


https://doi.org/10.1038/d41586-020-02454-7
https://doi.org/10.1038/d41586-020-02454-7
https://doi.org/10.1109/ISMSIT.2018.8567061
https://doi.org/10.1186/s40537-019-0210-7

[15]

[16]

(17]

(18]

[19]

(20]

[21]

58-62.

Xiufeng Liu, Nadeem Iftikhar, and Xike Xie. 2014. Survey of real-time processing
systems for big data. In Proceedings of the 18th International Database Engineering
& Applications Symposium. 356-361.

Erum Mehmood and Tayyaba Anees. 2020. Challenges and Solutions for Process-
ing Real-Time Big Data Stream: A Systematic Literature Review. IEEE Access 8
(2020), 119123-119143. https://doi.org/10.1109/ACCESS.2020.3005268
Alramzana Nujum Navaz, Saad Harous, Mohamed Adel Serhani, and Ikbal Taleb.
2019. Real-Time Data Streaming Algorithms and Processing Technologies: A Sur-
vey. In 2019 International Conference on Computational Intelligence and Knowledge
Economy (ICCIKE). 246-250. https://doi.org/10.1109/ICCIKE47802.2019.9004318
Dimitris Palyvos-Giannas, Vincenzo Gulisano, and Marina Papatriantafilou. 2019.
GeneaLog: Fine-grained data streaming provenance in cyber-physical systems.
Parallel Comput. 89 (2019), 102552.

Dimitris Palyvos-Giannas, Bastian Havers, Marina Papatriantafilou, and Vincenzo
Gulisano. 2020. Ananke: a streaming framework for live forward provenance.
Proceedings of the VLDB Endowment 14, 3 (2020), 391-403.

Henriette Roger and Ruben Mayer. 2019. A comprehensive survey on paralleliza-
tion and elasticity in stream processing. ACM Computing Surveys (CSUR) 52, 2
(2019), 1-37.

Watsawee Sansrimahachai, Luc Moreau, and Mark J Weal. 2013. An on-the-fly
provenance tracking mechanism for stream processing systems. In 2013 IEEE/ACIS
12th International Conference on Computer and Information Science (ICIS). IEEE,
475-481.

[22]

(23]

[24]

[26

[27]

(28]

[29]

Watsawee Sansrimahachai, Mark ] Weal, and Luc Moreau. 2012. Stream ancestor
function: A mechanism for fine-grained provenance in stream processing systems.
In 2012 Sixth International Conference on Research Challenges in Information Science
(RCIS). IEEE, 1-12.

MingJie Tang, Saisai Shao, Weiqing Yang, Yanbo Liang, Yongyang Yu, Bikas Saha,
and Dongjoon Hyun. 2019. Sac: A system for big data lineage tracking. In 2019
IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 1964-1967.
Jianwu Wang, Daniel Crawl, Shweta Purawat, Mai Nguyen, and Ilkay Altintas.
2015. Big data provenance: Challenges, state of the art and opportunities. In 2015
IEEE international conference on big data (Big Data). IEEE, 2509-2516.

Masaya Yamada, Hiroyuki Kitagawa, Toshiyuki Amagasa, and Akiyoshi Matono.
2022. Augmented lineage: traceability of data analysis including complex UDF
processing. The VLDB Journal (2022), 1-21.

Ilkay Melek Yazici and Mehmet S Aktas. 2022. A novel visualization approach
for data provenance. Concurrency and Computation: Practice and Experience 34, 9
(2022), e6523.

Qian Ye and Minyan Lu. 2021. s2p: provenance research for stream processing
system. Applied Sciences 11, 12 (2021), 5523.

Zoltan Zvara, Péter GN Szabd, Barnabas Balazs, and Andras Benczur. 2019. Opti-
mizing distributed data stream processing by tracing. Future Generation Computer
Systems 90 (2019), 578-591.

Zoltan Zvara, Péter GN Szab6, Gabor Hermann, and Andréas Benczir. 2017. Trac-
ing distributed data stream processing systems. In 2017 IEEE 2nd International
Workshops on Foundations and Applications of Self* Systems (FAS* W). IEEE, 235—
242.


https://doi.org/10.1109/ACCESS.2020.3005268
https://doi.org/10.1109/ICCIKE47802.2019.9004318

	Abstract
	1 Introduction
	2 Related Work
	2.1 Stream Processing
	2.2 Data Audit, Lineage, and Provenace

	3 Solution
	3.1 Primary Pipeline or Continuous Video Processing Pipeline
	3.2 Secondary Pipeline or Validation Pipeline
	3.3 Third Pipeline or Replay Pipeline
	3.4 Data Structures

	4 Evaluation
	4.1 Local Testing
	4.2 Distributed Pipeline Testing
	4.3 Analysis of Experimental Results

	5 Conclusion
	References

