TECNICO
LISBOA

CGroup Caching @ Graalvisor

David Jorge Santos Nunes

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisors: Prof. Rodrigo Fraga Barcelos Paulus Bruno
Prof. Luis Manuel Antunes Veiga

Examination Committee

Chairperson: Prof. Valentina Nisi
Supervisor: Prof. Rodrigo Fraga Barcelos Paulus Bruno
Member of the Committee: Dr. Joao Nuno De Oliveira e Silva

November 2023

This work was created using IATEX typesetting language
in the Overleaf environment (www.overleaf.com).

Declaration

| declare that this document is an original work of my own authorship and that it fulfills all the
requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

Acknowledgments

| want to express my deep gratitude to my parents and my brother for their unwavering support,
constant encouragement, and boundless care throughout the years. Their enduring presence and belief
in me have been instrumental in making this project a reality.

I'd like to extend my appreciation to my dissertation supervisors, Professor Luis Veiga and Professor
Rodrigo Bruno, for their invaluable guidance, relentless support, the wealth of knowledge they’ve shared,
and for never giving up on me, providing me with all the tools necessary for the completion of this thesis.

I’'m compelled to offer my heartfelt gratitude to my girlfriend, Bea, whose relentless presence and
support have been the driving force behind my ability to give my best effort in these recent months. Her
encouragement and help in overcoming personal life obstacles have not only been a source of strength
but have also contributed to me becoming the best version of myself. I'm profoundly thankful for her
presence in my life.

Lastly, | want to convey my serious appreciation to my friends and colleagues who have played a
pivotal role in my personal development and remained steadfast in their support over the past few years.

| want to express my profound appreciation to all of you for being a part of my journey as | complete
this significant phase of my life. Your presence and support have meant the world to me. Thank you

sincerely from the depths of my heart.

Abstract

Cloud computing is a transformative technology that delivers a wide range of on-demand services and
resources over the internet. It enables businesses and individuals to access, scale, and pay for com-
puting capabilities as needed. This flexible and cost-effective approach supports digital transformation,
innovation, and efficiency in various sectors.

Serverless computing streamlines application development by abstracting infrastructure manage-
ment. Developers concentrate on code, while the cloud provider handles scaling and maintenance. It
offers agility and an even better cost-efficiency, making it suitable for contemporary applications.

This thesis presents a study of the utilization of control groups (cgroups) in serverless environments,
specifically in the context of Function as a Service (FaaS). The use of cgroups for function invocation
in FaaS has been known to have performance issues during start-up, resulting in latency and initial-
ization difficulties. To address this problem, we proposed a caching mechanism for cgroups, which is
implemented using the GraalVM platform. We evaluated the effectiveness of this approach using four
representative benchmarks, including Hello World, Fibonacci, File Hashing, and Video Transformation.
Our evaluation results reveal the substantial potential of our proposed caching solution in improving the
performance of cgroups within FaaS environments, by removing the overhead related to initialization,

with particularly noteworthy gains observed in functions characterized by rapid execution.

Keywords

Serverless computing; GraalVM; Control Groups; Function-as-a-Service; Graalvisor.

Resumo

A computacdo em nuvem é uma tecnologia transformadora que disponibiliza uma ampla gama de
servigos e recursos pela internet. Isso permite que empresas e individuos acedam, dimensionem e
paguem por capacidades de computagado conforme necessario. Esta abordagem flexivel e econémica
oferece suporte a transformacao digital, inovagao e eficiéncia em varios setores.

A computagao serverless ("sem servidor”) simplifica o desenvolvimento de aplicagdes ao abstrair a
gestao da infraestrutura. Os desenvolvedores concentram-se no cédigo, enquanto o provedor de nuvem
cuida da escalabilidade e manutencéo, o que oferece agilidade e uma eficiéncia de custos ainda melhor,
tornando-o adequado para aplicagbes contemporaneas.

A presente tese estuda a utilizagao de grupos de controlo (cgroups) em ambientes serverless, es-
pecificamente no contexto de Fungdes como Servigo (FaaS). O uso de cgroups para a invocagao de
funcdes em FaaS é conhecido por apresentar problemas de desempenho durante o start-up, resultando
em laténcia e dificuldades de inicializacdo. Para resolver esse problema, propomos um mecanismo
de armazenamento em cache para cgroups, implementado através do uso da plataforma GraalVM.
Avaliamos a eficacia desta proposta usando quatro benchmarks representativas, incluindo Hello World,
Fibonacci, Hashing de Ficheiros e Transformacao de Video. Os resultados revelam o potencial da nossa
solugdo de armazenamento em cache na melhoria do desempenho de cgroups em ambientes FaaS, re-
movendo o overhead relacionado com a inicializagdo e mostrando ganhos particularmente significativos

em funcoes de execucao rapida.

Palavras Chave

Computacao Serverless; GraalVM; Grupos de Controlo; Fungao como Servigo; Graalvisor.

Contents

1 Introduction
1.1 Motivation e e
1.2 Shortcomings of current solutions Lo
1.3 Proposed Solution e e
1.4 Contributions L e e

1.5 DocumentRoadmap e e

2 Background
2.1 Cloud Computing Deployment and Service Models
2.1.1 Essential characteristics
2.1.2 Deploymentmodels
2.1.3 Servicemodels e
2.2 Evolution of Cloud Architectures
221 TheMonolith e
222 MICIOSEIVICES . . .« o e e e e e e e e e e e
223 ServerlessandFaaS. e
2.3 Resource Managementand Scheduling
2.4 CGroUPS & v v v e e e e e e e e e e e e e
241 CGroups Structure o o e e e e
242 CGroup Operations oo i i e e e
243 CGroup CPUController o e
2.5 Managed Runtimes e
2.5.1 Thedava Virtual Machine
252 GraalVM . . . e e e

3 Related Work
3.1 SAND . . e
3.2 SONIC e
3.3 Multitasking Virtual Machine e

10
10
13
14
14
14
17
17
17

3.4 Photons e
3.5 Thin Serverless Functions with GraalVM Native Image
3.6 Automated Fine-Grained CPU Cap Control in Serverless Computing Platform
3.7 SOCK: Rapid Task Provisioning with Serverless-Optimized Containers
3.8 CNTR: Lightweight OS Containers it ii e
3.9 Performance Isolation in GraalVM Native Image Isolates
3.10 Graalvisor L e e

3.11 Analysis and Discussion e e

Solution Architecture

4.1 OVEIVIEW . . . o e e e e e

4.2 Cgroupcacheintegration

4.3 Cgroupdatastructure e
4.3.1 Complexity e e e e e

Implementation

5.1 CModifications e e e

5.2 Java Modifications e
5.2.1 Caching CGroups o o i i i e e e e

5.8 Graalvisor Extension e e
5.3.1 Uncached Version e
5.8.2 Cached Version e

Evaluation

6.1 Benchmarks e e
6.2 Evaluation environment
B.3 Metrics e e e e
6.4 CGroup Management CostS o i i i i i e e e e
6.5 Lazy ReclamationResults e
6.6 Non-Lazy Reclamation Results

6.7 DIiSCUSSION o e e e e e e e e e e e e

Conclusion
7.1 Key Findings and Contributions e
7.2 System Limitations and Future Work o oo

7.3 Concludingremarks e e

Bibliography

vi

List of Figures

2.1 Cloud computing diagram. L e e e 9
2.2 Function as a Service Architecture diagram [1], 11
2.3 VMschedulingmodel [2]. e e e 12
2.4 Resource scheduling in operating systems. oo 13
2.5 CGroup filesystem representation. e 15
2.6 Example of a cgroup hierarchy e 16
2.7 JavaVirtual Machine. [3] o o o e 18
4.1 Architectural diagram with cache layer., 28
4.2 Example of a populated cgroupcache. o o oo 30
6.1 CGroup Management Operations Times. 42
6.2 Hello World CGroup Creation Times. o i i it et e e e 43
6.3 Hello World Execution Times. i e e e 44
6.4 Fibonacci Execution Times. e e 44
6.5 File Hashing Execution Times. e 45
6.6 Video Processing Execution Times. L e 45
6.7 Hello World Execution Times. i e 46
6.8 Fibonacci Execution Times. e 47
6.9 File Hashing Execution Times. e 47
6.10 Video Processing Execution Times. L e 48

vii

viii

List of Algorithms

4.1 Cgroup Caching pseudo-code. i i e e

Introduction

Contents
1.1 Motivation i e e e e e e 3
1.2 Shortcomings of currentsolutions 3
1.3 ProposedSolution. i i ittt e e e e e e e e 4
1.4 Contributions i e e e e 4
1.5 DocumentRoadmap ittt ittt 4

1.1 Motivation

Serverless [4] technology is a relatively recent development in the field of cloud computing, which has
gained significant popularity in recent years. At its core, serverless is a paradigm shift in the way ap-
plications are built and deployed, where the focus is on breaking down applications into small, modular
logic units called functions. These functions are executed in response to specific triggers or events and
are fully managed by the underlying cloud platform (e.g. FaaS).

One of the major advantages of serverless is its ability to provide automated scalability and elasticity,
without the need for infrastructure management on the part of the developer. With serverless, appli-
cations are able to automatically scale up or down in response to changing usage patterns, and can
even scale to zero when not in use, thus reducing costs. Additionally, serverless also offers a pay-as-
you-use billing model, which can significantly reduce costs and improve the economics of application
deployment.

This is a stark contrast to traditional service offerings, where developers have more responsibili-
ties and less flexibility in terms of scalability and elasticity. Serverless technology eliminates much of the
operational overhead and provides developers with a more efficient, cost-effective, and easy-to-use plat-
form for building and deploying their applications. This makes it a highly attractive option for developers

who are looking for a more streamlined and efficient development experience.

1.2 Shortcomings of current solutions

In a serverless architecture, the ability to quickly and efficiently allocate new execution environments,
such as containers or virtual machines, is critical for keeping up with high rates of function invocations.
To achieve this, the virtualization stack must have low overhead and efficient resource management,
allowing for smooth and speedy scaling. Recent works have attempted to host multiple function invoca-
tions in the same language runtime to minimize resource consumption [5] and avoid runtime initialization
latency.

The problem arises when executing a large number of function invocations simultaneously in the
same runtime, which leads to scheduling issues, particularly in terms of creating resource isolation
through Linux control groups (cgroups). Current cgroup implementations in Linux are not well-suited to
handle the high volume of predominantly short invocations present in serverless platforms, resulting in
a decrease in performance and scalability. Another research work proposed a mechanism for allocating
CPU resources among co-located functions in a Function as a Service (FaaS) environment [6] [7], which
enables cloud computing clients to specify CPU requirements for their functions. However, this approach
does not address the challenges associated with the initialization of cgroups, which are known to result

in latency and performance issues.

The scalability limitations of current operating systems regarding the number of concurrent function
invocations and expected latency in serverless infrastructure operations have been widely acknowl-
edged. Traditional operating systems and their associated resource isolation mechanisms, such as
cgroups, have been optimized for a limited number of concurrently executing tasks. However, the scala-
bility requirements of modern serverless platforms exceed those of traditional operating systems, need-
ing further research and development of optimized resource isolation methods and operating system

design.

1.3 Proposed Solution

For our solution, we study the performance of cgroup operations with the aim of identifying scalability
bottlenecks. Based on the findings of this analysis, we will then investigate potential methods of opti-
mizing cgroup management. These may include the implementation of a caching layer that reduces the
need for the frequent creation and destruction of cgroups upon task termination, among other potential

optimization techniques.

1.4 Contributions

This thesis makes two significant contributions to serverless computing. Firstly, it identifies and an-
alyzes the performance bottleneck associated with cgroup management in serverless infrastructures,
shedding light on the challenges that lead to inefficiencies and performance degradation. Secondly, it
proposes and implements a caching layer designed to address this scalability bottleneck, optimizing re-
source management, minimizing overhead, and enhancing the efficiency of serverless functions within
cgroups. These contributions offer valuable insights and practical solutions to enhance the performance

and resource utilization in evolving serverless systems.

1.5 Document Roadmap

In Chapter 2, we address the background, where we explore the fundamental concepts and technolo-
gies underpinning this thesis, such as an in-depth description of cgroup management operations. In
Chapter 3 we present an overview of the related work, offering insights into prior work relevant to the
topics discussed in this thesis. In Chapter 4 we delve into the architecture of our solution, explaining the
inner workings of the cgroup cache and its integration into the Function as a Service (FaaS) workflow.

In Chapter 5 we give a thorough description of our implementation, introducing novel ideas and some

system modifications pivotal to our research. In Chapter 6 we present our evaluation, covering the ex-
perimental environment, workloads, and metrics used for performance comparisons. Lastly, in Chapter 7

we summarize this thesis’s main focus, highlight key findings, and propose directions for future research
in the field.

Background

Contents
2.1 Cloud Computing Deployment and ServiceModels 7
2.2 Evolution of Cloud Architectures 9
2.3 Resource Managementand Scheduling, 10
24 CGroUPS - - & v v v v vt ettt s ettt e e e e e e e 13
25 Managed Runtimes ¢ i i i i i i ittt et e e e e e e 17

In this chapter, our objective is to provide readers with the fundamental concepts and technologies
pivotal to a thorough comprehension of the contributions made by this research. To achieve this, we
have structured these topics into four key categories: Cloud Computing, Resource Management and
Scheduling, Managed Runtimes, and CGroups. By doing so, we aim to offer a comprehensive foundation

for exploring the subsequent discussion of related work.

2.1 Cloud Computing Deployment and Service Models

Cloud computing has been growing a lot in the last few years, regarding active users and providers. It is
a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and released with minimal management effort or
service provider interaction [8]. This cloud model comprises five essential characteristics, four service

models, and four deployment models.

2.1.1 Essential characteristics

Cloud computing is an on-demand self-service, meaning that each consumer can automatically pro-
vision the needed computing capabilities without requiring any human interaction with each service
provider. Another characteristic is broad network access: capabilities are available over the network
and easily accessed by standard mechanisms. Cloud computing also consists of resource pooling, i.e.,
the provider's computing resources are pooled to serve multiple consumers using a multi-tenant model,
with resources assigned according to consumer demand. The rapid elasticity allows resources to be
elastically provisioned and released to rapidly scale as needed and, often, it looks to the consumer as if
they are unlimited. Most importantly, cloud systems control and optimize resource usage by leveraging
a metering capability at some level of abstraction appropriate to the type of service. Resource usage
can be monitored, controlled, and reported providing transparency for both the provider and consumer

of the utilized service.

2.1.2 Deployment models

Cloud infrastructure is the collection of hardware and software that enables the characteristics of cloud
computing mentioned above. It can be deployed in several ways. Private cloud deployment is a model
where the infrastructure is provisioned for exclusive use by a single organization. It may be owned,
managed, and operated by the organization, a third party, or some combination of them, and it may exist
on or off premises. The Community cloud deployment model is characterized by the infrastructure being

provisioned for exclusive use by a specific community of consumers. It may be owned, managed, and

operated by one or more of the organizations in the community, a third party, or some combination of
them, and it may exist on or off premises. In the Public cloud deployment model, the cloud infrastructure
is provisioned for open use by the general public. It may be owned, managed, and operated by a busi-
ness, academic, or government organization, or some combination of them, and exists on the premises
of the cloud provider. The composition of two or more of the previous cloud deployment models is called

a Hybrid cloud deployment.

2.1.3 Service models

Cloud computing has four main service models to offer, each satisfying a unique set of business re-
quirements. These models are known as Software as a Service (SaaS), Platform as a Service (PaaS),

Infrastructure as a Service (laaS), and Function as a Service (FaaS).

Infrastructure as a Service: The consumer is capable of provisioning storage, processing, net-
works, and other fundamental computing resources of the infrastructure where he will also deploy
and run the software. While the consumer has no responsibility for the management or control of
the underlying cloud infrastructure, they do have control over the operating systems, storage, and
deployed applications.

Platform as a Service: The consumer may deploy applications created using programming lan-
guages, libraries, services, and tools supported by the provider, onto the cloud infrastructure. The
consumer has no responsibility for the management or control of the underlying cloud infrastruc-
ture, including network, servers, operating systems, or storage, but has control over the deployed
applications and possibly configuration settings for the application-hosting environment.

Function as a Service: The newest model to appear and the most relevant one to us, allows the
consumer to run code in response to events. In this model, he can be solely focused on individual
functions in the application code, since the management and control of the underlying cloud infras-
tructure is the responsibility of the cloud provider, which has to provide the illusion of always-available
resources.

Software as a Service: The consumer is allowed to use the provider’s applications running on a
cloud infrastructure. These applications are accessible from various client devices through either
a thin client interface, such as a web browser, or a program interface. The consumer does not
manage or control the underlying cloud infrastructure including network, servers, operating systems,
storage, or even individual application capabilities, with the possible exception of limited user-specific

application settings.

Broad Network Rapid Measured On-Demand
Access Elasticity Service Self-Service

Essential characteristics

Resource Pooling

Service models Service (SaaS) Service (FaaS) Service (PaaS) a Service (IaaS)

Deployment models

Figure 2.1: Cloud computing diagram.

Software as a J Function as a J Platform as a Infrastructure as

2.2 Evolution of Cloud Architectures

The evolution of cloud architecture [9] [10] represents a dynamic journey that reflects the ever-growing
demands of the digital age. It encompasses a transformation from monolithic structures to the emer-
gence of microservices and the contemporary Function as a Service (FaaS). Throughout this evolution,
the service models, referenced in Section 2.1.3, have played instrumental roles in shaping the cloud

ecosystem.

2.2.1 The Monolith

The early days of cloud computing were marked by the monolithic architecture. In this model, appli-
cations were constructed as a single, unified unit that was self-contained and independent from other
applications. The monolithic approach simplified development but came with challenges related to scal-
ability and adaptability. Monolithic applications often relied on Infrastructure as a Service (laaS) for their
foundational infrastructure, with some integration of Platform as a Service (PaaS) and Software as a

Service (SaaS) components.

2.2.2 Microservices

In response to the limitations of monolithic architecture, microservices emerged as a transformative

paradigm [11]. Microservices architecture involves decomposing complex applications into smaller, in-

dependent components. Each of these microservices is designed to perform specific procedures and
is developed, deployed, and maintained separately. During this phase, Platform as a Service (PaaS)
played a crucial role in providing specialized environments tailored to microservices architecture. Ad-
ditionally, Software as a Service (SaaS) applications began to leverage microservices to gain greater

agility and scalability.

2.2.3 Serverless and FaaS

The relentless pursuit of efficiency and developer productivity led to the rise of Serverless Computing
[12], exemplified by Function as a Service (FaaS). In the FaaS model, infrastructure management is
abstracted to an unprecedented level, enabling developers to focus solely on writing code in the form
of stateless functions which must also be lightweight, and executed in response to specific events or
triggers. This allows the parallel run of a great number of those functions and also the resource sharing
among them.

Serverless and Functions as a Service (FaaS) are often conflated with one another but the truth is
that FaaS is actually a subset of serverless. FaaS is focused on the event-driven computing paradigm
in which application code, or containers, only run in response to events or requests. On the other
hand, serverless computing focuses on providing a wide range of services, including but not limited
to computing, storage, and database services. The configuration, management, and billing of servers
are invisible to the end user, providing increased scalability and cost efficiency, as well as reduced
operational complexity.

Today, the cloud architecture landscape continues to evolve. FaaS and Serverless Computing remain
at the forefront, reshaping how applications are developed and deployed. This evolution underscores the
continuous quest for efficiency, scalability, and adaptability in the digital realm, emphasizing the integral

role that cloud service models have played in shaping the modern cloud computing environment.

2.3 Resource Management and Scheduling

One of the most important things to consider when thinking about cloud computing is the management
of resources, especially CPU and memory. All cloud users want the best set of resources at the low-
est cost possible. In order to improve the utilization of resources such as saving energy, maximizing
resource sharing, and reducing operating costs in the cloud, many strategies for automatic resource
scheduling have been studied and developed. However, most scheduling strategies that currently exist
were developed thinking about the more conventional cloud computing models that are characterized by
longer-term resource allocation and big workloads. Scheduling is the mapping of tasks to resources. it

manifests in threads to CPUs, containers to CPUs, and VMs to CPUs. The strategies of the schedulers

10

Event

B

(optional)

APl Gateway
Cloud Function Provider

Figure 2.2: Function as a Service Architecture diagram [1]

are typically abstract and they may be applied to a variety of these domains. In this section, we present
the most relevant design decisions for resource management and scheduling.

The cloud computing system maps a large number of physical resources to the virtual machines
(VM). The chosen VM scheduling algorithm will assign tasks to the VMs and then deploy them to different
physical machines (PM) to achieve the sharing of resources, as well as to ensure the Quality of Service
and system performance.

Virtual Machine scheduling can be divided into three steps: user requests, resource management,
and deployment stage. First, users send requests over the Internet to the cloud providers, generating the
workloads that are processed using cloud resources. Then, the scheduling center monitors the physical
and virtual nodes in real time. When a VM or PM fails, any tasks or VMs that were running on that failed
machine must be migrated to other machines with similar resources. At last, the deployment stage can
be divided into two levels: the matching process between tasks and VMs and the matching process
between VMs and PMs. A reasonable scheduling method to choose the VMs is to find a mapping
between tasks and VMs that meet a certain optimization objective. After choosing the VMs, they are
deployed to PMs to ensure the implementation of tasks.

The improvements to scheduling can be oriented to different objectives, depending on the user and
provider’s needs. Recently, the main five aspects that the schedulers are following are QoS (Quality of
Service), Energy, Resources, Cost, and Workload.

Since scheduling in cloud computing is an NP (Non-Deterministic Polynomial) problem, a heuristic
algorithm is needed to solve it. Traditional batch mode heuristic scheduling algorithms (BMHA) usually
aim at optimizing the execution time and load balancing of the tasks, so that the scheduling system can
get a good QoS. The main examples of BMHA-based algorithms are First Come First Served (FCFS),
Round Robin (RR), Min-Min, Max-Min, and Shortest Job First (SJF). These algorithms are widely used

and many others were derived from them [13]. A brief description of each one is given below.

11

Task list VM list PM list

User list
User 1 Task 1 — —» VM1 Host 1
. o
| " '
User 2 Task2 - | v VM2
{ _ . Host 2
User 3 v Task3 A VM3
< Task 4 - v VM 4
Usern '
Taskn A VMn Host m
Data Center VM VM
Master Scheduler Deployment

Figure 2.3: VM scheduling model [2].

First come first served This algorithm assigns each incoming task to a free virtual machine by
order of arrival.

Round Robin The cloud resources are provided based on the time slices, i.e. each VM has a
list of time slices for each task to be executed. The first task is randomly allocated to a VM, and
the subsequent tasks are assigned in a circular order to the other available ones. Once a task is
assigned, the chosen VM is moved in a circular motion to the end of the available VMs list. Moreover,
if the execution of a task has not finished in the time slice given by the VM, the process is interrupted
and the next task on this specific VM list will take place.

Min-Min The algorithm first computes the expected execution time of tasks on each VM, and then
schedules, the task with the minimum execution time to the corresponding VM. After the scheduling
process, each VM will have tasks assigned by order of execution time, from lowest to highest.
Max-Min This algorithm is similar to the Min-Min algorithm. It computes the expected execution time
of each task for every VM and then schedules the task with the maximum execution time for the
corresponding VMs. After the scheduling process, each VM will have tasks assigned by order of

execution time, from highest to lowest.

12

_L
1
I
[
i
1
I
I
I
1
i
I
1
i

lob Queue * Ready Queue Bt

W

I/O Waiting |

o € Queue e

Figure 2.4: Resource scheduling in operating systems.

Shortest Job First In this algorithm, it is performed a sort of the incoming tasks based on their

length and then, for the new sorted list, proceeds as the first come first served algorithm [14].

The fundamental principles previously elucidated are integral components of the contemporary Linux
kernel’s resource management framework. A viable approach to manage resources and interact with

scheduling from user space is by manipulation of CPU cgroups.

2.4 CGroups

Control groups, commonly referred to as cgroups, represent a key and well-established feature within
the Linux kernel architecture. This feature facilitates the systematic organization of processes into hi-
erarchical groups, enabling precise control over their consumption and monitoring of diverse resource
types. The cgroup filesystem, intricately incorporated within the kernel, serves as the keystone of this re-
source management framework. It empowers administrators and system operators with a potent toolset
to effectively throttle, allocate, and oversee the utilization of critical computing resources within the Linux
environment.

Subsystems, also known as resource controllers (or simply, controllers), are kernel components that
modify the behavior of the processes in a group and enforce resource management. A subsystem
represents a single resource, such as CPU, memory, or I/O devices. In this work, we are interested in
studying the ones related to CPU. Various subsystems have been implemented, making it possible to

do things such as:
* Resource limiting: We can configure a cgroup to limit how much of a particular resource a

13

process can use;

* Prioritization: We can control how much of a resource a process can use compared to processes

in another cgroup when there is resource contention;
» Accounting: Resource limits are monitored and reported at the cgroup level;

» Process Control: One can change the status (frozen, stopped, or restarted) of all processes in a

cgroup With a single command.

The cgroups for a controller are arranged in a hierarchy. This hierarchy is defined by creating,
removing, and renaming subdirectories within the cgroup filesystem. At each level of the hierarchy,
attributes (e.g., limits) can be defined. The limits, control, and accounting provided by cgroups generally
have an effect throughout the subhierarchy underneath the cgroup where the attributes are defined.
Thus, for example, the limits placed on a cgroup at a higher level in the hierarchy cannot be exceeded

by descendant cgroups.

2.4.1 CGroups Structure

The hierarchy of cgroups is depicted in the form of a directory structure, with its foundational directory
rooted at ’/sys/fs/cgroup/’ illustrated in Figure 2.5. Every directory, regardless of its placement within
this hierarchy, constitutes a cgroup. It's important to note that even the root directory itself serves as a

cgroup, meaning it is part of the grouping structure.

2.4.2 CGroup Operations

To gain a comprehensive understanding of cgroup operations, let’s first emphasize the significance of
administrative privileges in the management of these resource control groups, i.e., for any alterations
to cgroups, it is imperative to have root permissions, highlighting the essential need for administrative
access in managing these resource control groups. Cgroups, in their operations, leverages a virtual file
system, entailing that their functionalities are accessed through interactions with the file system’s API.
The process of creating a cgroup is quite straightforward [15] - one simply employs the ‘'mkdir’ command
within the hierarchy structure. Conversely, when it comes to removing a cgroup, a crucial requirement
is that no active processes or threads should exist within it. Under these conditions, the removal can be

achieved by using the 'rmdir’ command.

2.4.3 CGroup CPU Controller

Within each cgroup, you'll encounter files and, in some cases, even directories that represent other

cgroups. These files can be categorized into two main types: core files, which consistently commence

14

/syslfs/cgroup

Memory Disk /O CPU

\i Y

Web Service Data Storage Protgt?ging
Group Group Group

Pid 1 Pid 2 Pid 1 Pid 3 Pid 1 Pid 5

Figure 2.5: CGroup filesystem representation.

with ’cgroup.’, and controller files, which begin with the name of the respective controller they pertain
to. For instance, you'll find controller files with names like 'cpu.’ to signify their association with the CPU

controller, which is the most relevant to this work.

Inside the framework of CPU control, various files provide distinct mechanisms for management,
including cpu.weight’, ’cpu.max’, and ’cpu.uclamp.max’, among others. In our particular approach, we
focus on the utilization of cpu.max’. This specific file serves as the conduit for defining the desired CPU
quota, which regulates the proportion of CPU time a cgroup can utilize relative to a specified period.
Notably, the configuration of this file involves a specific format where the CPU quota and the associated
time period are specified in the form 'quota period’. The initial value indicates the total time allowance in
microseconds for all processes within a child group to execute during a single period, while the second
value defines the total duration of that period. For example, to allocate 10% of the CPU resources,
you can represent this as 100 1000’ or 1000 10000’, which means using 100 us out of a 1000 us
window and 1000 us out of a 10000 window, respectively. This representation offers multiple options for

achieving fine-grained control over CPU utilization within a cgroup.

15

To enable granular control over CPU resource allocation within cgroups, an initial step involves
the configuration of the top-level or "main” cgroup within the hierarchy. This configuration process
entails specifying the cgroup’s controllers that the cgroup will use and associating the desired pro-
cess with it. To effect these changes, the 'cpu’ and ’cpuset’ designations are inscribed within all the
‘cgroup.subtree_control’files up the hierarchy, while the process ID is recorded within the 'cgroup . procs’
file. Figure 2.6 presents a graphical representation of a cgroup hierarchy that aligns with the aforemen-

tioned description.

[root]

cgroup.subtree_control = cpu cpuset

cgroup.procs

All processes

[main]

cgroup.subtree_control = cpu cpuset

cgroup.type = domain

cgroup.procs

1000
[worker1] [worker2]
cgroup.subtree_control = cpu cpuset cgroup.subtree_control = cpu cpuset
cgroup.type = threaded cgroup.type = threaded
cgroup.max = 100 1000 cgroup.max = 1000 1000
cgroup.threads cgroup.threads
1001 1002
CPU Quota: 100/1000 = 10% 1000/ 1000 = 100%

Figure 2.6: Example of a cgroup hierarchy

Subsequently, within the main cgroup, the creation of the worker cgroups for executing threads with
specific CPU allocations can be undertaken. This involves the execution of several steps. First, a new

worker cgroup is generated using the 'mkdir’ command within the main cgroup directory. Next, the

16

‘threaded’ designation is inscribed within the 'cgroup.type’ file, and the desired thread is assigned to this
newly created worker cgroup, signified by the inclusion of its thread ID within the 'cgroup . threads’ file.
Lastly, the CPU allocation for the worker cgroup is defined by configuring the ’cpu.max’ file in accordance

with the desired CPU parameters, as elaborated upon earlier.

2.5 Managed Runtimes

In today’s cloud computing landscape, most applications are developed using high-level languages (such
as Java, Javascript, and Python) which require a language runtime to execute. In this section, we discuss
the most important aspects of such runtimes and also elaborate on some techniques used to reduce the

overheads in terms of runtime initialization and runtime memory footprint.

2.5.1 The Java Virtual Machine

"The Java Virtual Machine is the cornerstone of the Java platform.” This technology is responsible for
Java’s hardware and operating system independence, the small size of its compiled code, and its security
[16].

It is an abstract machine detailed by a specification that formally describes what is required in a
JVM implementation. The most popular Java Virtual Machine implementation is the OpenJDK HotSpot
JVM, by Oracle. It performs interpretation and just-in-time (JIT) compilation. The Java Virtual Machine
allows a computer to run programs in any language with functionality as long as they can be compiled
to bytecode.

Figure 2.7 represents the components of Java Virtual Machine, which works as follows: After com-
piling a .java file, a .class file, containing bytecode, is generated. The Class Loader then loads this
bytecode into the runtime data structures, which are subsequently used by the JVM’s execution engine
components, namely the interpreter, the Just-In-Time (JIT) compiler, and the Garbage Collector. The in-
terpreter dynamically reads the instructions and executes the corresponding machine instructions. The
JIT compiler is used to compile the bytecode into native code and store it so it can be used multiple
times, enhancing performance. The Garbage Collector is responsible for managing the memory and

automatically removing unused memory from the heap.

2.5.2 GraalVM

GraalVM is a novel Java VM implementation, based on HotSpot Java Virtual Machine, designed to

achieve better performance. It adds an advanced just-in-time (JIT) optimizing compiler, which is written

17

Java Api Class File

— | Class Loader [¢€—— Prssmmmessosmeeaoooens .

l E Interpreter E

E Heap Area Stack Area and : , JIT Compiler :
E Registers E : E
E Method Area E : Garbage Collector E
L | L |

[[
Runtime Data Areas Execution Engine

Figure 2.7: Java Virtual Machine. [3]

in Java, to the HotSpot Java Virtual Machine, for faster startup and a lower memory footprint. The first
production-ready version, GraalVM 19.0, was released in May 2019 [17].

In addition to running Java and JVM-based languages, GraalVM’s language implementation frame-
work (Truffle) makes it possible to run JavaScript, Ruby, Python, and several other popular languages
on the JVM. With GraalVM Truffle, Java and other supported languages can directly interoperate with

each other and share data and resources [18].

JVM Runtime Mode When running programs on the HotSpot JVM, GraalVM defaults to the GraalVM
compiler as the top-tier JIT compiler. At runtime, an application is loaded and executed normally on
the JVM. The JVM passes bytecodes for Java or any other JVM-native language to the compiler,
which compiles that to the machine code and returns it to the JVM. Interpreters for supported lan-
guages, written on top of the Truffle framework, are themselves Java programs that run on the JVM.
Java on Truffle Is an implementation of the Java Virtual Machine Specification, built upon GraalVM
as a Truffle interpreter. It is a minified Java VM that includes all core components, implements the
same API as the Java Runtime Environment library (1ibjvm.so), and reuses all JARs and native
libraries from GraalVM.

Native Image Native Image is an innovative technology that compiles, ahead-of-time, Java code
into a standalone native executable or a native shared library. The Java bytecode that is processed
during the build of a native executable includes all application classes, classes from its dependencies,
third-party dependent libraries, and any classes that are required. A generated self-contained native

executable is specific to each individual operating system and machine architecture that does not

18

require a JVM. It does not run on the Java VM, but includes necessary components like memory
management, thread scheduling, and so on from a different runtime system, called “Substrate VM”.
The resulting program has a faster startup time and lowers runtime memory overhead compared to
an entire JVM.

Isolates The GraalVM provides yet another kind of virtualization we call “language-level” virtualiza-
tion, allowing a library written in one language to be called directly from another without performance
penalties. GraalVM provides a way to use hardware resources even more efficiently by allowing
multiple applications to share the same language runtime.

A GraalVM isolate is a disjoint heap that allows multiple tasks in the same virtual machine instance
to run independently. In a traditional Java application server, all of the functions share the same
memory heap, and if one task uses a lot of memory it can trigger garbage collection (GC), slow-
ing down the other functions sharing that heap. Since isolates are disjoint, each isolate can be
garbage-collected independently (or just destroyed before any GC is needed). Isolates are a great
tool for managing application multitenancy, or just breaking down a single monolithic application into

manageable microservices.

19

Related Work

Contents
31 SAND e e e e e e e e e e e 21
3.2 SONICttt it e e e e e e e e e e e e 21
3.3 Multitasking Virtual Machine i it e 22
34 Photons o i i et e e e e e e e e e e s 22
3.5 Thin Serverless Functions with GraalVM Nativelmage 22
3.6 Automated Fine-Grained CPU Cap Control in Serverless Computing Platform 23
3.7 SOCK: Rapid Task Provisioning with Serverless-Optimized Containers 23
3.8 CNTR: Lightweight OS Containers ittt 23
3.9 Performance Isolation in GraalVM Native Image Isolates 24
340 Graalvisor i i i i e e e e e e e e e e e e e e 24
3.11 Analysisand DiSCUSSION o i it i e e e e e e e 25

20

In this chapter, our aim is to provide an insightful overview of previous research that has addressed
topics similar to those tackled in this thesis. We systematically analyze these previous studies to illumi-
nate their relevance in the context of our research. While acknowledging the merits of these prior works,
we also delve into the nuanced aspects that differentiate them from our specific objectives, shedding

light on the unique contributions and focus of our project.

3.1 SAND

SAND [19] presents a novel serverless computing platform that introduces two key strategies to pro-
vide lower latency, better resource efficiency, and more elasticity than other serverless platforms: 1)
application-level sandboxing, and 2) a hierarchical message bus. The authors presented SAND’s de-
sign and implementation, as well as their experience in building and deploying serverless applications

on it.

In their new sandboxing approach, they use tools such as containers to isolate different applications
and lighter Operating Systems concepts, such as processes, to isolate functions of the same application.
This approach allows the allocation and release of resources for function executions to be much faster
and more resource-efficient. The authors combine this with their hierarchical message bus, where each
host runs a local message bus to enable quick triggering of functions executing on the same system, to

reduce significantly the latency of the interaction between function instances.

3.2 SONIC

In order to reduce data passing latency and cost, SONIC [20] proposes a mechanism that chooses
dynamically between three data passing methods, which they call VM-Storage, Direct-Passing, and
state-of-practice Remote-Storage. The authors show that no single data-passing method prevails under
all scenarios and the optimal choice depends on application-specific parameters such as the size of

input data, the size of intermediate data, the application’s degree of parallelism, and network bandwidth.

SONIC is a system that jointly optimizes the inter-lambda data exchange method and lambda place-
ment, monitors application parameters, and uses simple regression models to adapt its hybrid data
passing accordingly. Finally, it uses an online Viterbi algorithm [21], to globally minimize the applica-
tion’s end-to-end latency, normalized by cost. SONIC is also able to adjust to the best data-passing

method considering spontaneous infrastructure changes such as network bandwidth fluctuations.

21

3.3 Multitasking Virtual Machine

The design of the Multitasking Virtual Machine [22] (called from now on simply MVM) is an adaptation
of the Java HotSpot virtual machine that extends it on several novel techniques: an in-runtime design of
lightweight isolation, an extension of a garbage collector to provide best-effort management of a portion
of the heap space, and a transparent and automated mechanism for safe execution of user-level native
code. It enables safe, secure, and scalable multitasking.

Safety is accomplished by strict isolation of applications from one another, enhanced security is guar-
anteed by resource control mechanisms that prevent some denial-of-service attacks, and the improved
scalability results from the application of MVM’s main design principle: sharing as much of the runtime
as possible among different applications and replicating everything else. The authors describe the sys-
tem as a ‘no compromise’ approach since every known APl and mechanism of the Java programming

language is available to applications.

3.4 Photons

Photons [5] identifies the inefficiencies in today’s serverless platforms when invoking the same function
concurrently, like the big number of cold starts due to the single concurrent invocation per container
policy and the large memory usage due to containers requiring some application state.

The authors observed that the extensive number of concurrent invocations of the same function code
replicates large amounts of state, including the language runtime, libraries, and shared state such as
machine learning models. Therefore, they presented Photons, a framework that exploits this redundancy
and allows the execution of concurrent serverless functions to be co-located in a single docker container,

with the opportunity to share the application state.

3.5 Thin Serverless Functions with GraalVM Native Image

Thin Serverless Functions with GraalVM Native Image [23] is a paper where the authors designed,
implemented, and tested a serverless proxy runtime using GraalVM Native Image Isolate, leveraging
runtime sharing for concurrent invocations of the same function executions inside the same runtime,
which was proposed by Photons. It introduces a solution with object caching and state sharing, by
making use of isolates pooling and sharing.

In their design, each invocation is executed in a different isolate with independent heap space. Since
isolates split the private states of each invocation automatically, it ensures the correctness of their exe-

cutions. Using Native Image allows the isolate proxy to achieve a faster start-up and a lower memory

22

footprint.

3.6 Automated Fine-Grained CPU Cap Control in Serverless Com-

puting Platform

The article Automated Fine-Grained CPU Cap Control in Serverless Computing Platform [24] tries to
solve the problem of resource allocation for multi-tenant serverless computing platforms explicitly taking
into account workload fluctuations.

Therefore, the authors present a platform-aware technique for managing CPU resources in a server-
less computing platform: a resource manager that dynamically adapts the CPU cap (or CPU usage
limit) concerning applications with similar performance requirements, which are organized in cgroups.
This paper, experimentally, confirms that the proposed resource manager can effectively eliminate the
burden of explicit reservation of computing capacity, and reduce skewness and average response time,

while not overusing CPU resources.

3.7 SOCK: Rapid Task Provisioning with Serverless-Optimized Con-

tainers

The authors of the next paper analyze Linux container primitives, identifying container initialization and
package dependencies as common causes of slow lambda startup. Thus, they propose SOCK [25], a
streamlined container system optimized for serverless workloads, which avoids major kernel bottlenecks
and has two goals: 1) low-latency invocation for Python handlers that import libraries and 2) efficient
sandbox initialization.

SOCK uses Zygote provisioning, where new processes are forked from the main process, the Zy-
gote, which already has imported the library dependencies that are needed to run the application and
has done some initialization work, reducing the initialization work that the child processes have to do.
This means that the system must maintain a set of Zygote processes with different sets of preinstalled
packages (SOCK’s package cache), which is difficult and could be large, in environments executing

many different types of applications.

3.8 CNTR: Lightweight OS Containers

CNTR [26] introduces a system for building and deploying lightweight OS containers, that provides the

performance advantages of lightweight containers and the functionality of large containers by splitting

23

the traditional container image into two parts: the “fat” image, and the “slim” image - containing the tools
and the main application respectively.

CNTR transparently combines the two container images using a new nested namespace, without
any modification to the application, the container manager, or the operating system. It also enables the
application container to efficiently and dynamically expand with additional tools in an on-demand fashion

at runtime.

3.9 Performance Isolation in GraalVM Native Image Isolates

In the domain of Cloud Computing and the Function-as-a-Service (FaaS) model, the common practice of
co-locating functions in the same runtime to minimize startup delays and reduce memory consumption
is well-recognized. Effective resource management is essential to ensure equitable treatment among
co-located functions. The core objective of this project was to devise a mechanism for dynamic CPU
resource management when functions share the same runtime, addressing a deficiency in existing so-
lutions like Docker, which primarily relies on cgroups for CPU control.

The solution leveraged GraalVM Native Image Isolates for memory isolation and cgroups for CPU
management. At its core, an HTTP server managed function execution requests with predefined CPU
quotas, creating, adjusting, and populating cgroups as needed. The evaluation encompassed an anal-
ysis of CPU quota efficiency, latency, and memory overhead, revealing varying effectiveness based on
function I/O characteristics, with notable efficiency for CPU-bound tasks. Overhead was measured at
20ms to 70ms in latency with minimal memory impact.

This work [6] is the most relevant to our study, since we want to implement their suggested future
work, focusing on optimizing latency overhead by implementing strategies for caching cgroups, thereby

mitigating latency associated with their creation.

3.10 Graalvisor

Graalvisor [7] introduces a high-performance Serverless platform, leveraging GraalVM’s advanced tech-
nology, including Native Image, Isolate, and Truffle. This innovative approach co-locates function invo-

cations at scale, reducing latency and memory footprint compared to traditional Serverless platforms.

Graalvisor is driven by three key observations:

» The growing popularity of Function-as-a-Service (FaaS) as a programming paradigm, with an es-
timated market value of USD 7.7 billion by 2021.

24

 FaaS operates within a Serverless framework, where users have limited control over the execution

environment, with the runtime as the new virtualization boundary.

« Existing virtualization technologies often suffer from latency and memory issues, which Argo miti-

gates by utilizing a lightweight Native Image Unikernel-based virtual machine.

The research presents a solution to address the challenge of virtualization stack bloat in Serverless
computing. Graalvisor consists of a virtualized polyglot language runtime designed for the efficient exe-
cution of lightweight and short-lived Serverless functions. Graalvisor optimizes performance by running
each function in a compact execution environment, with a fast launch time of under 500 microseconds.
This approach significantly reduces the redundancy in virtualization stacks, leading to lower memory
consumption and fewer cold starts.

Graalvisor offers a user-friendly endpoint for registering and invoking functions. When functions are
invoked, Graalvisor intelligently schedules them for execution within specific cluster nodes and lambda
executors (virtual machines).

In an evaluation of Graalvisor’s performance, the study demonstrates substantial improvements. For
Java functions, throughput per memory increases by an average of 170x, while JavaScript functions
see a boost of 26.6x, and Python functions experience a 2.07 x improvement. When applied to a real-
world Serverless trace, Graalvisor reduces overall memory usage by 83% and trims tail latency (99th

percentile) by 68%.

3.11 Analysis and Discussion

As our exploration has revealed, the extensive body of research within this field has addressed a range
of issues and challenges that bear similarity to those addressed in our work. While these prior studies
offer valuable insights, they present opportunities for synergistic integration with our proposed solution.
However, it is essential to note that none of these existing studies effectively tackle the primary challenge
we confront head-on: the mitigation of latency and initialization complexities inherent in the management
operations of cgroups within serverless environments.

In this context, we are poised to leverage the findings and methodologies put forth in the research
discussed in Section 3.9. This referenced work provides a promising baseline for delving deeper into our
primary challenge. We integrated the insights and techniques from 'Performance Isolation in GraalVM
Native Image Isolates’ into Graalvisor, mentioned in Section 3.10, and explored innovative approaches
that address the intricacies of mitigating latency and minimizing initialization complexities when manag-

ing cgroups within the dynamic realm of serverless environments.

25

Solution Architecture

Contents
R @ = - 27
4.2 Cgroup cacheintegration 27
4.3 Cgroupdatastructure ittt e 28

26

This chapter details the design of the architecture for our solution. The organization of our solution will
be discussed in detail in Section 4.1, where we will present an overview of how the different components
are structured and interact with each other. In Section 4.2, we will delve into the specifics of the data
structure that has been selected for implementation. This will include an analysis of the data structure’s
properties, advantages, and limitations. Finally, in Section 4.3, we will explain how the new data structure
is integrated into the isolate, and how it fits within the function invocation workflow, i.e. our proposal for
the cgroup allocation algorithm. We will also provide an overview of the modifications made to the isolate

and function invocation workflow to accommodate the new data structure.

4.1 Overview

Our objective in this thesis is to improve the performance of cgroup management operations and to apply
them in the context of large-scale, serverless computing environments. Therefore, we propose a pre-
populated cache of cgroups with different sizes in memory. Initially, the entire cache would be populated
during the system’s startup process (it should be noted that the cache is nevertheless dynamic and can
be expanded as necessary after initialization).

In our system, whenever a function invocation is initiated, we employ a mechanism to carefully select
an empty cgroup from the cache that is capable of fulfilling the resource requirements of the incoming
function invocation. This cgroup allocation algorithm is crucial as it ensures that the system is utilizing
its resources efficiently and that the chosen empty cgroup is appropriate for the task at hand. Once
the function invocation is completed, the cgroup is returned to the cache in an empty state, ready to be
utilized again for future function invocations. This process of selecting and returning cgroups from and to
the cache is ongoing and enables the system to operate at optimal performance levels while maintaining

a high degree of resource utilization efficiency.

4.2 Cgroup cache integration

The caching mechanism will operate within the main runtime, while individual functions will execute in
isolates inside a specific control group (cgroup). Upon the arrival of a function invocation, our system
performs a check to determine if there is an available cgroup in the cache with the required CPU quota.
If such cgroup is present, the task is allocated to it by writing the task’s thread ID into the cgroup’s
‘cgroup.threads’ file. Once allocated, it becomes unavailable for future invocations.

The cache works lazily, populating and emptying the Java caching structure to indicate cgroup avail-
ability and unavailability. Threads are removed from the cgroup file system only when a new, different

thread requires the cgroup. This way, a thread will be automatically removed from a cgroup by the oper-

27

Application

/ \ function invocation

Common Runtime

&

Isolate 1 Isolate 2

Caching Layer

Choice of
cgroup

Cgroup 1 Cgroup 2 Cgroup 3 Cgroup 4

\J /

Figure 4.1: Architectural diagram with cache layer.

ating system when it terminates or when another thread needs to be inserted into an available cgroup,
that earlier had a thread running.

In the event that a cgroup of the required CPU quota is not present in the cache, a new cgroup is
created, as mentioned in Section 2.4, to accommodate the function’s needs. Regardless of the outcome
of this check, upon the termination of the task, the cgroup is marked as available in the cache data
structure, thus making it eligible for future function invocations. Figure 4.1 illustrates the architectural

configuration of the solution with the inclusion of the newly added caching layer.

4.3 Cgroup data structure

Our proposed caching solution utilizes a key-value store data structure, which allows for efficient storage
and retrieval of data through the use of unique keys. Given the programming language in which the so-
lution is implemented, Java, the specific key-value store data structure utilized is a concurrent hashmap,

which offers a high level of efficiency and performance for lookups, making it well-suited for our caching

28

Algorithm 4.1: Cgroup Caching pseudo-code.

new function invocation with @@ quota:
begin
if cgroupCache.ContainsQuota(Q) then
L cgroupl D «— RemoveCgroupFromCache(Q)

else
L cgroupl D <— createNewCgroup(Q)

if isCacheLazy then
if lthreadInCgroup then

RemovePreviousThread F'romCgroup
InsertThreadInC group(cgroupl D)

else
L InsertThreadInCgroup(cgroupl D)

function ends execution:
begin
AddCgroupToCache()

if lisCacheLazy then
L RemovePreviousThread FromCgroup

requirements. The hashmap is designed such that the keys represent the quota of the cgroups, relative
to a period of 100000 microseconds, and the values are a concurrent list, CopyOnWriteList in the Java
language case, where each element is a cgroup Id. The use of a concurrent hashmap allows for fast and
safe access to the stored cgroups, even in a multi-threaded environment. The CopyOnWriteList guar-
antees that all the elements within it can be accessed simultaneously without any contention among
threads. This allows for highly concurrent and scalable operations, making our solution suitable for
large-scale environments. The combination of a concurrent hashmap with a concurrent list enables us
to achieve high performance and efficiency, making it an ideal data structure for our solution. Figure 4.2

represents an example of a fully populated cache.

4.3.1 Complexity

In the context of the ConcurrentHashMap storing the association between CPU quotas and correspond-
ing lists of cgroup IDs, the insertion and removal operations exhibit constant time complexity, denoted as
O(1). Similarly, the lookup operation also demonstrates a constant time complexity of O(1) on average.
These complexities affirm the efficiency and swiftness of all operations conducted on this data structure.

On the other hand, the CopyOnWriteList exhibits specific time complexities for various operations.
Read operations are highly efficient, with a constant time complexity of O(1). This makes it well-suited for

scenarios where reads significantly outnumber writes since the copy-on-write strategy ensures thread

29

safety during updates. However, the insert and remove operations, which involve copying the list, result
in potentially higher time complexity. The time complexity for these insert and remove operations can
become O(n), where 'n’ represents the number of elements in the list being copied. In practice, this
means that while the CopyOnWriteList provides an excellent level of safety for concurrent operations, it
is most efficient when the reads significantly dominate over the writes.

Nevertheless, it's worth highlighting that the CopyOnWriteList is the sole thread-safe List implemen-
tation in the Java language. By practicing caution and ensuring that the size of a specific list (rep-

resenting the number of cgroups for a given quota) doesn’t grow excessively, we can maintain good

performance.
Key Value Cgroup ID list A
10000 quota Cgroup ID list A / Cgroup 11D
25000 quota Cgroup ID list B Cgroup 2 ID
75000 quota Cgroup ID list C Cgroup 3 ID
100000 quota Cgroup ID list D Cgroup 4 ID

Figure 4.2: Example of a populated cgroup cache.

30

Implementation

Contents
5.1 CModifications e e 33
5.2 Java Modifications e e e 34
5.3 Graalvisor Extension i e e 35

31

32

In this chapter, we transition from the theoretical architecture to the practical realm of implementation.
We will detail the step-by-step process of bringing our proposed solution to life, explaining the technical
procedures involved. Furthermore, we will address the challenges and obstacles encountered during
implementation, providing valuable insights into the complexities of realizing our project. By the end of
this chapter, readers will have a comprehensive view of how our conceptual framework was transformed
into a functional system.

To implement our proposed architecture, we leveraged Graalvisor, described in Section 3.10, as the
base of our code. We also incorporated the insights gained from "Performance Isolation in GraalVM
Native Image Isolates” [6] described in Section 3.9, adapting these findings to our specific objectives.
Throughout the implementation process, we encountered unique challenges and developed innovative

solutions to bridge the gap between theory and practice.

5.1 C Modifications

The outset of our project involved the intricate process of incorporating the code pertaining to cgroup
management operations, composed in the C programming language, with Graalvisor’s existing code-
base, which is mainly Java but is prepared to run C code. This integration necessitated more than
a mere merge; it entailed thoughtful additions and alterations to ensure the seamless coexistence of
these code components.

In the initial phase of the integration, we primarily replicated the code without substantial modifica-
tions. This approach was undertaken to facilitate the commencement of testing procedures, specifically
focusing on the creation, updating, and deletion of cgroups. Additionally, it was essential to ascertain the
precise execution of the function registered within Graalvisor, thereby confirming its confinement within
the designated cgroup and exclusive utilization of the allocated CPU resources.

After encountering certain challenges during the integration process, we reinforced the integrated
code to bolster resilience. This entailed a comprehensive review of the foundational C code. Rather than
a superficial examination of each C instruction, we systematically introduced code segments designed
to validate system calls, proactively identifying and mitigating potential issues. This rigorous approach
was employed to prevent latent errors that could compromise the reliability and stability of the integrated
codebase, since these errors occurred silently, without any apparent error messages to alert us.

Moreover, a significant transformation was introduced in the code responsible for allocating CPU re-
sources to newly created cgroups. In contrast to the previous methodology, which relied on ’cpu.weight’,
our approach introduced the utilization of ’cpu.max’.

From a technical perspective, it would have been possible to re-implement the instructions and sys-

tem calls originally written in C using Java. However, in the interest of code efficiency and pragmatic

33

simplicity, we chose to maintain the original C code, thus preserving the majority of the existing code.

5.2 Java Modifications

In the context of the modifications within the main Graalvisor codebase, the initial step involved the im-
plementation of a straightforward extension. This extension facilitated the testing of the C developments,
as discussed in Section 5.1, by enabling the invocation of the new methods responsible for executing the
C code. During this stage, we conducted a comprehensive verification process to ensure that both the
main cgroup and the worker cgroups were successfully generated and that they possessed the desired
configurations. This validation process was critical for confirming the seamless interaction between the

Java code and the C code, as well as the interaction between the C code and the underlying system.

5.2.1 Caching CGroups

The next phase of our implementation journey involved the detailed development of cgroup cache logic,
a critical component in enhancing the efficiency of cgroup operations. To meet this objective, we intro-
duced a novel class, 'CgroupCache’, meticulously crafted to take on the multifaceted role of managing
various cgroup operations while placing a special emphasis on cgroup caching mechanisms. This class
contains the Java code that calls the C code which we discussed in Section 5.1. CgroupCache is respon-
sible for managing various essential aspects of cgroup operations. It orchestrates the entire life cycle of
cgroups, which encompasses the creation of the primary cgroup (as explained in Section 2.4), and the
subsequent creation, updating, and removal of worker cgroups.

In addition, the constructor of this class incorporated a boolean parameter, which was made con-
figurable through the environment variable 'use_cgroup_cache’. Graalvisor leveraged this parameter to
enable or disable the cache as needed. This flexibility was instrumental in facilitating the succeed-
ing performance comparisons between the cached and uncached versions, enabling us to discern and
quantify the extent of any potential improvements achieved through caching. Graalvisor underwent a
specific modification where we introduced an additional query parameter for function invocation.” This
parameter represents the CPU quota required for the function’s execution. This change ensured that
during function registration, the CPU quota information was associated and preserved for subsequent
use.

To enable the deletion of cgroups following each function invocation (in the uncached version), we
established a tracking mechanism to monitor which cgroups were handling specific threads. To achieve
this, we used a ConcurrentHashMap, utilizing thread IDs as keys and cgroup IDs as corresponding
values. This implementation ensured that as threads were inserted into cgroups, this data structure

was updated accordingly. When threads were subsequently removed from cgroups, the associated

34

key-value pairs were efficiently removed from the structure. Finally, as mentioned in Section 4.3, we
established another ConcurrentHashMap in which the CPU quota of the cgroup served as the key. The
corresponding value was a CopyOnWriteArray that contained multiple cgroup IDs with the same CPU

quota.

5.3 Graalvisor Extension

As Graalvisor bootstraps, it is configured to consider the environment variable introduced in Section
5.2.1. This variable assumes binary values, where ’true’ signifies the activation of cgroup caching, and

‘false’ designates its deactivation, thereby dictating Graalvisor's behavior accordingly.

5.3.1 Uncached Version

The CgroupCache class will invoke the C code responsible for creating the main cgroup structure, which
envelops the worker cgroups that are going to be created later on. When a function is registered and
invoked in Graalvisor, the platform reads the CPU quota query parameter, creating a corresponding
cgroup, with the specified CPU quota, for that function, and adding an entry to the structure that maps
thread IDs to cgroup IDs. When a function execution concludes, Graalvisor automatically deletes the
corresponding cgroup, removes the entry from the map, and any new function invocations follow the

same pattern, creating and removing their respective cgroup.

5.3.2 Cached Version

This variant, which supports cgroup caching, operates in a manner very similar to the uncached version

previously discussed, but it introduces some key differences:

+ After initializing and establishing the main cgroup structure during startup, the CgroupCache class
preloads the cache by creating cgroups with frequently used CPU quotas. This preloading pre-

vents on-the-fly cgroup creation when function invocations occur.

« When a function execution occurs, it will operate within a cached cgroup with a corresponding
CPU quota, if such a cgroup is present. Furthermore, this cached cgroup will be removed from
the cache while the function is in progress, marking it as unavailable. This approach minimizes the

need to create new cgroups by reusing previously created ones.

» Regarding the deletion of the cgroups, contrary to the version lacking cached cgroups, the cached
variant follows a different strategy. Instead of deleting the cgroup upon the completion of a func-

tion’s execution, it is preserved and reincorporated into our caching structure, as elucidated in

35

Section 4.3. As a result, forthcoming invocations that demand an identical CPU quota can effi-
ciently reutilize these pre-existing cgroups, thus minimizing the need for creating new ones and

consequent delay.

Our cache operates with a lazy approach. To efficiently manage cgroup utilization, we've imple-
mented a structure that maps cgroups to thread IDs. When a function concludes its execution, the
cgroup it utilized is marked as available in the cache, but the associated thread isn’t immediately re-
moved. Instead, this information is retained. When a new function execution requires a cgroup, two

scenarios arise:

« If the new function is running on the same thread that previously occupied the selected cgroup,

the cgroup is promptly marked as unavailable and removed from the cache.

 In cases where the new function is executed on a different thread, the old thread is removed from

the cgroup at this point, allowing the new thread to be added to the cgroup filesystem.

This strategy minimizes the need for unnecessary cgroup operations, resulting in more efficient

cgroup utilization.

36

Evaluation

Contents
6.1 Benchmarks i it i e e e e e s 39
6.2 Evaluationenvironmentt e e 40
6.3 Metrics v v ittt e e e e e e e e e e e e 41
6.4 CGroup Management Costs i i i i i i i ittt et e e e e s naa e 41
6.5 Lazy ReclamationResults ittt 42
6.6 Non-Lazy ReclamationResults 46
6.7 DiSCUSSION o i i i i s s e e e e e e e e e e e e s 48

37

38

In this chapter, we shift our focus to the evaluation of our solution’s performance and effectiveness.
We aim to provide an evidence-based analysis of how well our system works and the extent to which
it meets its intended objectives, namely, maintaining consistently low latency for cgroup management
operations. To achieve this, we begin by introducing the benchmarks that will be used to invoke the
functions executed in the cloud environment. We provide a detailed description of their functionality and
relevance. Subsequently, we present the performance metrics used to measure the effectiveness of our
proposed mechanism and the methods used to collect them. This is followed by describing the experi-
mental setup, including the infrastructure used and the specific tests performed. Finally, we present the
results from the tests conducted on our solution and draw conclusions regarding the feasibility and utility

of a cgroup caching algorithm.

6.1 Benchmarks

To evaluate the performance of our proposed solution, we utilized a set of four benchmarks, present in
Section 3.10, three of which were originally introduced in the Photons [5] paper. These benchmarks
have been subsequently employed in the Performance Isolation in GraalVM Native Image Isolates [6]
and will provide an appropriate benchmark for our proposed caching approach. These benchmarks
provide a comprehensive and representative sample of the functions commonly employed in current
serverless technologies. They include Hello World, Fibonacci, File Hashing, and Video Processing,
and represent both 10-intensive, mixed, and CPU-intensive benchmarks. Each of these functions is
registered as an HTTP request to the Graalvisor API, which, upon completion of the function execution,

returns a response to the client.

* Hello world: This benchmark exemplifies the most elementary and expedient type of function one
can envision. In this scenario, a basic program prints the iconic 'Hello World’ string, and this string

is subsequently returned to the user as a response.

 Fibonacci: This benchmark demonstrates a CPU-bound function tailored to calculate Fibonacci
numbers. It receives an integer representing the nth term of the Fibonacci sequence, specifically
the 150th number, and calculates its value. It serves as a model for applications with high compu-

tational demands typically encountered in mathematical and computational contexts

 File Hashing: This benchmark emulates data processing tasks that often encompass file down-
loads and the simultaneous processing of data chunks. This benchmark is designed to replicate
the operations commonly encountered in diverse applications where data is divided into smaller

segments and processed concurrently. Specifically, it simulates the process of downloading a file,

39

with the file used in this case having a size of 41KB, from a local server. Following the download,

the benchmark proceeds to execute a hashing operation on the acquired file.

» Video Processing: This benchmark mimics video processing, simulating the process of down-
loading a portion of a video and subsequently reducing its resolution. It effectively represents the
types of video processing and transformations that are frequently implemented using serverless

technologies in contemporary applications.

6.2 Evaluation environment

The experiments were conducted using a virtual machine hosted on a computer running the Windows
11 Pro N operating system. The host machine is equipped with an AMD Ryzen 5 3600 processor,
operating at 3.80GHz, comprising 6 cores (12 Logical Processors). The virtual machine itself runs the
Linux Ubuntu 22.04.3 LTS operating system. The virtualization was achieved through the Oracle VM
VirtualBox hypervisor, providing the virtual machine access to 4 out of the 12 logical CPU cores, and
12GB of memory out of the 32GB available in the host.

However, it's important to note that, as our experiments were conducted within a virtualized environ-
ment, there are certain factors related to the host operating system and virtualization technology that are
beyond our control and understanding. These factors may introduce overhead, variability, and limitations

that, albeit vastly limited, could impact the experimental results such as:

» CPU Fluctuations: The host machine’s CPU may be shared with other processes or virtual ma-

chines, leading to unpredictable fluctuations in available CPU resources for our experiments.

» Network Performance: Network performance can be influenced by the host’s network usage and

virtualization settings, potentially affecting data transfer times and network-related measurements.

+ Disk I/0O: Disk I/O operations may be influenced by the host’s disk usage and virtualization settings,

potentially leading to variations in data read and write times.

* Memory Allocation: The host’'s memory usage and virtualization settings can affect the available

memory for the virtual machine, potentially leading to variations in memory-related experiments.

» Hypervisor Overheads: The virtualization layer (hypervisor) can introduce overhead in terms
of resource management, which may impact the precise control of resources within the virtual

machine.

+ Clock Drift: Virtualized environments can experience clock drift, where the virtual machine’s sys-
tem clock may not be perfectly synchronized with the host machine’s clock. This can affect time-

related measurements.

40

6.3 Metrics

The performance metrics that are of relevance to our research are the utilization of CPU and the function
execution times, which contain the latency of cgroup management operations, such as the creation,

deletion, and updating of cgroups:

+ CPU Usage At first, we experimented with various CPU quotas to verify that the functions executed
within their designated cgroups while utilizing only the allocated CPU resources. Subsequently, we
standardized these CPU quotas to one full core for all functions in both the cached and uncached
variants. Our primary objective was to evaluate whether running Graalvisor with cached cgroups
resulted in reduced execution times compared to the uncached cgroups version. Note that not all
of the functions need a full core of CPU, and we were able to see that only the necessary amount

was used.

* Function Execution Times The total processing time in Graalvisor encompasses both function
execution within a cgroup and the time required for any essential cgroup management opera-
tions. In the warmup phase of the Graalvisor's cached version, the cache is populated with a
set of cgroups. Therefore, the sole additional overhead during function execution relates to the
cgroup management operations when they are necessary. On the other hand, the uncached ver-
sion dynamically generates and deletes a cgroup for each function while simultaneously inserting
a thread into the respective cgroup. These factors ensure that the disparity in execution times
between the two variants primarily consists of the cgroup management operations. Consequently,

our measurements exclusively account for the function’s processing time on the server side.

6.4 CGroup Management Costs

To gain a comprehensive understanding of the costs associated with cgroup management operations,
we needed to measure the time required for each of the operations. In that sense, we conducted an
experiment using a script that replicates and measures all the essential cgroup operations performed
by our solution to execute a function within a cgroup, described in Section 2.4. The script involves the

following actions:
1. Creating a cgroup
2. Updating the cgroup’s allowed CPU
3. Launching a dummy thread ("sleep 1”)

4. Inserting the formerly created thread into the cgroup

41

5. Removing the cgroup once the thread ended executing

These steps were executed repeatedly, at various levels of concurrency, and using the collected

timing data, we generated the graph depicted in Figure 6.1.

80000 - Il Cgroup creation
I Cgroup setup

70000 - B Cgroup adding
B Cgroup removing

60000 -

—~ 50000 -

n

2

£ 40000 1

=

30000 -

20000 A

10000 -

1 2 4 8
Concurrent invocations

Figure 6.1: CGroup Management Operations Times.

Based on these findings, we can infer that the major cost factors in cgroup management operations
lie within *Cgroup adding,” which involves adding a thread to the cgroup, and 'Cgroup creation, which
pertains to the creation of the cgroup itself. Therefore, we can expect to achieve improved function exe-

cution results by strategically mitigating or eliminating the impact of these time-consuming operations.

6.5 Lazy Reclamation Results

The different types of functions were executed consecutively for a specific number of tests, enabling the
execution times to stabilize and provide reliable values. Functions that had lower resource consumption
and quicker execution were subjected to a larger number of tests for accuracy, specifically 500 invoca-
tions for the "Hello World’ and 'Fibonacci’ functions, and 100 invocations for 'File Hashing’ and 'Video
Processing’ functions. To enhance the quality of the results and to evaluate the system during typical

execution, we excluded the initial 10% of function executions, which can be affected by system warm-up

42

and may yield longer times. Subsequently, we identified and removed any outliers from the dataset,

resulting in the data used for the plotted results below.

It is important to highlight that the subsequent plots for the cached versions of the system are based
on a lazy caching strategy. This strategy optimizes resource utilization and updates cgroup threads only

when necessary, thereby minimizing overhead and ensuring efficient operation.

Hello World Create Times Hello World Create Times

2000 2000

—— No Cached CGroups —— Cached CGroups
1750 4 ——- average: 138 1750 4 ——- average: 217

max: 1010 max: 657

——- min: 108 ——- min: 84
1500 A 1500 |
1250 A 1250 A

1000 4 1000 4

time (us)
time (us)

750 +

500 +

250+

T T T T T
0 100 200 300 400

Test number Test number
(a) Uncached Version. (b) Cached Version.

Figure 6.2: Hello World CGroup Creation Times.

The graphs present in Figure 6.2 illustrate the cgroup creation times for the "Hello World’ function.
We can see that performance doesn’t change much, and that makes sense since the only thing we
are doing is creating the cgroups. One interesting observation is that these times are considerably
lower than those measured in Section 6.4. While we lack concrete evidence, it's plausible that creating

cgroups consecutively might make the latter ones more efficient than the initial ones.

The graphs displayed in Figures 6.3, 6.4, 6.5 and 6.6 represent the processing times of each function.
The Y scale was adjusted, accordingly, to contain the minimum and maximum values for each of them,

allowing an enhanced visualization and comparison.

43

Hello World Execution Times

70000 4

60000

50000 A

40000 4

time (us)

30000 4

20000

10000 +

No Cached CGroups
average: 10032
max: 71631

min: 3169

100

T T
200 300

Test number

400

(a) Uncached Version.

time (us)

Hello World Execution Times

70000 A —— Cached CGroups
——- average: 4347
50000 4 max: 7039
=== min: 3736
50000 4
40000 4
30000 4
20000
10000

T
0 100

T
200 300 400

Test number

(b) Cached Version.

Figure 6.3: Hello World Execution Times.

Fibonacci Execution Times

80000 A

70000 A

60000

50000

40000

time (us)

30000 +

20000

10000 +

T
No Cached CGroups
average: 9595
max: 85983
min: 3313

o

U
100

u T
200 300

Test number

T
400

(a) Uncached Version.

time (us)

Fibonacci Execution Times

80000 - —— Cached CGroups
=== average: 4579
70000 4 max: 6894
—=—- min: 3896
60000 +
50000 +
40000 +
30000
20000
10000
E=bebbusbvedomrerasls Sobudtme o s iibeido s s ewlsses =

T T
200 300

Test number

o4
=
=g
(=]

(b) Cached Version.

Figure 6.4: Fibonacci Execution Times.

Given the inherently swift execution of the 'Hello World’ and "Fibonacci’ functions, the benefits of

avoiding cgroup creation and deletion are more significantly noticeable. As illustrated in Figures 6.3

and 6.4, functions that operate with cached cgroups exhibit a notably enhanced speed, experiencing,

respectively, an improvement of approximately 70% and 50% on average, compared to their uncached

counterparts.

Conversely, for functions with substantially prolonged execution times, such as 'File Hashing’ and

44

'Video Processing, as depicted in Figures 6.5 and 6.6, the obtained benefits of bypassing cgroup cre-
ation and deletion are notably less apparent, culminating in a relatively minor speed increase of approx-
imately 1.5% on average.

166 File Hashing Execution Times 1e6 File Hashing Execution Times
5.14 4 —— No Cached CGroups 5.14 4 —— Cached CGroups
—-- average: 5075794 --- average: 5010170
max: 5134141 max: 5070374
5121 min: 5037368 5121 -—- min: 5004973
5.10 5.10
I G
2 5.08 1 2 5.08
w B o
£ €
' 5.06 * 5.06 4
5.04 5.04
5.02 5.02
5.00 +— : : : : 5.00 1 : : : :
0 20 40 60 80 0 20 40 60 80
Test number Test number
(a) Uncached Version. (b) Cached Version.
Figure 6.5: File Hashing Execution Times.
167 Video Processing Execution Times 167 Video Processing Execution Times
—— No Cached CGroups —— Cached CGroups
131 —--- average: 8171525 131 —--- average: 8025685
max: 13462757 max: 8996042
—-- min: 7660681 —-- min: 7553411
1.2 1.2
—~ 11 — 114
[} w
2 2
L L)
£ £
5 1.0 A S 1.0 A
0.9 4
0.8 1
0 20 40 60 80
Test number Test number
(a) Uncached Version. (b) Cached Version.

Figure 6.6: Video Processing Execution Times.

Despite the functions that are more time-consuming yielding a less pronounced improvement in per-
formance, it is essential to acknowledge that they still derive advantages from utilizing cached cgroups.

The less apparent results are predominantly attributable to the relatively minimal overhead incurred by

45

cgroup management operations. In essence, the time taken for these functions to execute significantly
surpasses the duration of the cgroup management operations. Consequently, the marginal gains in

execution time are rendered less discernible.

6.6 Non-Lazy Reclamation Results

Figures 6.7, 6.8, 6.9 and 6.10 display graphs containing data from similar experiments to the previous
set, running under the same conditions and for the same number of tests, but without utilizing the lazy
caching reclamation. In this non-lazy approach, after each thread completes its execution, not only
the associated cgroup with the finished thread is removed from the cache but also the thread itself is
removed from the cgroup file, which adds two additional steps to every function execution in the cached

variant: removal and re-addition of the thread to the cgroups.

Hello World Execution Times
50000

—— Cached CGroups
—-==- average: 4537
max: 7200

40000 - —=- min: 3903

30000 ~

time (us)

20000

10000 +

Test number

Figure 6.7: Hello World Execution Times.

In this experimental scenario, we can meticulously observe, as evidenced in Figure 6.7, that the
performance of the "Hello World’ function exhibited only marginal alterations when the lazy cache recla-
mation was omitted from the equation.

In contrast, when scrutinizing the execution times of the remaining functions, specifically 'Fibonacci’,
'File Hashing’, and 'Video Processing’, as illustrated in Figures 6.8, 6.9, and 6.10, a noteworthy de-
terioration in performance was detected when compared to the lazy caching approach. In fact, these
functions exhibited performance levels similar to those of the uncached version. The precise cause
for this observation remains somewhat enigmatic. However, our investigation pinpointed the issue, es-
tablishing a clear correlation between the extended execution times and the process of inserting and

removing threads from the cgroups. Furthermore, it is plausible that the intricacies of the underlying

46

time (us)

Fibonacci Execution Times

o000 £ - R B
—— Cached CGroups
80000 1 —-=- average: 10206
=== max: 91157
70000 4. 77" min: 2876
60000 |
50000 I ‘
40000 | o
30000 || 1
20000 o
10000
Pl ~4
T T 1
0 100 200 300 400
Test number
Figure 6.8: Fibonacci Execution Times.
166 File Hashing Execution Times
5.18
3 'Y ! S —
5.14
VIl

k
ISRV AN A P M
el T

|
| H

time (us)
i
—
1
H
1
|
—
:,, m
1
1
=
1
—
i
!

5.04 +—— Cached CGroups coccocccccscsbressssssssbasaax
—-=- average: 5097169

5.02 + ——- max: 5165694
——- min: 5038181

5.00 T T
0 20 40 60 80

Test number

Figure 6.9: File Hashing Execution Times.

47

1e7 Video Processing Execution Times

—— Cached CGroups

——- average: 7790887
max: 8258612

=== min: 7592060

1.3+

1.2 4

11+

time (us)

1.0

0.9

Test number

Figure 6.10: Video Processing Execution Times.

evaluation environment, characterized by virtual machine settings detailed in Section 6.2, may have
also influenced the results. To provide a comprehensive explanation, we have deffered a more detailed

analysis of this aspect to forthcoming research efforts.

6.7 Discussion

The evaluation of our cgroup caching solution demonstrates its potential benefits, particularly the advan-
tages of employing a lazy caching approach. The results indicate significant performance improvements,
with functions that have shorter execution times (expectably the majority of invocations) exhibiting the
most noticeable gains. The overall findings support the viability of cgroup caching in optimizing resource
management and reducing overhead, making it a promising option for enhancing the efficiency and scal-
ability of serverless infrastructures. The lazy approach, in particular, stands out as an effective strategy
for reducing the impact of cgroup management operations and improving function execution times. How-
ever, it's important to note that in contrast, the non-lazy cache approach did not yield the same level of
performance improvement. These results suggest that the lazy cache reclamation strategy plays a cru-
cial role in achieving superior execution times. This approach presents a promising direction for future
optimization efforts, allowing for more efficient and resource-conscious execution of serverless functions
within cgroups.

In a nutshell, a cgroup cache appears to be a strategy worth considering as an addition to serverless

infrastructure, with the potential to significantly enhance performance and resource efficiency.

48

Conclusion

Contents
7.1 Key Findings and Contributions 51
7.2 System Limitationsand FutureWork 52
7.3 Concludingremarks v i i i i i e e e e e e e e e e e e 53

49

50

In this thesis, we have delved deep into the realm of serverless computing and its resource man-
agement challenges, particularly focusing on cgroups and their associated management operations.
The overarching objective of this thesis was to enhance the scalability and performance of serverless

infrastructures, specifically in the context of cgroup management.

7.1 Key Findings and Contributions

Our exploration of the landscape commenced with an in-depth examination of serverless computing in
Chapter 2. We dissected the intricate web of cloud computing and its evolution into serverless architec-
tures, shedding light on the pivotal role of Function-as-a-service (FaaS) platforms and the compelling
benefits they offer in terms of scalability, elasticity, and cost-efficiency. Additionally, we explored the
underlying mechanisms and concepts of serverless computing, such as event-driven architectures and
the fundamental tenets of statelessness.

In Chapter 3, we embarked on a comprehensive review of related work in the field. We discovered the
abundance of research focusing on serverless computing, its challenges, and the numerous optimization
strategies proposed. Notably, our investigation highlighted the growing interest in resource management,
with a particular emphasis on cgroups, making it clear that our research contributes to an active and
evolving domain.

Chapter 4 introduced the architecture of our Graalvisor-integrated solution, which aimed to mitigate
the performance bottlenecks associated with cgroup management operations in serverless environ-
ments. We provided a detailed account of how this solution works, its design principles, and the integra-
tion of a cgroup cache to improve resource management in FaaS platforms. This architectural blueprint
served as the foundation for our subsequent implementation.

Our journey took a significant leap forward in Chapter 5, where we unveiled the intricate details of
our Graalvisor-integrated solution’s implementation. We elucidated our unique approach to resource
management in FaaS by integrating a cgroup cache with a focus on a lazy caching strategy. This inno-
vation aimed to optimize resource usage, minimize overhead, and enhance the efficiency of serverless
functions executing within cgroups.

Chapter 6 marked a pivotal moment in our research as we embarked on a rigorous evaluation of
our cgroup caching solution integrated into Graalvisor. Here, we provided a comprehensive analysis of
the environment, workload, and metrics used to gauge the performance of Graalvisor with our cgroup
cache integration. The experimental results showcased the advantages of a cgroup cache, particu-
larly the impact of a lazy caching approach. Our findings demonstrated significant improvements in
function execution times, with the most pronounced gains observed in functions with shorter execution

times. These results underscore the potential of cgroup caching to enhance performance and resource

51

efficiency in serverless systems.

7.2 System Limitations and Future Work

It is vital to address the system’s limitations and implications for future research. While the cgroup
caching approach, particularly the lazy variant, showed substantial advantages, it is important to ac-
knowledge that not all functions benefited equally. Functions with longer execution times exhibited a
less significant performance boost, indicating that there is room for further optimization. The primary

bottleneck appears to be related to the insertion and deletion of threads from cgroups.

In light of these limitations, several promising avenues for future research and optimization efforts

present themselves. The following areas deserve special consideration:

1. Fine-tuning Caching Strategies: Future work could focus on refining and tailoring the caching
strategy to be more effective for functions with longer execution times. Strategies to mitigate the
performance impact associated with cgroup management operations could be explored to ensure
that all functions, regardless of their runtime and resource usage, derive benefits from the caching

system.

2. Evaluation in Diverse Environments: Our evaluations were conducted within a specific virtual-
ized environment, which may not be entirely representative of real-world serverless infrastructure.
Future research should include diverse environments, including cloud-based and on-premises se-

tups, to better understand how our caching solution performs in various contexts.

3. Comprehensive Benchmarks: Extending benchmark tests to cover a wider range of functions
and use cases will provide more comprehensive insights into the effectiveness of the caching

approach.

4. Resource Monitoring and Allocation: Exploring resource monitoring and allocation mechanisms
within the cgroup hierarchy, especially in response to varying workloads and the dynamic creation

and deletion of cgroups, could help improve the overall efficiency of cgroup caching.

5. Security and Isolation: As serverless infrastructure adoption grows, ensuring security and iso-
lation within cgroup caching becomes paramount. Future work should explore techniques for

enhancing security and ensuring that cached cgroups are appropriately isolated.

52

7.3 Concluding remarks

Our findings strongly suggest that a cgroup cache is a valuable strategy for enhancing the performance
and resource efficiency of serverless infrastructures. While the lazy caching approach has shown sub-
stantial benefits, there remains room for optimization and further research to address the limitations
observed in our study. By embracing these future directions, we can look forward to a more resource-

efficient and high-performing serverless computing environment.

53

Bibliography

[1] R. Pellegrini, I. Ivkic, and M. Tauber, “Towards a security-aware benchmarking framework for

function-as-a-service,” 01 2018, pp. 666—669.

[2] S. Singh and I. Chana, “A survey on resource scheduling in cloud computing: Issues and chal-

lenges,” Journal of Grid Computing, vol. 14, no. 2, pp. 217-264, Jun 2016.
[3] “Java Virtual Machine.” [Online]. Available: https://en.wikipedia.org/wiki/Java_virtual_machine

[4] K. Djemame, M. Parker, and D. Datsev, “Open-source serverless architectures: an evaluation of
apache openwhisk,” in 2020 IEEE/ACM 13th International Conference on Utility and Cloud Com-
puting (UCC), 2020, pp. 329—-335.

[5] V. Dukic, R. Bruno, A. Singla, and G. Alonso, “Photons: lambdas on a diet,” Proceedings of the 11th
ACM Symposium on Cloud Computing, 2020.

[6] F. Sousa, “Performance isolation in graalvm native image isolates,” Master Thesis, In-
stituto Superior Técnico, 2022. [Online]. Available: https:/rodrigo-bruno.github.io/mentoring/
81120-Filipe-Sousa-dissertacao.pdf

[7] R. Bruno, S. lvanenko, S. Wang, J. Stevanovic, and V. Jovanovic, “Graalvisor: Virtualized polyglot
runtime for serverless applications,” 2022.

[8] P. Mell, T. Grance et al., “The nist definition of cloud computing,” 2011. [Online]. Available:
https://nvipubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-145.pdf

[9] N. Kratzke, “A brief history of cloud application architectures,” Applied Sciences, vol. 8, no. 8,
2018. [Online]. Available: https://www.mdpi.com/2076-3417/8/8/1368

[10] J. Surbiryala and C. Rong, “Cloud computing: History and overview,” in 2019 IEEE Cloud Summit,
2019, pp. 1-7.

[11] S. Li, H. Zhang, Z. Jia, C. Zhong, C. Zhang, Z. Shan, J. Shen, and M. A. Babar,

“Understanding and addressing quality attributes of microservices architecture: A systematic

54

https://en.wikipedia.org/wiki/Java_virtual_machine
https://rodrigo-bruno.github.io/mentoring/81120-Filipe-Sousa-dissertacao.pdf
https://rodrigo-bruno.github.io/mentoring/81120-Filipe-Sousa-dissertacao.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-145.pdf
https://www.mdpi.com/2076-3417/8/8/1368

literature review,” Information and Software Technology, vol. 131, p. 106449, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0950584920301993

[12] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell, V. Muthusamy, R. Rabbabh,
A. Slominski, and P. Suter, Serverless Computing: Current Trends and Open Problems. Springer

Singapore, 2017, pp. 1-20.

[13] E. Meriam and N. Tabbane, “A survey on cloud computing scheduling algorithms,” in 2016 Global
Summit on Computer Information Technology (GSCIT), 2016, pp. 42—47.

[14] K. Ramamritham and J. A. Stankovic, “Scheduling algorithms and operating systems support for

real-time systems,” Proceedings of the IEEE, vol. 82, no. 1, pp. 5567, 1994.

[15] “RedHat - Resource Management Guide.” [Online]. Available: https://access.redhat.com/

documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/index

[16] “The Java Virtual Machine specification.” [Online]. Available: https://docs.oracle.com/javase/specs/

jvms/se19/jvms19.pdf
[17] “GraalVM wikipedia.” [Online]. Available: https://en.wikipedia.org/wiki/GraalVM

[18] “GraalVM architecture.” [Online]. Available: https:/www.graalvm.org/22.0/docs/introduction/

#graalvm-architecture

[19] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt, “Sand: Towards
high-performance serverless computing,” in USENIX Annual Technical Conference, 2018. [Online].

Available: https://www.usenix.org/system/files/conference/atc18/atc18-akkus.pdf

[20] A. Y. Mahgoub, K. Shankar, S. Mitra, A. Klimovic, S. Chaterji, and S. Bagchi, “Sonic:
Application-aware data passing for chained serverless applications,” in USENIX Annual Technical

Conference, 2021. [Online]. Available: https://www.usenix.org/system/files/atc21-mahgoub.pdf
[21] G. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp. 268-278, 1973.

[22] G. Czajkowski and L. Daynés, “Multitasking without compromise: A virtual machine
evolution,” SIGPLAN Not., vol. 47, no. 4a, p. 60-73, mar 2012. [Online]. Available:
https://doi.org/10.1145/2442776.2442785

[23] S. Wang, “Thin serverless functions with graalvm native image,” Master Thesis, ETH Zurich, Zurich,
2021-04-22.

[24] Y. K. Kim, M. R. HoseinyFarahabady, Y. C. Lee, and A. Y. Zomaya, “Automated fine-grained cpu cap
control in serverless computing platform,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 10, pp. 2289-2301, 2020.

55

https://www.sciencedirect.com/science/article/pii/S0950584920301993
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/index
https://docs.oracle.com/javase/specs/jvms/se19/jvms19.pdf
https://docs.oracle.com/javase/specs/jvms/se19/jvms19.pdf
https://en.wikipedia.org/wiki/GraalVM
https://www.graalvm.org/22.0/docs/introduction/#graalvm-architecture
https://www.graalvm.org/22.0/docs/introduction/#graalvm-architecture
https://www.usenix.org/system/files/conference/atc18/atc18-akkus.pdf
https://www.usenix.org/system/files/atc21-mahgoub.pdf
https://doi.org/10.1145/2442776.2442785

[25] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Sock: Rapid task provisioning with serverless-optimized containers,” in USENIX Annual

Technical Conference, 2018. [Online]. Available: https://www.usenix.org/system/files/conference/

atc18/atc18-oakes.pdf

[26] J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci, “Cntr: Lightweight os containers,” in
USENIX Annual Technical Conference, 2018. [Online]. Available: https://www.usenix.org/system/

files/conference/atc18/atc18-thalheim.pdf

56

https://www.usenix.org/system/files/conference/atc18/atc18-oakes.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-oakes.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-thalheim.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-thalheim.pdf

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Algorithms

	1 Introduction
	1.1 Motivation
	1.2 Shortcomings of current solutions
	1.3 Proposed Solution
	1.4 Contributions
	1.5 Document Roadmap

	2 Background
	2.1 Cloud Computing Deployment and Service Models
	2.1.1 Essential characteristics
	2.1.2 Deployment models
	2.1.3 Service models

	2.2 Evolution of Cloud Architectures
	2.2.1 The Monolith
	2.2.2 Microservices
	2.2.3 Serverless and FaaS

	2.3 Resource Management and Scheduling
	2.4 CGroups
	2.4.1 CGroups Structure
	2.4.2 CGroup Operations
	2.4.3 CGroup CPU Controller

	2.5 Managed Runtimes
	2.5.1 The Java Virtual Machine
	2.5.2 GraalVM

	3 Related Work
	3.1 SAND
	3.2 SONIC
	3.3 Multitasking Virtual Machine
	3.4 Photons
	3.5 Thin Serverless Functions with GraalVM Native Image
	3.6 Automated Fine-Grained CPU Cap Control in Serverless Computing Platform
	3.7 SOCK: Rapid Task Provisioning with Serverless-Optimized Containers
	3.8 CNTR: Lightweight OS Containers
	3.9 Performance Isolation in GraalVM Native Image Isolates
	3.10 Graalvisor
	3.11 Analysis and Discussion

	4 Solution Architecture
	4.1 Overview
	4.2 Cgroup cache integration
	4.3 Cgroup data structure
	4.3.1 Complexity

	5 Implementation
	5.1 C Modifications
	5.2 Java Modifications
	5.2.1 Caching CGroups

	5.3 Graalvisor Extension
	5.3.1 Uncached Version
	5.3.2 Cached Version

	6 Evaluation
	6.1 Benchmarks
	6.2 Evaluation environment
	6.3 Metrics
	6.4 CGroup Management Costs
	6.5 Lazy Reclamation Results
	6.6 Non-Lazy Reclamation Results
	6.7 Discussion

	7 Conclusion
	7.1 Key Findings and Contributions
	7.2 System Limitations and Future Work
	7.3 Concluding remarks

	Bibliography

