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Abstract

The detection of the users’ travel mode is becoming more relevant due to the ubiquity of mobile
devices and the applicability of this technology in multiple contexts. Many solutions can be found in
the literature that aims at identifying the transport mode. However, some problems still exist due to
the number of variables that negatively impact the system’s accuracy, the device’s power consumption,
detection delays, etc. Therefore, in this thesis, we propose a new solution that combines a common
machine learning technique with a P2P Network. This network allows the applications running in each
device to exchange information and, consequently, improve the certainty of the classifier. We believe
that this solution provides higher confidence levels for each detection while maintaining a near real-time
transport identification.
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1. Introduction
This work is developed in the scope of the Mo-
TiV project that focuses on investigating the Value
of Travel Time (VTT), introducing and validating
a conceptual framework for the estimation of the
VTT.

MoTiV targets other aspects of VTT, in addition
to the economical cost, including individual prefer-
ences, motivations and behaviours. A wider def-
inition of VTT can be found when we consider
the overall user activities, satisfaction and specific
needs, which can be used to better understand
travel decision making. Some people might pri-
oritize more economical modes of transportation
while others might choose alternatives that offer
superior comfort.

The analysis of travellers’ decisions is facilitated
by developing automated detection mechanisms
and eliminating the need for having a user man-
ually inserting information. Automated detection
mechanisms must be efficient and accurate to en-
sure a trustworthy data set while requiring minimal
resource usage. Analyzing and understanding the
population behaviour is key to improve transport in-
frastructures resulting in a positive economic and
environmental impact, along with social well-being.

The goal in this work is to develop a solution that
detects user’s travel mode (i.e., travelling on foot,
bicycle, train, car, bus) with adequate accuracy (at
the minimum 85%, ideally over 90%). This solu-
tion consists in an Android application (DetectP2P)
that communicates, in real-time and without inter-

net access, with the surrounding instances of the
application running in other devices. DetectP2P
aims at using the communication between devices
to offer more resistance against sensor noise and
allowing devices to share mobility knowledge that
is then used to improve future decisions.

The sensor readings depend on multiple fac-
tors including variables such as the smartphone
hardware, how the user transports the device,
user-specific behaviour, possible interferences and
many more. The readings from one user walking
with the device in his pocket are different from the
readings of that same user walking with the device
in his hand, adding additional acceleration from his
arm movement. Noisy data can have a significant
impact on the accuracy of the model [1].

Our approach explores one alternative to current
solutions that either require a remote server to ex-
ecute the detection algorithm (without real-time de-
tection) or directly execute it on the device itself
(i.e., stand-alone) with limited resources.

In this solution, the machine learning approach
used in Woorti [2] is enhanced with mobility data
being shared between users in a peer-to-peer en-
vironment. Such data includes the broadcast of
transport mode predictions in real-time and previ-
ous trip validations confirmed by the users. To infer
the transport mode, DetectP2P combines the deci-
sion from the machine learning classifier, the deci-
sion from the surrounding peers and the informa-
tion obtained from the local and peer validations.
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2. Related Work

The detection of travel mode is included in the field
of Activity Recognition and provides information
that is relevant in multiple contexts such as collect-
ing data to manage traffic and road congestion, im-
prove transport infrastructures, the automation of
specific settings in smartphone applications (e.g.,
user’s playlists, advertisements) and many more.
Therefore, we can find multiple solutions that try to
identify the users’ transport mode, particularly, so-
lutions where the whole detection process occurs
in the user’s device (i.e., stand-alone classification)
and solutions that make use of a remote server to
receive the collected data and to run the detection
algorithm (i.e., remote classification).

2.1. Stand-alone Classification

The improvements associated with mobile devices
technology in the last years, specifically hardware
components (e.g. CPU, RAM, storage), led to the
ability to run more complex and resource-intensive
applications in the average smartphone [3]. The
main advantage of this approach is that there is no
data exchange between the application running in
the user’s device and a remote server, allowing the
classification to be performed in real-time.

Martin et al.[4] proposed a solution that achieves
an accuracy of 96.8% using the GPS (sampled ev-
ery second) and the accelerometer (sampled five
times per second). They explored and evaluated
three different methodologies (movelets, k-nearest
neighbours and random forests) to distinguish be-
tween five travel modes: walking, biking, bus, car
and rail. In order to adapt the classification process
to the smartphone limited resources, they also in-
vestigated two feature reduction techniques: prin-
cipal component analysis (PCA) and recursive fea-
ture elimination (RFE). It was claimed that these
methods could be utilized in a smartphone with-
out substantial burden on battery life. However, no
power consumption data was presented to support
this claim. Additionally, their evaluation consisted
exclusively of trips with a single mode of trans-
portation. Thus, they do not apply their solution
in trips with a transition between different modes.

Sauerländer-Biebl et al.[5] investigated and eval-
uated one stand-alone solution based on fuzzy
rules, with GPS and accelerometer data, pre-
sented in [6]. They use a set of rules, that is manu-
ally defined through the analysis of test data, to es-
tablish a membership degree (from zero to one) to
each class. These rules are based on parameters
related to speed, acceleration, turning angles, etc.
They obtained a high accuracy (98%) for car trips
classification but had rather low results (75%) for
the overall classifications. Methods based on fuzzy
logic are relevant in the classification of incom-

plete and uncertain information (e.g., facial pat-
tern recognition, weather forecasting, etc.) which is
also the case of transport mode detection [7]. How-
ever, to correctly identify modes of transportation
with such varying conditions, it is extremely helpful
to use a machine learning approach that is able to
adapt and learn as those conditions vary. Further-
more, the authors don’t provide data related to the
device’s power consumption.

Chen at al.[8] present Mago, a system that uses
the accelerometer and the Hall-effect magnetic
sensor to distinguish between 7 classes (station-
ary, bus, bike, car, train, light rail and scooter). The
main contribution of this article is the use of the
magnetic sensor to infer the user’s transport mode.
Mago requires a smartphone with a Hall-effect sen-
sor with a sensitivity lower than 0.3 µT/LSB and
a minimum sampling rate of 100Hz, which is not
currently available in a big portion of devices (e.g.,
iPhone 6, iPhone 5s, Google Nexus 5, etc.). Addi-
tionally, this solution is not able to identify the most
common physical activities like walking or running.

2.2. Remote Classification

Multiple solutions choose to implement the classi-
fication algorithm in a remote server (e.g., in the
cloud). In this approach, the application running
in the user’s smartphone (or dedicated device) is
only responsible for data collection. This data is
transferred to a remote server where the respec-
tive classifier is executed.

Stenneth et al.[9] use additional data that repre-
sents bus locations, rail lines and bus stops spatial
data (available to the public in real-time) to distin-
guish between motorized transports (e.g., car, train
and bus) while still identifying other modes such as
bike, walk and stationary with an overall accuracy
of 93.5%. This solution is limited to the geograph-
ical areas that offer transport information in real-
time. Additionally, the authors don’t provide power
consumption information but the exclusive use of
GPS data might drain the battery lifetime of the de-
vice.

Das & Winter [10] propose a hybrid knowledge-
driven framework based on fuzzy logic and neural
networks with the objective of adapting to varying
conditions, which is a problem of solutions based in
exclusively fuzzy models. This approach achieves
an accuracy of 83% while being able to explain
the reasoning process for a given choice and to
tolerate noisy data. However, this solution does
not identify relevant travel modes (e.g. car, bike,
running) and its exclusive dependence of the GPS
sensor might significantly drain the device’s bat-
tery. Additionally, it uses features related to the
proximity to bus, train and tram network (routes)
which limits the system to certain regions.
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Hemminki et al.[11] used a purely
accelerometer-based approach to distinguish
between 7 different modes (stationary, walk, bus,
train, metro, tram, car) with an accuracy of 84.9%.
They developed an algorithm to estimate the
gravity component of the accelerometer readings
and consequently derive the component that
represents the user motion. This algorithm has
the disadvantage of being sensitive to noisy data,
which in the case of smartphone-based data
collection is quite frequent due to the constant
variations of the device orientation and interfer-
ences related with the handling of the device.
Additionally, the authors report a high latency in
the classification when the user changes to a
motorized transport, which could be solved with
the use of other sensors (e.g., GPS).

3. Background
DetectP2P imports the Trip Detection module of
Woorti, a mobile application used to understand
the value of travel time perceived by the user. In
this section, we briefly describe how this module
works in order to better understand how it can be
improved in the following sections.

The GPS is used to obtain the coordinates that
represent the user’s location. From multiple GPS
coordinates, the user’s travel speed is inferred by
dividing the distance travelled by the time interval.
The accelerometer is used to obtain the user’s ac-
celeration along three axis.

These raw values, that represent acceleration
and speed, are grouped into trip segments with 90
seconds. The raw data from each segment is pro-
cessed in the Preprocessing module to calculate
the features of the transport mode. These features
represent the characteristics of the trip, such as av-
erage, maximum and minimum speed, percentage
of acceleration values between 0.3 m/s² and 0.6
m/s², percentage of acceleration values between
0.6 m/s² and 1.0 m/s², etc. The complete set of
23 parameters that describe each segment can be
consulted in the article where Woorti’s methods
were developed [2].

After processing each segment, the resulting pa-
rameters are fed to a random forest classifier that
evaluates the segment and stores the resulting
list of probabilities correspondent to each possible
transport mode. When the user is stationary (i.e.,
distance and accelerations smaller than a defined
threshold) the trip ends, and the post-processing
phase begins.

In the post-processing phase, strong segments
(i.e., segments with a high walking probability) are
used to split the sequence of segments into smaller
sequences. These walking segments are eas-
ily identifiable due to the high acceleration values

along the three axis. This allows us to identify
where each mode of transport sequence starts and
finishes. Finally, each sequence is evaluated again
and the final mode of transport for each sequence
is obtained.

The random forest classifier was previously gen-
erated in the training phase, with 537 trips (cor-
responding to 265 hours) obtained from a group
of volunteers collecting data in their daily routine.
Those trips were separated into a training and a
testing data set to train the classifier. Then, the
classifier model was generated and imported to the
smartphone application.

4. Solution & Implementation
DetectP2P collects data from the smartphone sen-
sors and evaluates it with the machine learning ap-
proach developed in Woorti, where a mathematical
model based on training data (i.e., GPS and accel-
eration metrics) is used to make an initial prediction
on the current mode of transport. The validation
history of the local user is used to adjust this ini-
tial prediction. DetectP2P communicates with the
closest devices via Bluetooth to exchange stored
user validations and transport mode predictions in
real-time. Then, the knowledge obtained from the
local and external validations is used to make a
prediction based on the route taken. An additional
prediction is created by analysing the predictions
from the surrounding devices. By combining the
three predictions (i.e., adjusted classifier predic-
tion, path score, peer prediction), a final decision
is taken.

DetectP2P

Trip Detection

GPS data Accelerometer
data

Trip Validation
Manager

User

P2P Manager

Peer Discovery

Peer Data Exchange

Transport Mode Determiner

Peer
Decision 

Determiner

GPS
Manager

Accelerometer
Manager

Preprocessing

Classifier

Persistent
Storage

P2P Trip
Detection

Figure 1: DetectP2P architecture and information flow.

The final decision towards the user’s transport
mode is taken by the Transport Mode Determiner.
This module gathers the output of three other main
modules: Trip Detection, Trip Validation Manager
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and P2P Manager.

Trip Detection (developed in Woorti): Detects
the start/end of each trip and makes a predic-
tion based on the smartphone sensors data
(i.e., GPS and accelerometer).

Trip Validation Manager Collects user valida-
tions, storing information that relates the trip
with the classifier’s prediction and the real
mode validated by the user.

P2P Manager: Responsible to establish connec-
tions and share information with the other De-
tectP2P instances within the range of the user.
This module takes a decision based on the
surrounding smartphone’s decisions.

4.1. Trip Validation Manager
When the Trip Detection Module detects and eval-
uates a trip, it saves the trip structure (i.e., se-
quences of segments with the corresponding eval-
uation) in the device’s persistent storage (i.e., local
database). Later, the user can verify the trip and
confirm the correct mode of transport. This vali-
dation, representing the real mode of transport, is
stored together with the classifier’s prediction and
the respective trip coordinates in the file system.
Coordinates are needed to infer the path of the re-
spective trip, which enables the system to later rec-
ognize similar trips with equal conditions.

These trip validations allow us to analyze the
performance of the classifier, but the validations
from a single user might not be enough to extract
accurate metrics. Thus, the validations of the other
users are also stored in the local database. Those
validations are obtained by the P2P Manager while
communicating with other devices.

In order to avoid repeated validations, each val-
idation is associated with a unique user and trip
identifier, generated by the original device where
the trip was detected. To generate a unique rep-
resentation of the trip, we create a tripId that ap-
pends the following data: start timestamp (ms),
end timestamp (ms), an average of the absolute
acceleration values and distance travelled (m).

Additionally, this module creates a confusion ma-
trix (i.e., relation between observed and predicted
mode) that summarizes the results of the valida-
tions. From the confusion matrix, we can obtain
the true positives, false positives, false negatives
and true negatives, relative to the classifier’s per-
formance. Then, we can infer more metrics to eval-
uate the classifier, such as the false positive rate,
false negative rate and precision. These metrics
represent the likelihood of one mode being con-
fused with another one. That relation allows the
system to adjust the classifier prediction (see Sub-
section 4.3).

4.2. P2P Manager
In this section we describe the peer-to-peer com-
ponent of our solution, particularly the discovery of
peers, communication between devices, an alter-
native method to detect trips and, finally, the clas-
sification of a trip based on peer data.

4.2.1 Peer Discovery Manager

Before starting to share information between de-
vices, the connections must be established. This
is the responsibility of the Peer Discovery Module.
It discovers and connects to other devices via Blue-
tooth [12], a limited range communication link that
allows the devices to directly connect with each
other.

At any moment, the user is between three pos-
sible states: travelling, stationary (i.e., not trav-
elling), waiting (i.e., travelling but currently sta-
tionary). When the user is stationary, DetectP2P
keeps trying to discover new peers in order to de-
tect the start of a new trip. In the waiting state,
DetectP2P needs to be able to decide if the next
state is still (i.e., the trip ends) or travelling (i.e.,
the trip continues). The predictions of other peers
are used to decide which state follows the waiting
state. In the travelling state, we use the predic-
tions to identify the current mode of transport being
used. Thus, we need the discovery process to con-
nect with users sharing the same transport mode
and obtain their predictions. Therefore, as the list
of peers can be constantly changing (e.g., user’s
moving in and out of each other’s range), the dis-
covery process must be running during the whole
life cycle of the application.

To keep track of the surrounding users, this mod-
ule keeps a list of connected peers and the re-
spective connection timestamp. This list is updated
whenever one device enters or exists the user’s
range. When the connection with one peer is es-
tablished, the devices will be able to share informa-
tion until one of them disconnects.

4.2.2 Data Exchange

There are two classes of information being shared:
real-time predictions and trip validations. Real-time
predictions are the local classifier decisions that
are broadcasted to every peer when one segment
is evaluated. These predictions consist of a list of
probabilities associated with each possible trans-
port mode. The trip validations are managed by
the Trip Validation Manager and are sent to other
peers in order to share the knowledge relative to
the classifier’s performance. These validations in-
clude the classifier prediction, the corrected mode
and the trip GPS coordinates. The validation ex-
change occurs when two users initiate a connec-
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tion.

Figure 2: Perspective of device A in a network of 5 devices.

Regarding real-time predictions, every time the
random forest classifier evaluates a segment (i.e.,
a trip fragment with 90 seconds), the result of the
evaluation is sent to the P2P Manager that broad-
casts the data to every connected peer. In Fig-
ure 2, we can visualize how the predictions are
broadcasted. Each device broadcasts its predic-
tion and receives the predictions of the connected
devices.

Regarding trip validations, each peer shares all
known validations, including the validations per-
formed by the local user and the validations from
every device that has ever established a connec-
tion. When two devices establish a connection, the
validation exchange begins. Each device shares
the list of tripIds corresponding to every validation
stored in its database. Given that each validation
is only associated with one unique tripId, the other
device can filter the validations already acquired
and request only the tripIds that it does not contain.
Then, following that request, all the corresponding
validations are sent. The objective of this protocol
is to minimize the data being transmitted by avoid-
ing the transfer of repeated validations.

4.2.3 P2P Trip Detection

While the Trip Detection module is the main re-
sponsible for detecting the start and end of each
trip, the P2P Trip Detection is also able to perform
this task when needed. This includes the cases
when the Trip Detection module fails to detect the
trip due to lack of GPS signal (e.g., disabled to
save battery). This is relevant to collect travelling
data when the user wants the device to run on
low power consumption (i.e., without activating the
GPS).

This module detects the start and end of a trip
purely based on the information received from the

surrounding peers. The real-time predictions re-
ceived from other peers, indicating that they are
travelling, can be used to detect the beginning of
our own trip.

There are four possible scenarios when receiv-
ing external predictions:

1. Device A is stationary and connects with a sta-
tionary device B.

2. Device A is stationary and briefly connects
with a moving device B.

3. Device A is moving and briefly connects with
a stationary device B.

4. Device A is moving and connects with device
B that is also moving.

By filtering the first three scenarios, we can infer
the last scenario, where the device is moving, and
recognize the start of a trip. This filter consists of
analyzing the predictions from devices with a con-
nection time superior to a threshold of 5 minutes.
The objective of the 5-minute threshold is to dis-
tinguish between the devices that only intersect for
a small period of time and those that are actually
travelling with us.

In scenario 1, there are no moving devices shar-
ing their predictions so there is no indicator of a trip
starting. In scenario 2, device B might connect with
device A, but the connection time will be inferior to
the threshold because the other user will eventu-
ally move away and break the connection. In sce-
nario 3, the user is moving but, because there are
no moving devices sharing predictions, DetectP2P
does not have any information to confirm the start
of a trip. In scenario 4, the current device has pre-
dictions from a moving device. If the connection
time is superior to the threshold, it indicates that
the current device is keeping up with a moving de-
vice. Thus, DetectP2P can assume that a trip has
started.

To detect the end of a trip, we need to infer
scenario 1. This is done by finding devices con-
nected for a time superior to the threshold, without
broadcasted predictions (i.e., stationary devices).
By knowing that we are close to a stationary user
for a given period of time, we can assume that we
are stationary too. When there are no peers con-
nected, we also end the trip.

4.2.4 Peer Decision Determiner

When the application detects the end of a trip, the
decision process in the Peer Decision Determiner
begins. The ending of a trip is detected by the main
Trip Detection module or by the alternative P2P Trip
Detection module.

5



The first step is to filter valid peers. To do this,
we need the connection timestamp associated with
each peer. The connection time is used to filter the
devices that are sharing the same transport. If the
connection time is inferior to the 5-minute thresh-
old, we will discard the information from that peer
as it is not enough to assure the respective user is
travelling by the same transport mode.

Each valid peer can have one or more evalua-
tions broadcasted, so the next step is to associate
the predictions with each trip part, based on the
start and end timestamps. From each prediction
sequence, results one single prediction represent-
ing the arithmetic mean of the predictions consid-
ered for that specific trip part. At this point, we
have, for each peer, a list of intermediate predic-
tions. Each intermediate prediction corresponds to
the travel mode probabilities associated with a spe-
cific trip part.

The next step is to calculate the weighted arith-
metic average for all the peers to obtain the deci-
sion from the P2P Manager for each trip part. The
weight of each peer in the decision corresponds
to a confidence factor (CF), calculated with Equa-
tion 1. The confidence factor is based on the peer’s
device accuracy, which is calculated by dividing the
number of correctly predicted trips (CP) by the to-
tal count of detected trips (T). If one of the peers
does not have a minimum amount of 10 total trips
(i.e., average number of trips collected in a daily
routine), that peer is not considered.

CF = 1 + (
CP

T
∗ 10) (1)

Finally, this module returns its output to the
Transport Mode Determiner, consisting in one pre-
diction for each trip part from a given trip.

4.3. Transport Mode Determiner
When the application detects the end of a trip, the
Transport Mode Determiner is called to take the
final decision on the detected mode of transport.
This module gathers the output of the other three
modules: Trip Detection, Trip Validation Manager
and P2P Manager.

From the list of probabilities generated by the
random forest classifier (i.e., in the Trip Detection
module), we consider the first, second and third
modes with the highest probability. The first, sec-
ond and third mode with the highest probability are
referred to as M1, M2 and M3, respectively.

In the first step, we take into consideration the
false positive and the false negative rates obtained
from the local validations. In Algorithm 1 we de-
scribe the adjustment of the classifier prediction
according to the validation history of the user.
The input needed to perform the adjustment cor-
responds to the local confusion matrix (T) calcu-

Algorithm 1: Adjustment of the classifier
decision
Input: T, confusion matrix of the local

validations, T[classified][observed]
D, map with probabilities by mode
C1 , count of occurrences for M1

C2, count of occurrences for M2

C3, count of occurrences for M3

1 P = T [M1][M2] + T [M1][M3]
2 Fi = Ci/(C1 + C2 + C3)
3 D[Mi] = D[Mi]− P/3 + Fi ∗ P

lated by the Trip Validation Manager, the probabil-
ities map (D) for each mode generated by the Trip
Detection module and the count of occurrences for
each mode. From the confusion matrix, we obtain
the percentage of occurrences (P) where M2 and
M3 were incorrectly identified as M1. Then, we de-
crease the probability of the three modes in equal
portions (i.e., a third of P) and distribute P accord-
ing to each mode frequency.

The next step is to iterate through all the trip val-
idations (i.e., local and external validations). We
compare the trip coordinates with the coordinates
of each validated trip. We consider that there is a
match between two trips when at least 80% of the
coordinates from the trip being evaluated are found
within the trajectory of the validated trip. A 20% er-
ror margin is given to account for accuracy errors
and differences in the trip start/end point (e.g., one
trip might have more coordinates because it was
detected earlier). To compare trips, for every coor-
dinate (C) in the trip being evaluated, we check if it
is between any two points (A and B) that belong to
the validated trip, while taking into consideration a
margin for the GPS accuracy (ACC) of 13 meters,
which is the maximum deviation found in the analy-
sis of GPS locations with Android [13]). To verify if
point C is between A and B, the following equation
is tested.

distance(A,C)+distance(C,B) < distance(A,B)+ACC
(2)

When there is a match between the validation
and the current trip, we update the count of oc-
currences associated with each considered mode
of transport. Then, we generate a prediction by
assigning a probability to each mode that corre-
sponds to their frequency along that route.

Finally, to merge the adjusted initial prediction,
the path score and the prediction from the P2P
Manager (i.e., predictions from the surrounding
peers), DetectP2P calculates the arithmetic aver-
age of the three scores. If the count of peers is
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superior to 4, we choose the public transport with
the highest probability. In the case where we have
transport modes with a small probability difference
(i.e., smaller than 5%), we choose the mode that
was most used by the user according to the local
validations.

5. Results & discussion
DetectP2P can be used in multiple scenarios and
the results obtained vary with numerous factors
such as travelling alone, travelling with other users,
the number of validated trips, the route taken, etc.
Thus, to analyse how the application performs on
these scenarios we perform the following evalua-
tions:

• Accuracy of the local decision (i.e., random
forest classifier) and its variation with users’
validations.

• Tendency of the users to repeat trips.

• Processing time to calculate the path score.

• Comparison between local and peer predic-
tions.

• Accuracy of DetectP2P with a group of users
travelling together.

We requested 5 people to use DetectP2P for two
weeks to collect enough data from their routines.
This evaluation was made with five Android de-
vices: Xiaomi Mi A2, Xiaomi Mi A1, Samsung J3,
Motorola XT1068 and Huawei Y6. These devices
have different hardware from different manufactur-
ers.

Our evaluation was divided into two phases. In
phase 1, the users were asked to use DetectP2P
in their daily routines, while validating trips at the
end of the day. Then, in phase 2, the users were
asked to travel together allowing us to collect the
data that represents how the system behaves and
evolves in a real scenario.

5.1. Adjustment Process
We start by evaluating how the application per-
forms when the user is travelling alone. In this sit-
uation, the final decision is based in the local clas-
sifier (i.e., Woorti’s decision) and it is adjusted with
the local validations (with Algorithm 1).

To evaluate this scenario, we considered the
trips collected by one of the users (userA) in the
first week, corresponding to a total of 105 trips, par-
ticularly: walk (64), car (24), bus (5), train (7), bi-
cycle (5). With the collected trips, we proceeded to
simulate the adjustment process for different sets
of validations as seen in Figure 3 to compare the
results obtained with multiple sets. For each set,
we ran the adjustment process and collected the

results. We considered the validations from userA
by their chronological order, with the final set cor-
responding to the 105 trips.

Validations

A
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Figure 3: Evolution of the accuracy with the local validations.

Figure 3 shows that in the first set of validations,
the accuracy values remain unchanged because
there are not enough validations to perform the ad-
justment. In the second set, we see an increase in
the walk and car modes while the bus significantly
decreases. This is explained by the preferences of
the users towards the walk and car modes. In the
three occurrences where the classifier chose the
bicycle instead of the walking mode, the system
looked into the bicycle false positives (4.8%) and
distributed that probability according to the walk-
ing and bicycle frequencies, increasing the proba-
bility for walk, which is enough to change the pre-
dicted mode. The same event occurs in the car
trips that were incorrectly identified as bus, with the
bus classifications being adjusted to car due to the
observed user preferences.

When the total of 105 trips is considered, the ac-
curacy for car drops to 91.6% due to the bus and
train trips that are added to the validations. In this
situation, the frequency of the car drops to 66.7%
which is enough to maintain 2 incorrect bus predic-
tions in car trips. Consequently, we also observe
an increase in bus accuracy to 40%.

5.2. Path Score
In this section, we consider the total amount of
316 trips collected by 5 users. The objective of
this evaluation is to understand how the increasing
amount of validations provides relevant data to in-
fer the mode of transport and analyse the impact,
in terms of processing power, that the calculation
of the path score has on the trip detection.

5.2.1 Analysis of the Path Relation

In this evaluation, we compare the routes of all col-
lected validations to observe the number of trips
that would be improved by integrating the path
score in DetectP2P’s final decision. Every re-
peated trip (i.e., a trip with an equivalent route
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found in the validations) has an increased probabil-
ity towards the mode validated in the original trip.
Within the repeated trips, we also analyse trips re-
peated from peers where the original trip was vali-
dated by other users.

Trips

Walk
Car
Bus

Train
Bicycle

0 50 100 150

Repeated Total Repeated From Peer

Figure 4: Visualization of the amount of trips with equivalent
routes.

In figure Figure 4 we show the portion of trips
with equivalent routes in comparison with the to-
tal amount of collected trips. By iterating through
the total of 316 trips, we searched for trips with
equivalent paths. For each trip, we only compare
it with the previously iterated trips. For example,
to verify if the third trip is repeated, we compare
it with the first and second validated trip. We ob-
tained a count of 93 (29.4%) repeated trips, where
39 correspond to walk, 13 to car, 19 to bus, 20 to
train and 2 to bicycle. Among the repeated trips,
there are 11 (2.8%) occurrences where an equiva-
lent trip was obtained from a peer (i.e., external val-
idations), while the remaining events correspond to
equivalent trips found within the local validations.

5.2.2 Processing cost

Given the time requirements for the output of a
transport mode decision, we need to analyse the
computation cost to obtain the path score. This
evaluation was performed on a Xiaomi Mi A2, fea-
turing a Qualcomm Snapdragon 660 and 3GB of
RAM. To perform this test, we considered multiple
sets of validations (50, 100, 300, 600, 1000, and
2000) and a trip with 360 locations. Each set con-
tains small trips (50%) with 120 locations, medium
trips (40%) with 300 locations and large trips (10%)
with 720 locations.

Figure 5 shows how the execution time needed
to attribute a path score increases with a higher
amount of validations. We do not see a linear
growth of the execution time because each vali-
dated trip has different coordinates. Each valida-
tion is discarded when the trip comparison reaches
the threshold of distinct coordinates (20%). Thus,
the time needed to discard each validation is differ-
ent across the set. Even considering the highest

Validations

Ti
m

e 
(m

s)

0
750

1500
2250
3000
3750
4500
5250
6000

50 100 300 600 1000 2000

Figure 5: Execution time (ms) to calculate the path score.

value tested (i.e., 2000 validations), we obtained a
processing time inferior to 6 seconds which is ac-
ceptable considering our requirements for the out-
put of a decision in 30 seconds.

5.3. P2P Evaluation
In this evaluation we test the transport mode detec-
tion in a P2P environment where the users travel
within a group and their devices communicate with
each other during the trip. The objective is to see
how the classifier predictions vary between differ-
ent devices and evaluate our solution, with the con-
tribution from every module, in a scenario where a
group of users are travelling together.

5.3.1 P2P Manager Decision

Figure 6 compares the local prediction (relative to
the real mode used) of one device with the pre-
diction obtained from the P2P Manager, where the
weight of each peer is based on the trips collected
in phase 1 (i.e., users travelling alone). Each value
in the x-axis represents a single trip without any
relation with the others.

In car trips, we observe that the peer prediction is
higher than the local prediction in 19 (48.7%) occa-
sions. If we only consider this prediction to take the
decision, the peer predictions would correct the de-
cision to car in 4 (10.3%) occasions (trip 6, 13, 33,
34) and change the decision to an incorrect mode
in 1 (2.6%) occasion (trip 29). In bus trips, the pre-
dictions from the peers are higher than the local
one in 18 (56.3%) occasions. The decision would
change to the correct mode in 1 (3.1%) occasion
(trip 45) while the correct decision is not changed
in any scenario. In train trips, the peer predictions
increase the probability in 5 (50%) occasions. The
decision would be corrected in 1 (10%) occasion
(trip 65). While walking, the predictions from the
other devices are higher in 7 (41.2%) occasions
and adjust the decision to the correct mode in 1
(5.9%) case (trip 68). In bicycle trips, the peer
predictions are higher in 5 (62.3%) occasions and
there was not any recorded event where the deci-
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Figure 6: Comparison between local prediction and peer prediction.

sion would change.
While the difference between the local and peer

decision is not frequently higher than 15%, we can
observe that when the local probability significantly
drops, the peer decision offers a slightly better
probability. This is relevant because when, due to
the smartphone conditions, the local prediction is
affected, the peer predictions can compensate with
higher probabilities towards the correct mode.

The cases where the peer prediction is lower
than the local one are not necessarily disadvan-
tageous. For example, in a case where the lo-
cal probability corresponds to 60% and the peer
probability corresponds to 50%, we observe a 10%
drop but the decision is still correct with a smaller
confidence. We can slightly decrease the confi-
dence of the correct predictions, but while offering
an overall better percentage of correctly detected
transports by compensating the low probabilities of
the local decision.

5.3.2 Final mode decision

In this evaluation, the contribution from every mod-
ule is included in the final decision. We use the
results obtained in phase 2 of the evaluation (i.e.,
users travelling together) where each device al-
ready contains the validation history from its user
obtained in phase 1.

Predicted Mode Events
Real
Mode Walking Car Bus Train Bicycle

Walking 100.0 0.0 0.0 0.0 0.0 64
Car 0.0 80.1 16.0 3.9 0.0 156
Bus 0.0 14.0 84.4 1.6 0.0 64
Train 0.0 2.5 0.0 97.5 0.0 40

Bicycle 13.9 0.0 0.0 0.0 86.1 36
Table 1: Final confusion matrix (in %) obtained from the results
of every user

Table 1 shows the confusion matrix that sums

the final decisions obtained by every user. In
this evaluation we considered 4 users travelling to-
gether for a total of 90 unique trips, specifically
walking (16), car (39), bus (16), train (10) and bike
(9). The results obtained from each user were ag-
gregated to generate this matrix which means that
each trip is considered four times (i.e., one evalu-
ation from the perspective of each user). Overall,
we correctly classified 87.7% of the trips. It is im-
portant to note that a major part of the experiments
was made in an urban environment.

Walking trips were detected with 100% accuracy.
By analysing the modes used by each user, we ob-
served that the walking mode is used with higher
frequency when compared to the other modes,
particularly with the bicycle which is the mode fre-
quently confused with walking. Thus, when in
doubt between bicycle or walking, the adjustment
process increases the walking probability. Addi-
tionally, in the cases where the device can not ac-
curately detect that the user is walking (i.e., user
briefly stops, picks up the device from his pocket,
etc.), the peers will still have strong walking predic-
tions.

While the adjustment process favours the walk-
ing mode, we still observe a satisfactory accuracy
(86.1%) towards the bicycle mode. This is ex-
plained by the predictions from the surrounding
peers, which are strong enough (i.e., usually higher
than 55%) to guide the decision in the direction of
the bicycle.

Regarding car trips, we obtained a reasonable
accuracy of 80.1%. The decision between car and
bus highly depends on the user’s preferences as
the characteristics of these modes are quite simi-
lar, particularly in an urban environment where the
travel speed is relatively low.

Similarly to the car, the results obtained for the
bus vary according to the preferences of the user.
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In our experiments, we obtained an accuracy of
84.4%. However, only a small portion (6) of the
bus trips consisted of repeated trips going through
the same path of another trip found in the user val-
idations.

We can observe the relevance of the path
score in train trips, with an obtained accuracy of
97.5%. The path represented by the train rails
goes through multiple train stations. If one user
validates a long train trip, it will help in the identifi-
cation of all the train trips that go through smaller
portions of that route.

6. Conclusions
This work introduces a new technique to detect
trips and identify the chosen mode of transport. We
used Woorti’s Trip Detection module, where a ran-
dom forest classifier is used to classify features ex-
tracted from accelerometer and GPS data. While
the former solution runs in a stand-alone approach,
we implemented a protocol to exchange informa-
tion with the closest devices via Bluetooth. In our
solution, each device can share its local decision
with the surrounding instances of the application.
Additionally, with a mechanism to validate trips, the
devices can share validated trips with each other,
obtaining relevant knowledge that can be used in
their future decisions.

Overall, we correctly classified 87.7% of the
trips. It is important to note that a major part of
the experiments were made in an urban environ-
ment. This conditions significantly impact the re-
sults obtained, particularly for car trips where the
speed limit is quite low (i.e., maximum of 50 or 80
km/h) and there are multiple traffic lights in the trip,
which results in stop times and speed metrics very
similar to the bus trips. Given this conditions, the
overall accuracy obtained is quite interesting.

This solution adapts to the users’ preferences
and and takes into consideration the most fre-
quent routes taken by the users. We believe that,
with more validations from the users, the tendency
would be to achieve higher accuracy values (i.e.,
more than 90%).
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