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Abstract

The detection of the users’ travel mode is becoming more relevant due to the ubiquity of mobile devices

and the applicability of this technology in multiple contexts. Many solutions can be found in the litera-

ture that aim at identifying the transport mode. However, some problems still exist due to the number

of variables that negatively impact the system’s accuracy, the device’s power consumption, detection

delays, etc. Therefore, in this thesis, we propose a new solution that combines a common machine

learning technique with a P2P Network. This network allows the applications running in each device

to exchange information and, consequently, improve the accuracy of the classifier. We believe that this

solution provides higher confidence levels for each detection while maintaining a near real-time transport

identification.
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Resumo

A deteção do modo de transporte dos utilizadores tem sido um campo cada vez mais relevante devido

à ubiquidade dos dispositivos móveis e da utilidade deste conhecimento em vários campos. Podemos

encontrar várias soluções no âmbito de deteção de viagens. No entanto, ainda há muitos problemas

relacionados com a exatidão do sistema, o consumo de bateria, a deteção em tempo-real, etc. Neste

trabalho, é proposta uma nova solução que combina uma técnica de aprendizagem automática com uma

rede de utilizadores a comunicar entre si. A aplicação, que corre no dispositivo de cada utilizador, troca

informação com as outras instâncias da aplicação, a correr noutros dispositivos móveis (i.e., telemóvel),

com o objectivo de melhorar a previsão local do classificador. Esta solução permite aumentar a precisão

da deteção de viagens mantendo os requisitos de deteção em tempo real.
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1.1 Motivation

Travelling is a frequent activity for the average human being. Many reasons for travelling can be found,

either for recreation, work, socializing or any other personal motive. Mode of transportation is everyone’s

concern. Each person must balance variables such as time spent, distance travelled, comfort, energy

consumed, greenhouse gas emissions and many more. The weight of each variable diverges between

different people due to one’s own preferences and lifestyle. These differences in human behaviour have

been the object of scientific studies, namely project MoTiV (Mobility and Time Value) [1].

This work is developed in the scope of the MoTiV project, financed by Horizon 2020 [2]. The MoTiV

project focuses on investigating the Value of Travel Time (VTT), introducing and validating a conceptual

framework for the estimation of the VTT. Many researchers have been studying the VTT, defining it

as the amount a person has to pay to go from one point to another from an economical perspective.

MoTiV targets other aspects of VTT such as individual preferences, motivations and behaviours. A

wider definition of VTT can be found when we consider the overall user activities, satisfaction and specific

needs, which can be used to better understand travel decision making. Some people might prioritize

more economical modes of transportation while others might choose alternatives that offer superior

comfort.

In order to qualify and quantify the combinations of individual needs that lead to travellers’ decisions,

travel patterns must be observed. MoTiV collects mobility data from European users through a smart-

phone application [3]. Collected data is made available to the scientific community, allowing for further

research on this topic to be continued. The collection process is facilitated by developing automated

detection mechanisms, eliminating the need of having a user manually inserting information. Automated

detection mechanisms must be efficient and accurate to ensure a trustworthy data set while requir-

ing minimal resource usage. Analyzing and understanding the population behaviour is key to improve

transport infrastructures resulting in a positive economic and environmental impact, along with social

well-being.

1.2 Objectives

The goal in this work is to develop a solution that detects user’s travel mode (i.e., travelling on foot,

bicycle, train, car, bus) through a smartphone application (DetectP2P) that communicates, in real-time

and without requiring internet access, with the surrounding instances of the application running in other

devices. DetectP2P aims at using the communication between devices to offer more resistance against

sensor noise and allowing devices to share mobility knowledge that is then used to improve future

decisions.

Our approach explores one alternative to current solutions that either require a remote server to

3



execute the detection algorithm or directly execute it on the device itself (i.e., stand-alone), with all the

disadvantages that we discuss in the related work section (see Chapter 2).

We describe and analyze multiple solutions related to the detection of the transport mode, including

data collection methods for improved battery consumption, and the algorithms used to perform the de-

tection. The knowledge acquired in the related work study is used and adapted to the solution developed

in this work.

Our solution fulfils these fundamental requirements:

1. Each trip must be automatically detected, without requiring the user to manually indicate the start

or end of a trip.

2. The mode of transportation must be correctly detected with adequate accuracy (at the minimum

85%, ideally over 90%), in order to produce the automatically collected results that are needed in

the study of users’ behaviour.

3. The application does not have internet access to maps, routes or transport itineraries.

4. The detection algorithm must output the optimal choice in less than 30 seconds, following the

ending of a trip to assure the utility of the collected data (e.g., for traffic analysis).

5. The smartphone should have an expected battery life-time of at least 10 hours while running the

application, to assure the complete collection of travel segments in the average day of an individual.

1.3 Main Challenges

There is no straightforward approach to detect the mode of transportation. Smartphone sensors (e.g.,

accelerometer, GPS, gyroscope) give us representations of the user movement including acceleration,

speed, location, direction, etc. In a simplified approach, these readings could be compared against a

model made of collected data in a test environment to identify the correct transport mode. However,

several challenges arise as we describe below.

The sensor readings depend on multiple factors including variables such as the smartphone hard-

ware (e.g., sensors with different sensibility), how the user transports the device, user-specific behaviour,

possible interferences and many more. The readings from one user walking with the device in his pocket

are different from the readings of that same user walking with the device in his hand, adding additional

acceleration from his arm movement. Noisy data can have a significant impact on the accuracy of the

model, particularly in solutions based on expert models (i.e., manually defined rules). Machine learning

techniques are less sensitive to this problem, according to Ross & Kelleher [4]. Noise cancelling meth-

ods are useful to extract the actual movement features that are relevant for the transport mode detection

and, consequently, improve the classification accuracy.
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Additionally, every trip has unique characteristics (e.g., acceleration and velocity values). While it

is possible to identify specific properties (e.g., maximum speed, acceleration range) that suggest the

travel mode, the conditions are quite variable. Each class of transports contains multiple differences

within its subclasses. For example, the class car includes an extensive variety of vehicles with different

characteristics (e.g., acceleration rates, maximum speed, cornering speed, etc.). This concept is also

applicable to other modes, with different characteristics for buses, trains and bicycles. In addition to

vehicle properties, there are also external variables such as road types. Roads can have different

properties, with more or fewer curves, speed limits, pavement, etc. Such variables impact the information

perceived by the smartphone sensors and increase the difficulty of performing consistent classifications

with such variable conditions.

Another problem is related to the device power consumption which is mainly affected by smartphone

sensors [5]. Battery capacity is a limiting factor, particularly on data readings leading the applications to

efficiently choose when and which sensors to use. Some solutions first use less power-hungry methods

(e.g., accelerometer) to detect movement with low accuracy, changing to more accurate methods only

when movement is detected (e.g., GPS), as we will see later. Not only the sensor types affect battery

consumption but also the sampling frequency. The sensors’ sampling rates can be adjusted to the appli-

cation needs. High rates will have a significant impact on battery life but will offer better accuracy when

compared with lower rates [6]. There must be a trade-off between accuracy and power consumption to

ensure correct travel mode detection while maintaining the expected battery life-time.

The relation between the level of confidence (i.e., accuracy) obtained and the time required to per-

form the detection represents an additional challenge. Solutions that require a remote server (e.g., in

the cloud) use more complex algorithms and offer a higher level of confidence when compared with a

stand-alone solution due to the resource disparity (i.e., computational power). However, in the second

approach, the application shows more responsiveness because there are no additional data transfer

delays or connection-related problems [7].

1.4 Limitations of Existing Solutions

There are multiple solutions that focus on detecting travel mode [8]. Current solutions are divided be-

tween two main groups: stand-alone (see Section 2.1) and remote classification (see Section 2.2).

Stand-alone solutions (i.e., executed in the smartphone) have limited resources to perform intensive

computations, which impact the amount of identified transport modes with high accuracy. In approaches

that require a remote server, the main limitation is the time it takes to perform the whole classification

process. The use of a main server also translates to a possible bottleneck and scalability problems [9].
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Solutions based in geodata knowledge1 (see Section 2.2.1) fail to provide a wide coverage around the

world due to the fact that some data (e.g., real-time bus location) is only available in certain regions [10].

This is also true for techniques that only require the GPS sensor, due to the lack of signal in certain

locations (e.g., underground, dense tree zone, atmospheric effects, etc.). Additionally, the exclusive

use of the GPS prevents the application from distinguishing the transport mode in certain conditions

(e.g., intense traffic, limited speed areas) because the travelling speed is more limited by the external

conditions than by the vehicle itself.

The poor management of sensors resulting in a significant reduction of the battery life represents an

additional disadvantage in current solutions. Energy demanding applications are prone to be uninstalled

by the user. Some solutions (e.g., [11], [12], [13], etc.) do not make any effort to reduce the power

consumption of their system.

1.5 Proposed Solution

The main contribution of our work is the integration of the techniques found in the literature with informa-

tion being exchanged among users sharing the same mode of transport. In this solution, the machine

learning approach used in Woorti [14] is enhanced with mobility data being shared between users in a

peer-to-peer environment. Such data includes the broadcast of transport mode predictions in real-time

and previous trip validations confirmed by the users.

Figure 1.1: DetectP2P Overview

1Access to maps, routes and real-time location of public transports.
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The application, running in the user’s device, collects GPS and accelerometer data. This data is

processed and the most relevant features are extracted by Woorti’s Trip Detection module. Features are

movement properties that can be used to identify the transport mode. Each mode has a particular set

of characteristics that can be found in the sensor readings. For example, the maximum speed of 10

km/h is a property that indicates the walking mode as the most likely. A machine learning algorithm (i.e.,

random forest [15]) is used to make a prediction based on these features.

To further improve the certainty of the classifier prediction, a P2P network is built. The application

running in the user’s device establishes contact with the closest users and requests the predicted mode

from each one. Consequently, if the classifier is uncertain about the predicted mode, we can use the

knowledge from the closest peers to disambiguate between multiple options. Each device is under

different conditions (i.e., positioning, susceptibility to noise, handling from the user, etc) and has sensors

with different specifications. By using the predictions from multiple devices, we minimize the impact of

noisy and incorrect readings on the transport mode decision of each device.

Furthermore, the P2P network allows peers to share knowledge about their trip history, consisting

of validated trips. This knowledge includes metrics to evaluate the performance of the classifier (i.e.,

the relation between the predicted and real mode) and allows the system to compare trips in order to

improve the transport mode prediction. Thus, experienced users with a vast trip history can transfer their

knowledge to the new users, allowing them to immediately use that information.

1.6 Document Roadmap

This document is organized as follows. In the next chapter, we present an analysis of the related work.

Chapter 3 presents our solution, while explaining the architecture and information flow of the system. In

Chapter 4 we discuss the implementation details. Chapter 5 shows the evaluation of the solution, with

tests made in multiple scenarios. Chapter 6 presents the fundamental conclusion remarks.

7



8



2
Related Work

Contents

2.1 Stand-alone Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Remote Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Smartphone Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9



10



The detection of travel mode is included in the field of Activity Recognition and provides information

that is relevant in multiple contexts such as collecting data to manage traffic and road congestion, the

identification of common travel patterns to improve transport infrastructures, the automation of specific

settings in smartphone applications (e.g., user’s playlists, advertisements) and many more. In this sec-

tion, we discuss relevant classification solutions and compare them to the objectives and requirements

of our work. In Section 2.1 we analyze stand-alone approaches, where the whole detection process

occurs in the user’s device. In Section 2.2 we analyze the solutions that make use of a remote server

to receive the collected data and to run the detection algorithm. The techniques used to minimize the

smartphone’s battery consumption are discussed in Section 2.3.

2.1 Stand-alone Classification

The improvements associated with mobile devices technology in the last years, specifically hardware

components (e.g. CPU, RAM, storage), led to the ability to run more complex and resource-intensive

applications in the average smartphone [16]. This is relevant for stand-alone solutions of transport

mode detection where the classification algorithm runs in the device itself. The main advantage of

this approach is that there is no data exchange between the application running in the user’s device

and a remote server, allowing the classification to be performed in real-time. The exchange of data in

an application that aims at identifying the transport mode in real-time would imply permanent internet

connection, which is an unrealistic assumption. Additionally, without needing to transfer data remotely

(e.g. user location), the stand-alone solution ensures the privacy of the users.

However, even with the increasing performance of the most recent smartphones, they are still sig-

nificantly limited when compared with the dedicated computers offered by remote servers (e.g., cloud

services). The complexity of the detection algorithm is conditioned by this resource restrictions, impact-

ing the accuracy of the classifier and the number of different modes that it can identify.

The stand-alone solution to identify the transport mode with the highest accuracy (96.8%) that we

find in the literature was proposed by Martin et al. [17] using the GPS (sampled every second) and

the accelerometer (sampled five times per second). This work explored and evaluated three different

methodologies (movelets, k-nearest neighbours and random forests) to distinguish between five travel

modes: walking, biking, bus, car and rail. To adapt the classification process to the smartphone limited

resources, they also investigated two feature reduction techniques: principal component analysis (PCA)

and recursive feature elimination (RFE). They found that the most optimal method was using a random

forest algorithm (trained with 10-fold cross-validation) with the 12 most optimal features (10 speed fea-

tures plus 2 acceleration features). These optimal features were obtained using the RFE algorithm, that

recursively removes the weakest features. Weak features are identified with the Gini index, which is

11



used to find the features that are better at splitting the data in each random forest node. One feature

can be individually weak (low accuracy while using it) but important when used within a subset of other

features. The RFE takes this into account by evaluating the accuracy of the subsets that don’t con-

tain each specific feature and outputting the optimal features that form the most accurate subset [18].

The strongest features, with a significant disparity, are the mean change in acceleration and the 80th

percentile speed. They also tested the creation of features with window sizes of 30, 60, 90 and 120

seconds. The 12 most optimal features only contain 90 and 120 seconds features while the first seven

correspond to 120 s. This suggests that a higher window size is needed to contain enough relevant

transport characteristics. It was claimed that these methods could be utilized in a smartphone with-

out substantial burden on battery life. However, no power consumption data was presented to support

this claim. Additionally, their data was collected from only six students with ages between 18-25. This

process could be improved by collecting data from a greater number of individuals with a wider set of

combined characteristics (e.g., age, gender, professional activity, etc.) to form a more complete dataset

with a high variety of users. Furthermore, their evaluation does not include travel segments with less

than 120 s, which is a significant factor that influences the high accuracy obtained.

Reddy et al. [19] proposed another stand-alone solution using a decision tree followed by a first-

order discrete Hidden Markov Model with data collected from the GPS and accelerometer. The classifier

identifies 5 classes: stationary, walking, running, biking and motorized vehicle. The motorized class

includes multiple vehicles (e.g. car, bus, train) without making any distinction between them. This

approach achieved an accuracy of 93.6% that is justified by this grouping of motorized classes. These 5

classes are simple to distinguish due to the differences in their respective key features (e.g. acceleration

and speed). For example, running has a high variance in acceleration (along the 3-axis) when compared

to walking or biking due to the impact of the feet hitting the floor. The group of motorized vehicles are

easily distinguishable from walking or running by their vibrations and speed. The features of different

motorized transports are quite similar and their ungrouping would significantly reduce the accuracy of

this solution.

Sauerländer-Biebl et al. [11] investigated and evaluated one stand-alone solution based on fuzzy

rules (with the GPS and accelerometer data) presented in [20]. Firstly, they start by performing a single-

mode segmentation of the collected data. Stop points (where the user speed is 0 km/h) are used to

define the segments. Then, they use a set of rules, that is manually defined through the analysis of test

data, to establish a membership degree (from zero to one) to each class. These rules are based on

parameters related to speed, acceleration, turning angles, etc. For example, for a maximum speed of 40

km/h they attribute a certainty value of 0.8 to a tram, 0.7 to a bus and 0.65 to a car. Other rules will be

applied to further improve the certainty degree towards the correct mode. They obtained a high accuracy

(98%) for car trips classification (which was the main focus of their work) but had rather low results
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(75%) for the overall classifications. Methods based on fuzzy logic are relevant in the classification of

incomplete and uncertain information (e.g., facial pattern recognition, weather forecasting, etc.) which

is also the case of transport mode detection [21]. However, to correctly identify modes of transportation

with the varied conditions discussed in Section 1.3, it is extremely helpful to use a machine learning

approach that is able to adapt and learn as those conditions vary. Das & Winter [22] proposed a more

interesting solution that uses a hybrid solution with fuzzy rules and a machine learning algorithm (neural

networks) as we will analyze in Section 2.2. Furthermore, the authors don’t provide data related to the

device’s power consumption.

Xia et al. [23] collect the accelerometer and GPS data to identify 5 modes: stationary (stay and

wait), walk, bicycling and motorized transport. They used a discrete fast Fourier transform to extract the

acceleration frequency-domain features from the accelerometer. Velocity features (maximum, minimum,

mean and standard deviation) were obtained from the GPS receiver. To classify the transport mode,

they start by applying a filter (velocity threshold) to identify if the user is moving or stationary. Then, they

use two classifiers, A and B, based on Support Vector Machines. Classifier A is used when the user is

moving and will specify if the transport mode is a bike, motor vehicle or walking. Classifier B is used

to distinguish between the different types of stationary, namely: stay, wait(walk), wait(bike), wait(motor).

The mode wait represents the case where the user stops for a brief moment in the middle of his travel,

indicating possible traffic congestions or traffic lights. To reduce input dimensions for the classifiers,

they applied an Ant Colony Optimization (ACO) to filter the weakest features and select the stronger

features for transport detection. They obtained an accuracy of 96.3%, however, the experiments were

done exclusively with the device in the participants’ pockets without analyzing the impact and results for

other common device positions (e.g., device in the user’s hands, backpack, bag, etc.) and orientations.

Regarding the battery lifetime, they considered the power consumption when choosing the sampling

frequency and selecting the sensors but did not provide any information related to the application impact

on the device’s battery. Additionally, this solution does not explore the classification of similar motorized

transports (e.g., car, bus, train) and chose to group them all into one class that represents vehicles with

a motor.

Chen at al. [24] present Mago, a system that uses the accelerometer and the Hall-effect magnetic

sensor to distinguish between 7 classes (stationary, bus, bike, car, train, light rail and scooter). The main

contribution of this article is the use of the magnetic sensor to infer the user’s transport mode. The earth’s

magnetic field is distorted by the moving metal components of motorized vehicles (e.g., engine, wheels,

gears) that generate alternating magnetic fields while rotating. The effect of the distorted magnetic field

has multiple features that can be used to distinguish different vehicle types due to the differences in the

mechanical structure. For example, cars have smaller wheels when compared to buses which results in a

higher dominant frequency in the power spectrum. Given that the magnetic field decays with distance, in
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some cases (e.g., in the center of a big bus) the field strength is weak and there is a need to complement

the set of features with the use of the accelerometer. They use the accelerometer to detect vehicle

vibrations, particularly the effect of different vehicle suspensions and their effect on the road. Their

classification method is divided into two layers: motion detection classifier and transit mode classifier.

In the first layer, they use a random forest algorithm to distinguish between a stationary state and a

motion state. The second layer uses a neural network model to distinguish between the vehicle types.

To mitigate errors in sensor readings they buffer the last 5 results and select the majority of predicted

modes. This methodology is highly efficient due to the low power consumption (when compared with

GPS based solutions) and high accuracy (94.4%). However, Mago requires a smartphone with a Hall-

effect sensor with a sensitivity lower than 0.3 µT/LSB and a minimum sampling rate of 100Hz, which

is not currently available in a big portion of devices (e.g., iPhone 6, iPhone 5s, Google Nexus 5, etc.).

Additionally, this solution is not able to identify the most common physical activities like walking and

running.

2.2 Remote Classification

Given the resource restrictions discussed in Section 1.3, some solutions choose to implement the clas-

sification algorithm in a remote server (e.g., in the cloud). In this approach, the application running in

the user’s smartphone (or dedicated device) is only responsible for data collection. This data is trans-

ferred to a remote server where the respective classifier is executed. Obviously, a remote server is able

to offer more processing capabilities than a smartphone, allowing researchers to explore and imple-

ment algorithms with higher complexity than those running in a stand-alone approach. In remote-based

solutions, the main focus is to take advantage of the resources available and increase the number of

identified classes without having a significant decrease of the overall accuracy value in order to cover

more realistic user scenarios (users commonly use multiple means of transport).

2.2.1 Classification with access to geodata knowledge

In the last years, the geographic information systems (e.g., Google Maps, OpenStreetMap) were able to

collect and store geographical data from countries all around the world. This data includes roads, bus

routes, bus stops, train rails, real-time location of public transports, etc. The information is commonly

available to the public and can serve many uses (e.g., route planning, traffic information, distance mea-

surements, proximity to points of interest, etc.). It is particularly relevant in travel mode detection due

to the associations that can be made between the user’s location and the corresponding geographical

information that can be fetched from the multiple datasets available. Server-based online classification

offers the possibility to use this information and define new features related to the proximity to transport
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infrastructures that will be used by the classifier.

Stenneth et al. [25] uses additional data that represents bus locations, rail lines and bus stops spatial

data (available to the public in real-time) to distinguish between motorized transports (e.g., car, train and

bus) while still identifying other modes such as bike, walk and stationary with an overall accuracy of

93.5%. For example, if the user is travelling by bus, the system will verify that the user location corre-

sponds to one bus location and trivially identify this mode of transportation. Given the amount of data

that represents the transport network, this approach would be infeasible to reproduce in a stand-alone

solution due to the storage, bandwidth and battery restrictions but it’s one example of the possibilities

that the remote server can offer. However, this solution is limited to the geographical areas that offer

transport information in real-time. Additionally, the authors don’t provide power consumption information

but the exclusive use of GPS data (even with a sampling interval of 15 seconds) might drain the battery

lifetime of the device.

Another relevant solution that uses external data (OpenStreetMap) was presented by Biljecki et al.

[12] to distinguish between 9 travel modes with an overall accuracy of 91%. This solution is based on a

set of manually defined if-then rules, also known as an expert system, and fuzzy membership functions

to calculate the association degree between a feature and a class. As we discussed in Section 2.1,

the context of transport detection includes a lot of varying conditions which results in many possible

combinations that are impossible to manually model. A machine learning approach can use the training

data and adapt to new conditions, which is not possible in this approach resulting in classification errors

as acknowledged by the authors. Additionally, the use of geodata (e.g., roads, railways, bus lines, metro

lines) significantly increases the detection accuracy as it provides relevant information to single-mode

segmentation, but it limits the use of the system to certain locations covered by the OpenStreetMap.

One interesting contribution from this work is the introduction of a hierarchy of transport modes. This

hierarchy consists of 3 layers and each layer is a generalization of the previous one. For example, in

the third layer we have the classes ferry and sailing boat, in the second layer they are generalized to

boat which is also generalized to water in the first layer. Whenever the algorithm has a low certainty

on some class, it returns the generalization in the next layer. The hierarchy of transports allows the

system to identify a higher number of modes when there is enough data to distinguish them and still

offers accurate results (although less specific) when the algorithm doesn’t find different features, which

is better than returning an incorrect result.

Das & Winter [22] propose a hybrid knowledge-driven framework based on fuzzy logic and neural

networks to adapt to the varied conditions discussed in Section 1.3, which is a problem of solutions

based in exclusively fuzzy models. Their solution consists of multiple Adaptive Neuro-Fuzzy Model

Inference System (ANFIS) representing each transport class (walk, bus, train and tram). Each ANFIS

block contains a set of IF-THEN rules that are used to attribute a binary certainty factor (zero or one)
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to the respective class. A certainty factor of zero means that the feature vector doesn’t belong to a

class. Instead of manually and empirically defining the parameters of the ruleset, this system learns

from the training data the best parameter values to define a membership for a given class. After each

ANFIS block outputs its result, the highest value (corresponding to one) is chosen. For example, if the

user is travelling by bus, the ANFIS block corresponding to the bus class will use its ruleset with the

learned parameters to attribute a certainty factor of one to the user’s feature vector. Expectedly, the

other ANFIS blocks will output a value of zero and the class bus will be chosen. This approach achieves

an accuracy of 83% while being able to explain the reasoning process for a given choice and to tolerate

noisy data. However, this solution doesn’t identify relevant travel modes (e.g. car, bike, running) and its

exclusive dependence of the GPS sensor might significantly drain the device’s battery. Additionally, it

uses features related to the proximity to bus, train and tram network (routes) which limits the system to

certain regions.

The knowledge related to the transport network can be successfully used to identify the travel mode

as proven by the solutions above. The accuracy of the classification can be significantly improved by

using geodata knowledge. For example, if the user is moving through the trajectory of a train railway, the

classifier can easily infer his travelling mode with almost 100% certainty. However, regional limitations

arise. Some data (such as bus location in real-time) is not covered in most of the cities. Additionally,

the overlap of transport networks might result in classification errors. For example, one bus route might

intersect with one tram railway. Consequently, this methodology must be complemented by other fea-

tures obtained from the smartphone sensors. This complementation is particularly needed in the case of

solutions that aim at identifying other travel modes without any significant correlation with geographical

data (e.g., walk, bicycle). Furthermore, the computation and analysis of the amount of data needed

to represent these infrastructures will result in performance issues. As experienced by Stenneth et al.,

it took them 2 minutes to explore the dataset (with a linear comparison) and create the features (e.g.,

closest distances to buses, rail trails, bus stops). This performance issues must be addressed in ordered

to develop a solution based on geodata knowledge with near real-time requirements.

2.2.2 Classification entirely based in sensor data

The exclusive use of the smartphone sensors to infer the transport mode allows the system to have a

better world coverage. These approaches are not dependent on third parties providing enough data for

feature selection nor limited to certain cities. The features are extracted only from the built-in sensors,

representing the characteristic and universal properties of each mode.

Hemminki et al. [26] used a purely accelerometer-based approach to distinguish between 7 different

modes (stationary, walk, bus, train, metro, tram, car) with an accuracy of 84.9%. They developed an

algorithm to estimate the gravity component of the accelerometer readings and consequently derive the

16



component that represents the user motion. Then, they extract a total of 78 features of user movement

that are used in a hierarchical classifier. First, the kinematic motion classifier will verify if the user is

walking, progressing to the stationary classifier if another activity is detected. The stationary classifier

distinguishes between stationary or a motorized transport that is later classified to bus, train, metro,

tram or car in the motorized classifier. The kinematic classifier consists of an instance-based classifier

combined with a discrete Hidden Markov Model. The stationary and motorized classifiers consist of a

voting scheme for classifications obtained with an instance-based classifier. A variation of AdaBoost

(adaptive boosting) is used as the instance-based classifier. AdaBoost is a machine learning algorithm

that combines the output of weak classifiers, that learn through different subsets of features, into one

strong classifier. This algorithm has the disadvantage of being sensitive to noisy data, which in the

case of smartphone-based data collection is quite frequent due to the constant variations of the device

orientation and interferences related with the handling of the device. Additionally, the authors report a

high latency in the classification when the user changes to a motorized transport, which could be solved

with the use of other sensors (e.g., GPS).

Zheng et al. [27] used only the GPS data (from GPS dedicated devices) to identify 4 classes (walk,

car, bus and bike) with an accuracy of 75%. In this work, they perform the segmentation of the GPS

trajectory by assuming that there is a moment where the user stops when changing between modes and

that the user walks in the transition of different transports. Thus, a loose upper bound of velocity and

acceleration is used to identify the walking segments that are then used to partition the trajectory into

the remaining segments. To infer the transport mode, they use a decision tree applied to three features:

heading change rate, stop rate and velocity change rate. A graph-based post-processing algorithm is

later executed to further improve the detection accuracy, using the knowledge about the common user

behaviour. The main idea is to group users’ transport change points into nodes and connect them

according to the GPS trajectories while assigning to each edge the probability associated with each

transport mode.

Prelipcean et al. [28] present Mobility Collector, which is a tracking and annotating framework that

collects both GPS and accelerometer data from the user’s smartphone and allows him to manually

annotate the travel mode. They present a case study where this system is used to automatically detect

the user’s transportation mode, using the mobility-related data and the respective annotations inserted

by the user to train the classifiers. Multiple classifiers (Bayesian Network, Support Vector Machines,

Decision Tree, Random Tree and Random Forest) were trained on the collected data using K-fold cross

validation (K=10). The obtained results show that the random forest classifier had the highest accuracy

(90.8%) while distinguishing 7 modes: car, train, walk, subway, bus, bike and ferry. In this solution,

a unique identifier for each user is used as a feature to represent the user’s specific behaviour. It is

claimed that this feature increases the accuracy of the classification by 6.2%. However, this unique user
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identifier will decrease the ability of the machine learning algorithm to identify the transport mode for

new users.

Zhou et al. [13] present a GPS based solution that is able to identify 6 modes (walk, subway, bus,

car, e-bicycle, bicycle) with a maximum accuracy of 94.4%. The first step is to perform the single-mode

segmentation by identifying the transition points through a comparison of the features that occur before

and after each tracking point. The region around each transition point (first and last 10 tracking points)

is defined as a transition region and it is not used in the travel mode detection. To identify the transport

mode in each segment, they use five sets of 24 features that are related with speed, temporal and spatial

distribution (relevant for subway detection due to the identification of signal losses), acceleration, stop

rates and direction changing rates. These features are used by a random forest algorithm (trained with a

user survey) while using the Gini coefficient to evaluate the contribution and importance of each feature

to the classification. This approach obtained a rather high accuracy value while distinguishing between

six different modes. However, the exclusive use of the GPS sensor has a few problems related to the

device’s power consumption and the use of the system in weak-signal regions. For example, this system

can’t distinguish a car travelling on an underground road and a subway.

2.3 Smartphone Power Consumption

The battery life is a relevant aspect in every smartphone application, particularly in the field of travel

mode detection due to the energy consumption associated with data collection from the smartphone

sensors. In order to assure a complete collection of user’s daily travel patterns, the application must

be able to run through a normal day of an individual without significantly deplete the device’s battery.

Otherwise, the user might feel motivated to uninstall the application. Consequently, the choice of which

sensors to use is not only based on the ability to detect relevant transport features but also to minimize

the power consumption of the application running in the smartphone.

GPS is a position tracking technology that provides the location of a receiver (e.g., incorporated

in smartphones) as long as an unobstructed line of sight exists between the receiver and at least 4

satellites. With consecutive tracking points, an application can infer the user’s travelling speed. Given

that speed features (e.g., maximum, minimum, mean, etc.) form a strong feature vector to distinguish

between different travel modes, as proved in [23], many solutions opt to use this sensor (e.g., [12], [13],

[17], [25], etc.). Additionally, the GPS also allows the applications to use the user’s location to locate

relevant geo-locations (e.g., bus stops, bus locations, rail trails, etc.), which is used in [12], [22] and [25]

to infer the most probable transport mode. However, GPS is the most power-hungry sensor representing

53% of the smartphone’s power consumption in outdoor environments while the accelerometer only

consumes 8% in the same conditions, according to the analysis made by Khan et al. [5]. To minimize
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the power consumption associated with data collection, some solutions based on the GPS opt to limit its

use when the user isn’t moving.

Prelipcean et al. [28] use the accelerometer do detect if the user is inside a building and, therefore,

not travelling. In this approach, they only activate the GPS when the average of the values collected

by the accelerometer within a specific time interval exceeds the defined threshold, indicating that user’s

movement might be relevant enough to collect GPS data. Thus, the application avoids wasting energy

with irrelevant information. Additionally, this work proposes an equidistance tracking that consists of

dynamically adjusting the sampling frequency according to the user’s speed. This technique defines a

distance interval between consecutive points. The trajectory is then defined by a sparser set of tracking

points, that is also able to provide the pretended features but without the sampling of unnecessary points.

A different approach to control the GPS data collection was proposed in the work of Reddy et al. [19]

that use the GSM sensor to detect when the user is moving, given that it is less power-hungry than the

GPS sensor. GSM is a standard protocol for mobile communications. In this protocol, the mobile station

(smartphone) communicates with a base transceiver station (BST) that has a given range. When the

device is stationary, it is locked into certain cell towers. If the user starts moving significantly, the device

will enter into a different area and lock on other cell towers, which triggers the system to restart the

collection of GPS data. Thus, this solution minimizes the device’s power consumption by only enabling

the GPS sensor when there is relevant data to collect.

Other solutions tried to improve battery life with different methods. Martin et al. [17] applied an RFE

algorithm to reduce the number of features resulting in a less intensive feature computation. Xia et

al. [23] considered the power consumption of the sensors when choosing the sampling frequency given

that higher frequencies will result in a faster battery drain. Chen et al. [24] opt to use the Hall-effect

magnetic sensor that has a power consumption of 48 mW compared to the 176 mW obtained in the GPS

utilization. Some solutions based on a remote server classification, as referred by Stenneth et al. [25],

claim to improve the battery lifetime by delegating the detection computation to the respective servers.

However, the majority does not address the power consumption associated with the data collection,

which represents a big portion of the battery drain. Das & Winter [22] opted to group a few GPS locations

into a more coarse-grained time window (i.e., between 1 and 2 minutes) and sent the grouped locations

to the server. Thus, the application running in the user device does not need to constantly (e.g., every

second) transfer the collected data do the server, which is claimed to improve the battery lifetime.
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2.4 Summary

In Table 2.1 we summarize the main characteristics of the solutions discussed in the related work.

The solutions presented that rely on remote classification (see Section 2.2) automatically fail to com-

ply with the real-time requirements due to the delay associated in the establishment of a connection

to the main server and the time to transfer the collected data. However, some interesting techniques

for feature reduction, classification of travel mode and improved battery consumption were presented.

Additionally, relevant information was presented regarding feature selection and the weight of multiple

features in the user’s movement

Regarding the stand-alone approaches, in the article proposed Martin et al. we have no data to verify

the requirements of low battery consumption. However, we assume that this requirement is not fulfilled

because they do not implement any sensor managing technique.

Reddy et al. and Xia et al. failed to meet the requirement for the distinction of most common travel

solutions (e.g. car, bus, train) because they group the motorized classes. Also, Xia et al. do not provide

power consumption data, so we can not verify the fulfilment of low battery consumption requirements.

In the solution of SauerländerBiebl et al., the obtained overall accuracy (75%) is lower than the

accuracy required in our solution (90%). Also, we can not verify the fulfilment of low battery consumption

requirements because there is no data to evaluate this metric. However, we assume this requirement is

not met because there is not any methodology to manage the sensors.

Chen et al. focused on motorized vehicles, so it does not fulfil the requirements for the distinction of

some common travel solutions (e.g., walk, run).

Other solutions focused on activity recognition can be found in the literature (e.g., [29], [30], [31]).

However, these solutions are more focused on activities such as sitting, standing, upstairs, going down-

stairs or upstairs, etc. These type of activities ate not in the scope of our work.
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Article Approach Sensors Classes Detection Geodata Accuracy
Sauerländer-
-Biebl et al. Stand-alone GPS,

accelerometer 5 Fuzzy rules No 75%

Biljecki
et al. Remote GPS 10 Fuzzy rules Yes 91%

Zhou et al. Remote GPS 6 Random Forest No 94.4%

Martin et al. Stand-alone GPS,
accelerometer 5 Random Forest No 96.8%

Reddy et al. Stand-alone GPS,
accelerometer 4

Decision Tree
followed
by HMM

No 93.6%

Das &
Winter Remote GPS 4

Fuzzy rules
with

Neural network
Yes 83%

Xia et al. Stand-alone GPS,
accelerometer 5 SVM No 96.3%

Chen et al. Stand-alone Hall-effect.
accelerometer 6

Random Forest
and

Neural Networks
No 94.4%

Stenneth
et al. Remote GPS 6 Random Forest Yes 93.7%

Hemminki
et al. Remote accelerometer 7

Expert system
and the

combination with
HMM

No 84.9%

Zheng
et al. Remote GPS 4 Decision Tree No 75%

Prelipcean
et al. Remote GPS,

accelerometer 7 Random Forest No 90.8%

Table 2.1: Summary of the main characteristics from each solution
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In Section 3.1, we describe the background of this work, particularly the decision process behind the

initial transport mode prediction, including the detection of a trip, separation of each trip into single-mode

segments and the corresponding detected mode of transport.

We start by presenting an overview of our solution in Section 3.2, where we briefly describe the main

modules such as the Trip Detection, Trip Validation Manager, P2P manager and the Transport Mode

Determiner. In Section 3.3, we present the trip validation process and what information is associated

with the validations. In Section 3.4, we describe how the devices communicate with each other, the

information exchanged and how it is used to improve the prediction. Finally, in Section 3.5 we explain

how the output from the other modules is integrated to take the final decision towards the travel mode

used by the user.

3.1 Background

DetectP2P imports the Trip Detection module of Woorti, a mobile application used to understand the

value of travel time perceived by the user. In this section, we briefly describe how this module works in

order to better understand how it can be improved in the following sections.

The Trip Detection module collects the smartphone’s sensor data (i.e., GPS and accelerometer) and

processes it to extract the most relevant features. These features are evaluated by the random forest

classifier to predict the transport mode used by the user.

The GPS is used to obtain the coordinates that represent the user’s location. From multiple GPS

coordinates, the user’s travel speed is inferred by dividing the distance travelled by the time interval. The

accelerometer is used to obtain the user’s acceleration along three axis.

These raw values, that represent acceleration and speed, are grouped into trip segments with 90

seconds. The raw data from each segment is processed in the Preprocessing module (see Figure 3.1)

to calculate the features of the transport mode. These features represent the characteristics of the trip,

such as average, maximum and minimum speed, percentage of acceleration values between 0.3 m/s2

and 0.6 m/s2, percentage of acceleration values between 0.6 m/s2 and 1.0 m/s2, etc. The complete set

of 23 parameters that describe each segment can be consulted in the article where Woorti’s methods

were developed [14].

After processing each segment, the resulting parameters are fed to a random forest classifier that

evaluates the segment and stores the resulting list of probabilities correspondent to each possible trans-

port mode. When the user is stationary (i.e., distance and accelerations smaller than a defined threshold)

the trip ends, and the post-processing phase begins.

In the post-processing phase, strong segments (i.e., segments with a high walking probability) are

used to split the sequence of segments into smaller sequences. These walking segments are easily
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identifiable due to the high acceleration modulus (empirically defined). This allows us to identify where

each mode of transport sequence starts and finishes. Finally, each sequence is evaluated again and the

final mode of transport for each sequence is obtained.

The random forest classifier was previously generated in the training phase, with 537 trips (corre-

sponding to 265 hours) obtained from a group of volunteers collecting data in their daily routine. Those

trips were separated into a training and a testing data set to train the classifier. Then, the classifier model

was generated and imported to the smartphone application.

3.2 Solution Overview

DetectP2P collects data from the smartphone sensors and evaluates it with the machine learning ap-

proach developed in Woorti, where a mathematical model based on training data (i.e., GPS and accel-

eration metrics) is used to make an initial prediction on the current mode of transport. The validation

history of the local user is used to adjust this initial prediction. DetectP2P communicates with the closest

devices via Bluetooh to exchange stored user validations and transport mode predictions in real-time.

Then, the knowledge obtained from the local and external validations is used to make a prediction based

on the route taken. An additional prediction is created by analysing the predictions from the surrounding

devices. By combining the three predictions, a final decision is taken.

Figure 3.1: DetectP2P architecture and information flow.
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A solution that is purely based on a machine learning approach is quite susceptible to prediction

errors due to the high dependability on the sensor data collected by the device.

It is important to note that while each device is running the same machine learning model (i.e.,

random forest classifier), the prediction may vary from device to device due to multiple factors. There

are many variables to take into consideration, such as the accelerator sensibility (i.e., device hardware),

the timing of the sensor readings, noise, low GPS accuracy, user behaviour (e.g., user swinging his arm

introduces additional accelerations), etc. To improve the trip classification, we need to avoid these errors

and overcome the classifier limitations in such highly variable conditions.

By sharing real-time information between devices, we can minimize the impact of incorrect readings

on the predicted mode. This is done by analyzing the predictions obtained from other smartphones,

rather than just relying on the local ones. This is particularly interesting for collective transports (e.g.,

car, bus, train) that carry multiple passengers, allowing them to use each others’ predictions. These

modes can be hard to distinguish due to the similar characteristics (i.e., acceleration and speed). While

being part of a network of users sharing the same vehicle, this solution allows for extra resistance to

the classifier’s failed predictions. The application will then perform an analysis of the other devices’

classification (i.e., estimate probability for each transport mode), and include their predictions in its own

decision.

Additionally, as the users validate trips, their smartphones store them as validations (i.e., sensor data

metrics, classifier prediction, actual used mode) that can be used to improve the classifier’s decisions.

With the possibility of exchanging data between devices, we can pass the knowledge obtained from

multiple users’ validations. For example, one user that starts using the application can immediately

obtain an improved decision if he is travelling with a more experienced user. The experienced user has

the history of his validations and the validations from all the users that were connected to him in the past.

When the new user receives this information, he can process it and obtain relevant knowledge relative

to the performance of the classifier on each mode of transport.

The communication link used to exchange data between devices has a limited range, which means

that the application will only share data with the closest devices. This condition ensures that a big portion

of the knowledge obtained by communicating with other devices is relative to the surroundings of the

user location. As the travel conditions may vary from city to city (e.g., different transports, traffic density,

road characteristics, etc.), it is more effective to use data relative to the user area.

When it is required to perform a transport mode decision, DetectP2P collects the prediction from the

local random forest classifier, improving it with predictions from other users and the data obtained from

all the known validations.

In Figure 3.1 we show the main modules of our application running in each device. The final decision

towards the user’s transport mode is taken by the Transport Mode Determiner. This module gathers the
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output of three other main modules: Trip Detection, Trip Validation Manager and P2P Manager.

Trip Detection (developed in Woorti): Detects the start/end of each trip and makes a prediction

based on the smartphone sensors data (i.e., GPS and accelerometer).

Trip Validation Manager Collects user validations, storing information that relates the trip with the

classifier’s prediction and the real mode validated by the user.

P2P Manager: Responsible to establish connections and share information with the other detectP2P

instances within the range of the user. This module takes a decision based on the surrounding

smartphone’s decisions.

The Transport Mode Determiner module input consists in the results of the three other modules (see

Figure 3.1). Both the Trip Detection and the P2P Manager output consist in a prediction where for each

possible mode there is an estimated probability of that mode being the correct one. In the case of the

Trip Validation Manager, the output is a confusion matrix (i.e., observed mode opposing to predicted

mode) that resumes the validations obtained locally, and the complete list of validations from every user.

The confusion matrix represents the probabilistic relation between the predicted and the actual trans-

port mode used by the user, based on the previous trip validations (see Section 3.3). For example, we

can obtain the percentage of occurrences where the classifier prediction was Bus with the actual mode

being Car. Therefore, we know which modes are more likely to be confused with the predicted mode

and use these values to assist in the final decision (see Section 3.5 ) when the classifier is uncertain

between multiple transport modes.

3.3 Trip Validation Manager

When the Trip Detection Module detects and evaluates a trip, it saves the trip structure (i.e., sequences

of segments with the corresponding evaluation) in the device’s persistent storage (i.e., local database).

Later, the user is able to verify the trip and confirm the correct mode of transport. This validation, repre-

senting the real mode of transport, is stored together with the classifier’s prediction and the respective

trip coordinates in the file system. Coordinates are needed to infer the path of the respective trip, which

enables the system to later recognize similar trips with equal conditions.

These trip validations allow us to analyze the performance of the classifier, but the validations from

a single user might not be enough to extract accurate metrics. Thus, the validations of the other users

are also stored in the local database. Those validations are obtained by the P2P Manager while com-

municating with other devices, as explained in Section 3.4. In order to avoid repeated validations, each

validation is associated with a unique user and trip identifier, generated by the original device where the

trip was detected. Thus, devices can share validations whenever they connect to each other while this

module filters repeated information.
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Real Transport Mode
Classifier Prediction Walking Bicycle Car Bus Train
Walking 96.1 3.9 0.0 0.0 0.0
Bicycle 3.2 93.0 1.8 1.6 0.4
Car 0.2 2.3 75.2 15.6 6.7
Bus 0.0 0.0 10.5 83.4 6.1
Train 0.0 0.0 3.2 2.1 94.7

Table 3.1: Example of the confusion matrix (in %) obtained from validations.

Additionally, this module creates a confusion matrix (Table 3.1) that summarizes the results of the

validations. From the confusion matrix, we can obtain the true positives, false positives, false negatives

and true negatives, relative to the classifier’s performance. Then, we can infer more metrics to evaluate

the classifier, such as the false positive rate, false negative rate and precision. These metrics represent

the likelihood of one mode being confused with another one. That relation allows the system to adjust

the classifier prediction, as we explain in Section 3.5.

It is important to note that the validations obtained were validated by the local user or by users that

travel along the same area because the communication premises require the users to be close to each

other (i.e., less than 10 meters) in order to share validations. Thus, the metrics offered by this module

are mostly relative to one region. The objective is to focus the knowledge of the system in the area

where the user spends more time travelling during his daily routine.

3.4 P2P Manager

In this section we describe the peer-to-peer component of our solution, particularly the discovery of peers

(Subsection 3.4.1), communication between devices (Subsection 3.4.2), an alternative method to detect

trips (Subsection 3.4.3) and, finally, the classification of a trip based on peer data (Subsection 3.4.4).

3.4.1 Peer Discovery Manager

Before starting to share information between devices, the connections must be established. This is the

responsibility of the Peer Discovery Module. It discovers and connects to other devices via Bluetooth

[32], a limited range communication link that allows the devices to directly connect with each other as

illustrated in Figure 3.2.

At any moment, the user is between three possible states: travelling, stationary (i.e., not travelling),

waiting (i.e., travelling but currently stationary). When the user is stationary, DetectP2P keeps trying to

discover new peers in order to detect the start of a new trip (see Subsection 3.4.3). In the waiting state,

DetectP2P needs to be able to decide if the next state is still (i.e., the trip ends) or travelling (i.e., the

trip continues). The predictions of other peers are used to decide which state follows the waiting state
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Figure 3.2: Representation of the device connection range.

(see Subsection 3.4.3). In the travelling state, we use the predictions to identify the current mode of

transport being used. Thus, we need the discovery process to connect with users sharing the same

transport mode and obtain their predictions (see Subsection 3.4.4). Therefore, as the list of peers can

be constantly changing (e.g., user’s moving in and out of each other’s range), the discovery process

must be running during the whole life cycle of the application.

Regarding the power consumption requirement, the continuous discovery of peers does not have

a significant impact on battery lifetime. Classic Bluetooth consumes approximately 30mA [33], which

represents a draining of 1% per hour in a 3000mAh battery.

To keep track of the surrounding users, this module keeps a list of connected peers and the respective

connection timestamp. This list is updated whenever one device enters or exists the user’s range. When

the connection with one peer is established, the devices will be able to share information until one of

them disconnects.

3.4.2 Data Exchange

There are two classes of information being shared: real-time predictions and trip validations. Real-time

predictions are the local classifier decisions that are broadcasted to every peer when one segment is

evaluated. These predictions consist of a list of probabilities associated with each possible transport

mode. The trip validations are managed by the Trip Validation Manager and are sent to other peers

in order to share the knowledge relative to the classifier’s performance. These validations include the

classifier prediction, the corrected mode and the trip GPS coordinates. The validation exchange occurs

when two users initiate a connection.

Regarding real-time predictions, every time the random forest classifier evaluates a segment (i.e., a

trip fragment with 90 seconds), the result of the evaluation is sent to the P2P Manager that broadcasts

the data to every connected peer. In Figure 3.3, we can visualize how the predictions are broadcasted.
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Each device broadcasts its prediction and receives the predictions of the connected devices.

Figure 3.3: Perspective of device A in a network of 5 devices.

In this example, we see the perspective of device A. This device is connected to 4 other devices.

Device A broadcasts its classifier prediction to all peers and receives the prediction of each one. When

the prediction is received, it is associated with the sender and stored locally, together with all the previous

predictions from that sender.

Regarding trip validations, each peer shares all known validations, including the validations per-

formed by the local user and the validations from every device that has ever established a connection.

When two devices establish a connection, the validation exchange begins. Each device shares the list

of tripIds corresponding to every validation stored in its database. Given that each validation is only as-

sociated with one unique tripId, the other device can filter the validations already acquired and request

only the tripIds that it does not contain. Then, following that request, all the corresponding validations

are sent. The objective of this protocol is to minimize the data being transmitted by avoiding the transfer

of repeated validations.

For example, assuming that device ‘A’ never established a connection with another device, when it

connects with device ‘B’ for the first time, all the validations from device ‘B’ and the validations that it

received from other devices will be sent to device ‘A’.

3.4.3 P2P Trip Detection

While the Trip Detection module is the main responsible for detecting the start and end of each trip, the

P2P Trip Detection is also able to perform this task when needed. This includes the cases when the Trip
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Detection module fails to detect the trip due to lack of GPS signal (e.g., disabled to save battery). This is

relevant to collect travelling data when the user wants the device to run on low power consumption (i.e.,

without activating the GPS).

This module detects the start and end of a trip purely based on the information received from the sur-

rounding peers. The real-time predictions received from other peers, indicating that they are travelling,

can be used to detect the beginning of our own trip.

There are four possible scenarios when receiving external predictions:

1. Device A is stationary and connects with a stationary device B.

2. Device A is stationary and briefly connects with a moving device B.

3. Device A is moving and briefly connects with a stationary device B.

4. Device A is moving and connects with device B that is also moving.

By filtering the first three scenarios, we can infer the last scenario, where the device is moving,

and recognize the start of a trip. This filter consists in analyzing the predictions from devices with a

connection time superior to a threshold of 5 minutes.

The objective of the 5-minute threshold is to distinguish between the devices that only intersect for

a small period of time and those that are actually travelling with us. Two vehicles can be close to each

other in some situations (e.g., traffic light, stop signs, dense traffic, etc.). However, as soon as the traffic

flows, the devices will lose the connection due to the limited range of the communication link. Each

prediction is sent when the Trip Detection module evaluates one segment (i.e., every 90 seconds). At

least three predictions are required to consider that peer as valid, which translates to 270 seconds. By

adding 30 seconds to account for possible delays, we obtain a 300 seconds (5 minutes) threshold.

In scenario 1, there are no moving devices sharing their predictions so there is no indicator of a trip

starting. In scenario 2, device B might connect with device A, but the connection time will be inferior to

the threshold because the other user will eventually move away and break the connection. In scenario 3,

the user is moving but, because there are no moving devices sharing predictions, DetectP2P does not

have any information to confirm the start of a trip. In scenario 4, the current device has predictions from

a moving device. If the connection time is superior to the threshold, it indicates that the current device is

keeping up with a moving device. Thus, DetectP2P can assume that a trip has started.

To detect the end of a trip, we need to infer scenario 1. This is done by finding devices connected for

a time superior to the threshold, without broadcasted predictions (i.e., stationary devices). By knowing

that we are close to a stationary user for a given period of time, we can assume that we are stationary

too. If the count of connected peers decreases to zero while the device is in a travelling state, there is

no information to infer that the device is either travelling or stationary. Thus, when there are no peers

connected, we also end the trip.
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Figure 3.4: P2P Trip Detection state diagram

The scenarios described above result in the state machine presented in Figure 3.4. The state of the

user is either stationary, travelling or waiting (i.e., travelling but currently stopped). The transition from

state to state is done by testing the count of valid peers (i.e., peers with a connection time superior to

the threshold) and their respective predictions. A prediction can indicate that the user is stationary or is

in travelling mode (i.e., car, walk, bicycle, bus, train). In the scope of the detection of a trip, we are only

interested in testing if the prediction indicates a travelling mode.

3.4.4 Peer Decision Determiner

When the application detects the end of a trip, the decision process in the Peer Decision Determiner

begins. The ending of a trip is detected by the main Trip Detection module or by the alternative P2P Trip

Detection module.

If the ending of a trip is identified by the Trip Detection module, it splits each trip to a sequence of

segments (i.e., trip part), where each trip part corresponds to a travel mode. The sequence limits (i.e.,

end and begin) are identified by strong segments (i.e., high probability for walk or stationary mode).

These strong segments are easily identifiable due to the unique acceleration/speed values.

If the end of the trip is identified by the P2P Trip Detection module (i.e., without recurring to the

smartphone sensors), the trip is represented by the same structure (i.e., segment sequences) as it is built

from the information passed by the Trip Detection module of another device. Thus, the Peer Decision

Determiner takes a decision based on the time intervals that correspond to the limits of the segment

sequences. This module analyzes the peer predictions that were received between the beginning and

the end of each trip part and makes a prediction based on that.

The first step is to filter the valid peers. To do this, we need the connection timestamp associated

with each peer. The connection time is used to filter the devices that are sharing the same transport. If

the connection time is inferior to the 5-minute threshold, we will discard the information from that peer.
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The communication link properties guarantee that the devices have a small communication range.

Given these properties, such a small connection time is not sufficient to assume that the users are

sharing the same mode of transport. The smartphone of one user travelling by bus can connect with

the smartphone of other user travelling by car, close to the bus. The connection will be established and

the devices will exchange predictions. However, the car and the bus will eventually move further away

from each other and the connection will end, resulting in a small connection time and, consequently,

the predictions being discarded. Thus, the probability of two users sharing the same transport mode

increases with the connection time between the two devices. If two users are travelling together, they

can compare their predictions to take a final decision. The higher the number of users travelling together,

the higher the number of predictions from different devices that can be taken into consideration in the

decision.

Each valid peer can have one or more evaluations broadcasted, so the next step is to associate the

predictions with each trip part, based on the start and end timestamps. From each prediction sequence,

results one single prediction representing the arithmetic mean of the predictions considered for that spe-

cific trip part. At this point, we have, for each peer, a list of intermediate predictions. Each intermediate

prediction corresponds to the travel mode probabilities associated with a specific trip part.

The next step is to calculate the weighted arithmetic average for all the peers to obtain the decision

from the P2P Manager for each trip part. The weight of each peer in the decision corresponds to a

confidence factor (CF), calculated with Equation 3.1. The confidence factor is based on the peer’s

device accuracy, which is calculated by dividing the number of correctly predicted trips (CP) by the total

count of detected trips (T). If one of the peers does not have a minimum amount of 10 total trips (i.e.,

average number of trips collected in a daily routine), that peer is not considered.

CF = 1 + (
CP

T
∗ 10) (3.1)

As previously mentioned, some devices are able to make better predictions due to multiple factors

(e.g., GPS accuracy, accelerometer sensibility), so the devices with a higher correct prediction ratio have

more weight in the decisions.

Finally, this module returns its output to the Transport Mode Determiner, consisting in one prediction

for each trip part from a given trip.

3.5 Transport Mode Determiner

When the application detects the end of a trip, the Transport Mode Determiner is called to take the final

decision on the detected mode of transport. This module gathers the output of the other three modules:

Trip Detection, Trip Validation Manager and P2P Manager. Each module gives a different contribution:
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Trip Detection: Attributes a probability value to each possible transport mode based on the machine

learning classifier. This classification is the basis of the local decision and provides the information

needed for the P2P Manager to propagate a prediction to other users.

Trip Validation Manager Returns the list of every trip validation and the summary of the local val-

idations in the form of a confusion matrix. This knowledge is integrated into future decisions and

increases with users validating trips.

P2P Manager: Assigns a probability value to each possible transport mode, based on the collected

peer predictions. The predictions of surrounding users provide extra robustness against the local

classifier mispredictions.

The decision process starts with the prediction from the Trip Detection module, corresponding to a

probability list with a total of 5 probabilities (one for each mode). Then, the initial prediction is improved

by analysing the previous results from the local classifier, which serve as an indicator to how well the

device is able to classify each mode in the user’s daily conditions. For example, if the local classifier

has high false positive rates towards one mode, we use that information to decrease the probability of

the respective mode. In the next step, we look into all the validations and verify if the path taken by the

current trip already exists in any validated trip. We analyse the transport modes previously taken along

that path and merge that information with the starting prediction. If one mode is constantly being used in

that specific path, we want to increase the probability of that mode. Finally, we look into the predictions

from the peers around us and integrate them into the current prediction to take the final decision.

From the list of probabilities associated with the trip being evaluated, we consider the first, second

and third modes with the highest probability. The first, second and third mode with the highest probability

are referred to as M1, M2 and M3, respectively. We chose to consider three modes by analysing the

confusion matrix obtained in the work that developed this random forest classifier [14]. Those results

show that each mode is often confused with two other modes. For example, 5% of the train classifications

are actually car trips and another 5% correspond to bus trips, but the train is never chosen when walking

or riding the bicycle.

Algorithm 1: Adjustment of the classifier decision
Input: T, confusion matrix of the local validations, T[classified][observed]

D, map with probabilities by mode
C1 , count of occurrences for M1

C2, count of occurrences for M2

C3, count of occurrences for M3

1 P = T [M1][M2] + T [M1][M3]
2 Fi = Ci/(C1 + C2 + C3)
3 D[Mi] = D[Mi]− P/3 + Fi ∗ P

In the first step, we take into consideration the false positive and the false negative rates obtained
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from the local validations. These values reflect the performance of the classifier while performing pre-

dictions with the data obtained by the local hardware, on conditions specific to the area of the user. In

Algorithm 1 we describe the adjustment of the classifier prediction according to the validation history

of the user. The input needed to perform the adjustment corresponds to the local confusion matrix (T)

calculated by the Trip Validation Manager, the probabilities map (D) for each mode generated by the Trip

Detection module and the count of occurrences for each mode. From the confusion matrix, we obtain the

percentage of occurrences (P) where M2 and M3 were incorrectly identified as M1. Then, we decrease

the probability of the three modes in equal portions (i.e., a third of P) and distribute P according to each

mode frequency.

At this point, the classifier prediction is adjusted by Algorithm 1 with the data obtained from the trip

validations. The next step is to iterate through all the trip validations (i.e., local and external validations).

We compare the trip coordinates with the coordinates of each validated trip. We consider that there is a

match between two trips when at least 80% of the coordinates from the trip being evaluated are found

within the trajectory of the validated trip. A 20% error margin is given to account for accuracy errors and

differences in the trip start/end point (e.g., one trip might have more coordinates because it was detected

earlier). To compare trips, for every coordinate (C) in the trip being evaluated, we check if it is between

any two points (A and B) that belong to the validated trip, while taking into consideration a margin for

the GPS accuracy (ACC) of 13 meters, which is the maximum deviation found in the analysis of GPS

locations with Android [34]). To verify if point C is between A and B, the following equation is tested.

distance(A,C) + distance(C,B) < distance(A,B) +ACC (3.2)

When there is a match between the validation and the current trip, we update the count of occur-

rences associated with each considered mode of transport. The objective is to know the number of

occurrences by mode, through the path representing the current trip. This metric is relevant because

it suggests which modes are more likely to be used along with those coordinates. For example, train

validations contain coordinates specific to the train railways. If the trip contains coordinates that match

the train path, it strongly suggests that the travel mode is the train. Additionally, there are also specific

routes for buses and bicycles, representing relevant knowledge that can be used to further improve the

decision.

After calculating the number of events for each mode of transport along that path, we attribute a

score that consists in the number of occurrences of the respective mode divided by the total number

of occurrences. Thus, the most used mode in that path will have the highest score. The last step is

to merge the adjusted initial prediction, the path score and the prediction from the P2P Manager (i.e.,

predictions from the surrounding peers), by calculating the arithmetic average of the three scores.

Finally, we have the final prediction consisting, again, in a list of probabilities associated with each
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mode. To take the final decision, we look at the count of peers that were connected to the device during

the respective trip. The number of peers that we are able to connect is directly related to the transport

mode, as public transports (e.g., bus, train) can carry more passengers. Therefore, if the count of peers

is superior to 4, we choose the public transport with the highest probability. In the case where we have

transport modes with a small probability difference (i.e., smaller than 5%), we choose the mode that was

most used by the user according to the local validations.

3.6 Summary

In this section, we present the DetectP2P architecture and describe the role of each component in the

classification of users’ travel mode.

We see that the Trip Detection module generates an initial prediction based on the GPS and ac-

celerometer data, by using the random forest classifier. This part of the solution is based on the Woorti

application, which is used to classify users’ trips in a stand-alone approach.

Then, we explain the Trip Validation Manager. Particularly, how the user is able to validate previous

trips, what information is stored in the persistent storage and what knowledge can be obtained from this

validations.

As the core of our solution is based on the exchange of information between peers, we proceed to

explain the whole P2P Manager. This module includes four submodules: Peer Discovery, Peer Data

Exchange, P2P Trip Detection and the Peer Decision Determiner. We start by explaining how the Peer

Discovery discovers the surrounding peers and how it manages the connections to other devices. Then,

we describe which information (i.e., validations and predictions) is shared with other users and how it

is shared with the network by the Peer Data Exchange. As an alternative to the high power consuming

techniques used in the main Trip Detection module, we present the P2P Trip Detection where the de-

tection of trips can be made by analysing the information obtained from the surrounding devices. Then,

we describe the Peer Decision Determiner, where the predictions received by the surrounding users in

specific time intervals are used to calculate a new prediction.

Lastly, we describe the Transport Mode Determiner. This module receives the initial prediction from

the Trip Detection. Then, it makes a request to the Trip Validation Manager and receives the confusion

matrix of the local validations and the list of all the validations. The confusion matrix is used to adjust the

local classifier prediction, while the list of all validations (i.e., from all users) is used to attribute a score

to each mode based on the validations made on the same geographical trajectory. The final step is to

integrate all the predictions into the chosen transport mode.
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In this chapter, we discuss the implementation details of the DetectP2P application. In Section 4.1,

we describe the extensions made to Woorti’s Trip Detection in order to integrate it in DetectP2P. In

Section 4.2, we provide the implementation details of the trip validation mechanism, particularly how trips

are saved to the persistent storage. The communication between devices is explained in Section 4.3,

where we address the connection protocols and the exchange of data. In Section 4.4, we explain

the mechanism that we use to detect trips without using smartphone sensors. The calculation of the

prediction based on the data from surrounding peers is explained in Section 4.5. Finally, we describe

the process of taking the final decision, that aggregates all the information, in Section 4.6.

4.1 Trip Detection Module

The Trip Detection module was adapted from the solution developed in Woorti for the Android operating

system, with two extensions to include its output in the information flow of our application. As explained

in Section 3.1, this module makes a prediction based on the sensor data while using a random forest

algorithm. While in the original solution this prediction was considered the final decision, in this work we

only use it as the starting point.

DetectP2P requires a permanent exchange of mobility predictions with the surrounding users. When

a segment of the trip (i.e., 90 seconds of sensor data) is completed, that segment is evaluated. Then,

this module invokes the P2P Manager in order to broadcast the respective evaluation.

Additionally, in the original solution, whenever the module detects the end of the trip, it saves the trip

data in the persistent storage with the respective mode of transport. In our solution, instead of storing

the detected mode of transport, we store the whole dictionary of probabilities generated by the random

forest classifier. This dictionary consists of one probability value associated with each mode of transport.

4.2 User Validations

When a trip ends, it is stored in the file system of the device. Then, it is available to be validated

by the user. The validation process consists in associating the real mode of transport used with the

corresponding trip. In Figure 4.1 we present a diagram that represents the entities used to handle trip

validations. There is one unique ValidationManager that contains multiple instances of ValidatedTrip,

corresponding to the validations collected. Each ValidatedTrip contains multiple TripCoordinates that

represent the GPS coordinates collected during the trip. A ValidatedTrip entity contains the following

attributes:

userId: Unique and permanent String generated by the operating system to identify each user.

tripId: Unique String generated when the trip is validated by the generateTripId method.
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Figure 4.1: UML diagram representing the trip validation entities

classifierMode: Integer that identifies the mode predicted by the classifier.

realMode: Integer that identifies the real mode validated by the user.

tripCoordinates: List of all the GPS coordinates associated with the trip, representing the geo-

graphical path taken.

When the trip is validated by the user, the tripId is created to avoid the collection of repeated val-

idations. To generate a unique representation of the trip, we instantiate a new string and append the

following trip data: start timestamp (ms), end timestamp (ms), an average of the absolute acceleration

values and distance travelled (m).

The ValidationManager is a singleton responsible to handle the storage and access to the validations.

The most relevant aspect in this entity is the storage of the validations. As peers are constantly sharing

all the validations known to them, we need to assure that there are no repeated trips in the local storage.

Therefore, we use the userId and tripId, generated by the device where the trip was validated, to identify

each trip.

Given that the operations that we require consist in fetching the ValidatedTrips for specific userIds,

searching for tripIds and storing new validations, the SQLite database is used to store the validations in

the persistent storage. The SQLite library is quite simple to implement (i.e., no need for configurations)

and allows efficient queries to the data that we need to fetch (i.e., ValidatedTrip table) by using two

primary keys: userId and tripId.

When the P2P Manager receives one or more validations from a peer, it forwards the data to the

ValidationManager. For each validation received, the method addValidation() is called and verifies if the

trip is already in the database by calling checkIfTripExists(). If the trip is repeated, the new validation is

discarded. Else, the trip is added to the persistent storage.

4.3 Communication between devices

As explained in Section 3.4, our solution requires close-range communication between devices. The

technologies that offer wireless communication between Android devices over short distances are Wifi-
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Direct and Bluetooth.

Wifi-Direct has a theoretical range of 200 meters [35], while Class 2 Bluetooth (i.e., most found in

mobile devices [36]) has an expected range of 10 meters [37]. If the application uses Wifi-Direct, it will

establish connections with users travelling in other vehicles. In this work, we prefer a lower communica-

tion range because the objective is to communicate with devices sharing the same transport mode.

Regarding power consumption, Bluetooth is the better option due to the low-energy signal used to

exchange data [35], which is an important factor considering the requirements of our application related

to the battery lifetime. Additionally, Wifi-Direct requires the devices to establish P2P groups, where one

device is the Group Owner and the other devices act as clients. When the Group Owner disconnects,

the group is disbanded and the other clients have to negotiate a new Group Owner. In the scope of

this work, users are frequently moving in and out of each others’ range. For this reason, Wifi-Direct

would require a more complex protocol to handle group negotiation in an environment where users are

constantly moving and can belong to multiple groups.

Due to the reasons above, we chose to implement the communication with the Bluetooth technol-

ogy. To do this, we used the Android Multi Bluetooth Library [38], an Android library that simplifies the

discovery, connection and data exchange between devices.

Before starting to communicate with other instances, each device must select its operating mode,

either server or client mode. Server devices advertise themselves and wait for clients to discover them

and initiate the connection. In this work, all devices can play the server and client role, otherwise, two

instances running in the same mode could not connect to each other. Thus, each device runs in server

mode while still running the discovery process.

Whenever two instances discover each other, they need to negotiate who waits and who starts the

connection. The negotiation process is decided by generating a random integer and including it in the

device name (i.e., the id advertised by each device). Thus, each device advertises himself with the

name: detectP2P followed by a random number (e.g., detectP2P 1000). The instance with a higher

value corresponds to the server and will wait for the other instance to initiate the connection by calling

the method createClient(mServerAddressMac) provided by the library, where mServerAddressMac cor-

responds to the MAC address of the server. This method will open the socket connection between both

devices, allowing for any message to be exchanged.

We store the connection information in the P2P Manager in the form of a Map structure, where for

each peer name (e.g., detectP2P 0506) we store the respective MAC address that is needed to transfer

data.

As explained in Subsection 3.4.2, our solution requires the exchange of two types of messages:

validations and predictions. In the following sections, we explain the implementation details for the

message exchange.
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4.3.1 Validation Exchange

The exchange of validations occurs when the connection is established, with a simple protocol consisting

of synchronous messages. The client device initiates the exchange by sending a list of tripIds that

correspond to every validation that he has stored. Remember that each validated trip has a unique tripId

generated by the device where the trip was detected and validated. Thus, to avoid sharing repeated

validations, the other device will iterate those tripIds and request the tripIds that he does not have.

Then, a list containing the serialized ValidatedTrips (see attributes in Section 4.2) associated with the

requested tripIds is returned. Following this exchange, the inverse process begins, where the server

device sends its known tripIds and the client filters and receives the new validations. At this point, both

devices contain exactly the same validations.

4.3.2 Prediction Exchange

Every time one device evaluates one segment, the Peer Data Exchange module broadcasts the predic-

tion to every connected peer. Therefore, the exchange of predictions is an asynchronous process.

Figure 4.2: UML diagram representing the peer and its predictions

The P2P Manager is responsible to manage and store the peer predictions. We use a Map structure

to associate the peer name with the PeerInfo class. In Figure 4.2, we present the relation between

PeerInfo and Prediction. PeerInfo represents each peer, containing its name, the timestamp of its last

prediction, the number of predictions and a composition of the class Prediction. Each Prediction repre-

sents the evaluation performed by the classifier of the other device, containing the probability dictionary

(i.e., a probability associated with each mode), the detected mode (i.e., mode with the highest probabil-

ity) and the timestamp calculated when the prediction was received.

The Peer Data Exchange module (see Section 3.2) is constantly waiting for messages from the other

devices. When this module receives a prediction from other device, we use its instance name to fetch

the PeerInfo class from the Map structure or create a new entry if it does not exist yet. Then, the method

addModeInfo is called to store the association between the prediction and the respective peer. This
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method updates the peer’s lastTimestamp with the prediction timestamp, increments numPredictions

and associates it with the prediction to keep track of their order.

4.4 P2P Trip Detection

This module (shown in Section 3.2) uses the predictions received to manage the current state of the

user. Recall that (as mentioned in Subsection 3.4.3) there are three possible travel states: stationary,

travelling and waiting. The state is updated when there is enough information to infer the new state of

the user.

When the application is initiated, one instance of the P2P Trip Detection is created by the P2P

Manager. This instance defines one Handler that is responsible to manage the queue of a background

thread. Then, we create the tripDetectionP2P Runnable, an interface that allows the trip detection code

to run in its specific thread. We use the Handler to dispatch the Runnable into a background thread

every 90 seconds, which is the minimum amount of time between predictions. Thus, if at one point in

time we do not have any prediction to infer the next state, we need to wait for the other peers to send

their new predictions which takes approximately 90 seconds (as explained in Subsection 3.4.2).

Every 90 seconds, a tripDetectionP2P routine begins its execution. Here, we fetch the last predic-

tions by iterating through the valid PeerInfo instances (i.e., peers connected for more than 5 minutes)

and aggregating the results of the getLastPrediction method. From the resulting list of predictions, we re-

move those that are older than 90 seconds as we are only interested in the predictions received between

the current timestamp and the last execution of this routine.

Then, after obtaining the last predictions, we perform the following actions depending on the current

state:

• STATIONARY If there is any prediction with a detected mode of transport, the state is updated to

TRAVELLING.

• TRAVELLING If there is any prediction that detected the still mode or if there are no predictions,

the state is updated to WAITING .

• WAITING If there is any prediction that detected a mode of transport, the state is updated to

TRAVELLING. If there is any prediction that detected the still mode or if the count of predictions is

zero, we update the state to STATIONARY.
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4.5 Peer Decision Determiner

When DetectP2P detects the end of a trip, this module receives a request to output a decision between

two timestamps, corresponding to the start (startTS) and end (endTS) of a trip part.

It starts by iterating through the PeerInfo instances and filtering the valid peers with a connection

time superior to the 5-minute threshold. For every valid peer, the Peer Decision Determiner fetches the

predictions received between the startTS and endTS by calling the getPredictionsBetween method (see

Figure 4.2). The average of those predictions is calculated to obtain the peer prediction for the period

considered.

Then, we use Equation 3.1 (see Subsection 3.4.4) to assign a weight to each prediction and calcu-

late the weighted average of all the peers. The variables needed to obtain the weight of a peer (i.e.,

correct predictions and total predictions) are obtained by making a query to the database for the peer

Id, obtaining its validations. and calculating the respective values. Finally, we have one final prediction

from the peers and return it to the Transport Mode Determiner where the final decision is taken.

4.6 Transport Mode Determiner

When the main Trip Detection module (see Section 3.1) or the P2P Trip Detection module (see Sub-

section 3.4.3) detect the end of a trip, the trip structure is passed to this module where the process

to evaluate the mode of transport begins. The trip structure consists of a list of trip parts where each

part corresponds to a mode of transport. Each trip part is represented by the respective start and end

timestamps. If the trip end was detected by the Trip Detection module, the random forest evaluation for

each part is included in the trip structure.

Figure 4.3: DetectP2P decision process
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In Figure 4.3 we see the whole decision process and the tasks that are performed to obtain the

final transport mode. After receiving the trip structure, the random forest evaluation (when available) is

adjusted with the confusion matrix calculated in the validation manager (see the adjustment details in

Subsection 3.4.4). The following task is the calculation of the path score for each mode by comparing

the trip path with similar paths from the validations.

To calculate the path score, we need to compare the trip being evaluated with every validation stored

in the database. Given the high count of validations that each user might have stored and the require-

ments for real-time performance, this task must be efficient and minimize the time spent iterating through

validated trips with a different route. Thus, when fetching validations, we look at the start and end loca-

tions. As we require at least 80% equivalent coordinates (see Subsection 3.4.4) to assume the similarity

between two trips, we compare the start and end location of the current trip with the start location of

the validated trip. If either the start or end location validate the following formula, we fetch the validation

from disk to perform a complete comparison.

tripsDistance < pathLength ∗ 0.8 (4.1)

In Equation 4.1, tripsDistance represents the distance between the start/end point of the current

trip and the validated trip. The value of pathLength represents the length of the current trip. If the

tripsDistance for both the start and end location is larger than the length of the path, it is impossible for

the trips to be similar and we do not need to cache and iterate that validation. The resulting validations

are then compared in-depth with the current trip to calculate the path score.

With the adjusted prediction and the path score, we request the prediction from the Peer Decision

Determiner and merge the three results into a single prediction. Finally, the task to take the final decision

is performed by analysing the peer counts and the modes most used by the user.

4.7 Summary

This chapter describes the implementation details that are needed to correctly develop DetectP2P into

an Android device. We start by explaining the extensions made to Woorti’s trip detection. Then, we

describe how the data is stored when the user validates a trip and the techniques used to guarantee

that each device stores one unique representation for each validation. Regarding the peer-to-peer com-

munication, we explained how the devices are discovered and how the connection is initiated. A simple

protocol was implemented to efficiently exchange trip validations when the connection is established.

Then, we show how the predictions are shared and stored while the communication channel is opened.

We describe how the trip detection based on peer predictions is implemented and how the Peer Deci-

sion Determiner takes a decision with the predictions of the surrounding devices. Finally, we describe
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the tasks executed by the Transport Mode Determiner that start with the ending of a trip and finish with

a transport mode decision.
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5.1 Evaluation Methodology

To evaluate DetectP2P’s accuracy towards each mode of transport, we need to test it in a real scenario

where users travel together, exposed to the same travelling characteristics, and analyse the impact that

the interaction between their devices has in the detected mode of transport. Although, DetectP2P can

be used in multiple scenarios and the results obtained vary with numerous factors such as travelling

alone, travelling with other users, the number of validated trips, the route taken, etc. Thus, to analyse

how the application performs on these scenarios we perform the following evaluations:

• Accuracy of the local decision (i.e., random forest classifier) and its variation with users’ validations.

• Tendency of the users to repeat trips.

• Processing time to calculate the path score.

• Comparison between local and peer predictions.

• Accuracy of DetectP2P with a group of users travelling together.

We requested 5 people to use DetectP2P for two weeks to collect enough data from their routines.

This evaluation was made with five Android devices: Xiaomi Mi A2, Xiaomi Mi A1, Samsung J3, Motorola

XT1068 and Huawei Y6. These devices have different hardware from different manufacturers.

Our evaluation was divided into two phases. In phase 1, the users were asked to use DetectP2P in

their daily routines, while validating trips at the end of the day. In this phase, the users are travelling alone

and only the decision from the local classifier is considered. The objective was to collect their validated

trips to obtain information about the performance of the classifier on their routines and knowledge relative

to the geographical paths taken. Then, in the second week, the users were asked to travel together

allowing us to collect the data that represents how the system behaves and evolves in a real scenario.

In this phase, the devices share the validations previously obtained and send predictions in real-time,

allowing each DetectP2P instance to include more information in its decision.

5.2 Adjustment Process

We start by evaluating how the application performs when the user is travelling alone. In this situation,

the final decision is based in the local classifier (i.e., Woorti’s decision) and it is adjusted with the local

validations (see Algorithm 1 in Section 3.5). The local validations relate the behaviour of the classifier

with the preferences of the user (i.e., preferred modes, conditions of the routes taken, etc.). Thus, as

the user validates trips, the classifier prediction is adjusted according to his validation history.
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To evaluate this scenario, we considered the trips collected by one of the users (userA) in the first

week, corresponding to a total of 105 trips, particularly: walk (64), car (24), bus (5), train (7), bicycle (5).

In Table 5.1, we see the confusion matrix that represents the results from the random forest classifier

while evaluating the 105 trips. With the collected trips, we proceeded to simulate the adjustment process

(see Algorithm 1) for different sets of validations as seen in Figure 5.1 to compare the results obtained

with multiple sets. The initial accuracy values correspond to the results obtained when there are no

validations while the final values correspond to the results obtained when all the validations were con-

sidered. We considered the validations from userA by their chronological order, obtaining the following

sets:

Classifier Mode
Real
Mode Walking Car Bus Train Bicycle

Walking 61 (95.3%) 0 (0%) 0 (0%) 0 (0%) 3 (4.7%)
Car 0 (0%) 14 (58.3%) 10 (41.7%) 0 (0’%) 0 (0%)
Bus 0 (0%) 1 (20%) 4 (80%) 0 (0%) 0 (0%)
Train 0 (0%) 1 (14%) 1 (14%) 5 (72%) 0 (0%)

Bicycle 1 (20%) 0 (0%) 0 (0%) 0 (0%) 4 (80%)

Table 5.1: Confusion matrix obtained from userA
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Figure 5.1: Evolution of the accuracy with the local validations.

1. 15 validations - 11 walk (classified: 11 walk), 4 car (classified: 4 car);

2. 30 validations - 21 walk (classified: 20 walk, 1 bicycle), 9 car (classified: 4 car, 5 bus);

3. 45 validations - 31 walk (classified: 29 walk, 2 bicycle), 12 car (classified: 7 car, 5 bus), 2 bus

(classified: 2 bus);
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4. 60 validations - 40 walk (classified: 38 walk, 2 bicycle), 18 car (classified: 12 car, 6 bus), 2 bus

(classified: 2 bus);

5. 75 validations - 50 walk (classified: 48 walk, 2 bicycle), 23 car (classified: 15 car, 8 bus), 2 bus

(classified: 2 bus);

6. 105 validations - 64 walk (classified: 61 walk, 3 bicycle), 24 car (classified: 15 car, 9 bus), 5 bus

(classified: 4 bus, 1 car), 7 train (classified: 5 train, 1 car, 1 bus), 5 bicycle (classified: 4 bicycle, 1

walk);

Figure 5.1 shows the accuracy (in %) obtained while using the Trip Detection decision and adjusting

it according to different sets of validations. In the first set of validations, the accuracy values remain

unchanged because there are not enough validations to perform the adjustment. With the validations

considered, the false positive rate is 0 for each mode because every classification was correct. Thus,

Algorithm 1 distributes a probability of 0 to every mode which does not change any prediction.

In the second set, we see an increase in the walk and car modes while the bus significantly de-

creases. This is explained by the preferences of the users towards the walk and car modes. In the three

occurrences where the classifier chose the bicycle instead of the walking mode, the system looked into

the bicycle false positives (4.8%) and distributed that probability according to the walking and bicycle

frequencies. The same event occurs in the car trips that were incorrectly identified as bus, with the bus

classifications being adjusted to car due to the observed user preferences. However, the bus trips are

incorrectly adjusted because the system highly favours the car mode at this point.

Between the third, fourth and fifth sets of validations there are no variations in the accuracies ob-

tained, except for a 20% decrease in the bicycle mode. For 60 validations we obtain a false positive rate

of 6.5% towards the bicycle and that value is distributed according to the frequencies of each mode,

which is enough to incorrectly adjust one of the bicycle classifications. However, in the fourth and fifth

set, the false positive rate towards the bicycle drops to 4% and 5%. These values are not enough to

change any of the bicycle predictions, therefore, the bicycle accuracy returns to its initial value.

When the total of 105 trips is considered, the accuracy for car drops to 91.6% due to the bus and

train trips that are added to the validations. In this situation, the frequency of the car drops to 66.7%

which is enough to maintain 2 incorrect bus predictions in car trips. Consequently, we also observe an

increase in bus accuracy to 40%.

Here, we can see how the predictions are adjusted according to the preferences of the user. The

most used modes are favoured by the adjustment process while taking into account the false-positive

ratio of the mode predicted by the classifier. This process significantly affects the modes used with

a smaller frequency. However, in a P2P environment, the system can compensate this factor with

additional techniques as we prove in the following sections.
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5.3 Path Score

In this section, we consider the total amount of 316 trips collected by 5 users. The objective of this

evaluation is to understand how the increasing amount of validations provides relevant data to infer the

mode of transport and analyse the impact, in terms of processing power, that the calculation of the path

score has on the trip detection.

5.3.1 Analysis of the Path Relation

In this evaluation, we compare the routes of all collected validations to observe the number of trips that

would be improved by integrating the path score in DetectP2P’s final decision. Every repeated trip (i.e.,

a trip with an equivalent route found in the validations) has an increased probability towards the mode

validated in the original trip. Within the repeated trips, we also analyse trips repeated from peers where

the original trip was validated by other user.

Trips
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Car
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Bicycle

0 50 100 150

Repeated Total Repeated From Peer

Figure 5.2: Visualization of the amount of trips with equivalent routes.

In figure Figure 5.2 we show the portion of trips with equivalent routes in comparison with the total

amount of collected trips. By iterating through the total of 316 trips, we searched for trips with equivalent

paths. For each trip, we only compare it with the previously iterated trips. For example, to verify if the

third trip is repeated, we compare it with the first and second validated trip. We obtained a count of 93

(29.4%) repeated trips, where 39 correspond to walk, 13 to car, 19 to bus, 20 to train and 2 to bicycle.

Among the repeated trips, there are 11 (2.8%) occurrences where an equivalent trip was obtained from

a peer (i.e., external validations), while the remaining events correspond to equivalent trips found within

the local validations.

5.3.2 Processing cost

Given the time requirements for the output of a transport mode decision, we need to analyse the com-

putation cost to obtain the path score. This evaluation was performed on a Xiaomi Mi A2, featuring
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a Qualcomm Snapdragon 660 and 3GB of RAM. To perform this test, we considered multiple sets of

validations (50, 100, 300, 600, 1000, and 2000) and a trip with 360 locations (i.e., approximately 30

minutes). Each set contains small trips (50%) with 120 locations (10 minutes), medium trips (40%) with

300 locations (25 minutes) and large trips (10%) with 720 locations (60 minutes).
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Figure 5.3: Execution time (ms) to calculate the path score.

Figure 5.3 shows how the execution time needed to attribute a path score increases with a higher

amount of validations. We do not see a linear growth of the execution time because each validated trip

has different coordinates. Each validation is discarded when the trip comparison reaches the threshold

of distinct coordinates (20%). Thus, the time needed to discard each validation is different across the

set. Even considering the highest value tested (i.e., 2000 validations), we obtained a processing time

inferior to 6 seconds which is acceptable considering our requirements for the output of a decision in 30

seconds.

The number of validations considered in this evaluation does not necessarily represent the total

amount of validations in the device. As explained in Section 4.2, we optimize the fetch operations and

retrieve only the relevant validations (i.e., validations close to the location considered).

5.4 P2P Evaluation

In this evaluation we test the transport mode detection in a P2P environment where the users travel within

a group and their devices communicate with each other during the trip. The objective is to see how the

classifier predictions vary between different devices and evaluate our solution, with the contribution from

every module, in a scenario where a group of users are travelling together.

5.4.1 P2P Manager Decision

Figure 5.4 compares the local prediction (relative to the real mode used) of one device with the prediction

obtained from the P2P Manager, where the weight of each peer is based on the trips collected in phase
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1 (i.e., users travelling alone). Each value in the x-axis represents a single trip without any relation with

the others.
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Figure 5.4: Comparison between local prediction and peer prediction.

In car trips, we observe that the peer prediction is higher than the local prediction in 19 (48.7%)

occasions. If we only consider this prediction to take the decision, the peer predictions would correct the

decision to car in 4 (10.3%) occasions (trip 6, 13, 33, 34) and change the decision to an incorrect mode

in 1 (2.6%) occasion (trip 29). In bus trips, the predictions from the peers are higher than the local one

in 18 (56.3%) occasions. The decision would change to the correct mode in 1 (3.1%) occasion (trip 45)

while the correct decision is not changed in any scenario. In train trips, the peer predictions increase

the probability in 5 (50%) occasions. The decision would be corrected in 1 (10%) occasion (trip 65).

While walking, the predictions from the other devices are higher in 7 (41.2%) occasions and adjust the

decision to the correct mode in 1 (5.9%) case (trip 68). In bicycle trips, the peer predictions are higher

in 5 (62.3%) occasions and there was not any recorded event where the decision would change.

While the difference between the local and peer decision is not frequently higher than 15%, we

can observe that when the local probability significantly drops, the peer decision offers a slightly better

probability. This is relevant because when, due to the smartphone conditions, the local prediction is

affected, the peer predictions can compensate with higher probabilities towards the correct mode.

The cases where the peer prediction is lower than the local one are not necessarily disadvanta-

geous. For example, in a case where the local probability corresponds to 60% and the peer probability

corresponds to 50%, we observe a 10% drop but the decision is still correct with a smaller confidence.

We can slightly decrease the confidence of the correct predictions, but while offering an overall better

percentage of correctly detected transports by compensating the low probabilities of the local decision.
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5.4.2 Final mode decision

To evaluate the final decision in a P2P environment, we use the results obtained in phase 2 of the

evaluation while considering the validations obtained in phase 1. Thus, each device already contains

the validation history from its user. Table 5.2 shows the confusion matrix for userA which, as shown in

Section 5.2, has a preference for the walk and car modes. Table 5.3 shows the confusion matrix for a

different user (userB) that prefers the bus, walk and train modes.

Predicted Mode
Real
Mode Walking Car Bus Train Bicycle

Walking 100.0 0.0 0.0 0.0 0.0
Car 0.0 92.3 7.7 0.0 0.0
Bus 0.0 37.5 62.5 0.0 0.0
Train 0.0 10.0 0.0 91.0 0.0

Bicycle 11.1 0.0 0.0 0.0 88.9

Table 5.2: Final confusion matrix (in %) from userA

Predicted Mode
Real
Mode Walking Car Bus Train Bicycle

Walking 100.0 0.0 0.0 0.0 0.0
Car 0.0 74.4 23.0 2.6 0.0
Bus 0.0 6.2 87.5 6.2 0.0
Train 0.0 0.0 0.0 100.0 0.0

Bicycle 22.2 0.0 0.0 0.0 77.8

Table 5.3: Final confusion matrix (in %) from userB

Predicted Mode EventsReal
Mode Walking Car Bus Train Bicycle

Walking 100.0 0.0 0.0 0.0 0.0 64
Car 0.0 80.1 16.0 3.9 0.0 156
Bus 0.0 14.0 84.4 1.6 0.0 64
Train 0.0 2.5 0.0 97.5 0.0 40

Bicycle 13.9 0.0 0.0 0.0 86.1 36

Table 5.4: Final confusion matrix (in %) obtained from the results of every user

Table 5.4 shows the confusion matrix that sums the final decisions obtained by every user. In this

evaluation we considered 4 users travelling together for a total of 90 unique trips, specifically walking

(16), car (39), bus (16), train (10) and bike (9). The results obtained from each user were aggregated to

generate this matrix which means that each trip is considered four times (i.e., one evaluation from the

perspective of each user).

Walking trips were detected with 100% accuracy. By analysing the modes used by each user, we

observed that the walking mode is used with higher frequency when compared to the other modes,

particularly with the bicycle which is the mode frequently confused with walking. Thus, when in doubt

between bicycle or walking, the adjustment process increases the walking probability. Additionally, in

the cases where the device can’t accurately detect that the user is walking (i.e., user briefly stops, picks

up the device from his pocket, etc.), the peers will still have strong walking predictions. These factors

explain the high accuracy of our solution towards the walking mode.

While the adjustment process favours the walking mode, we still observe a satisfactory accuracy

(86.1%) towards the bicycle mode. This is explained by the predictions from the surrounding peers,
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which are strong enough (i.e., usually higher than 55%) to guide the decision in the direction of the

bicycle.

Regarding car trips, we obtained a reasonable accuracy of 80.1%. The decision between car and

bus highly depends on the user’s preferences as the characteristics of these modes are quite similar,

particularly in an urban environment where the travel speed is relatively low.

Similarly to the car, the results obtained for the bus vary according to the preferences of the user. In

our experiments, we obtained an accuracy of 84.4%. However, only a small portion (6) of the bus trips

consisted of repeated trips going through the same path of another trip found in the user validations.

With more users validating trips over a higher amount of time, we believe that the bus accuracy would

increase as the bus routes would be represented in the validations.

We can observe the relevance of the path score in train trips, with an obtained accuracy of 97.5%.

The path represented by the train rails goes through multiple train stations. Thus, the path of one trip

frequently consists in the union of smaller path sections separated by the train stations. Therefore, if one

user validates a long train trip, it will help in the identification of all the train trips that go through smaller

portions of that route. This effect is observed in our experiments.

Overall, we correctly classified 87.7% of the trips. It is important to note that a major part of the ex-

periments was made in an urban environment. This conditions significantly impact the results obtained,

particularly for car trips where the speed limit is quite low (i.e., maximum of 50 or 80 km/h) and there

are multiple traffic lights in the trip, which results in stop times and speed metrics very similar to the bus

trips. Given these conditions, the overall accuracy obtained is quite interesting.

Recall that DetectP2P performs the decision in near-real time without requiring a main server, and

without access to online maps and transport schedules. This solution adapts to the users’ preferences

and takes into consideration the most frequent routes taken by the users. We believe that, with more

validations from the users, the tendency would be to achieve higher accuracy values (i.e., more than

90%).

5.5 Power consumption

To evaluate the power consumption of our solution, we started a trip with 3 devices communicating

with each other and registered the execution time (mins) for every 1% drop in the smartphone battery.

We collected the consumption from a Xiaomi Mi A2 with a 3000mAh battery, while running only the

DetectP2P application and with Bluetooth activated. Although, other services from the operative system

were running in the background, which we can not control.

In Table 5.5, we show how the battery decreases during the test. We obtained an average of approx-

imately 22 minutes of execution for every 1% of battery life. If we consider the minimum value obtained
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Battery Drain (%) 1 2 3 4 5 6 7
Test Duration (min) 21 47 70 89 112 134 151

Table 5.5: Relation between the execution time (in minutes) and the smartphone battery (in %).

per battery drop, corresponding to 17 minutes, we obtain a battery life of approximately 28 hours. A

smartphone with a battery capacity of 2000mAh would be able to run DetectP2P for approximately 18

hours, which is enough to collect trips during the average daily routine of a user.

5.6 Summary

In this chapter, we presented the evaluation of our solution relative to the requirements defined in Sec-

tion 1.2. We split the evaluation into two phases. Firstly, we asked the users to individually collect

and validate trips in their daily routine. In this phase, we were able to evaluate how DetectP2P adjusts

the classifier decision to users’ preferences and how the knowledge relative to the geographical routes

grows with the increasing amount of validations. The execution time needed to calculate the path score

was also evaluated in multiple scenarios. In phase two, the users were asked to travel together to evalu-

ate DetectP2P in this scenario. The local decision of one user was compared with the decision obtained

from the surrounding peers. Then, we showed the final results that evaluate the decision of our solution,

in an environment where a group of users travel together. In our experiments, we correctly identified the

modes of transport with an accuracy of 87.7% which is very reasonable considering that the tests were

made in an urban environment with difficult conditions to fully distinguish the modes used. Finally, we

tested the power consumption of DetectP2P running in a smartphone with a 3000mAh battery, obtaining

an estimated battery life of 28 hours.

59



60



6
Conclusion

Contents

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

61



62



6.1 Conclusion

This work introduces a new technique to detect trips and identify the chosen mode of transport. We

used a trip detection module that collects accelerometer and GPS data that is processed and then

evaluated by a random forest classifier to predict a mode of transport. While the former solution runs in

a stand-alone approach, we implemented a protocol to exchange information with the closest devices via

Bluetooth. In our solution, each device is able to share its local decision with the surrounding instances

of the application. Additionally, with a mechanism to validate trips, the devices can share validated trips

with each other, obtaining relevant knowledge that can be used in their decisions.

To generate a decision, DetectP2P starts by collecting the prediction of the trip detection module

and adjusting this initial prediction according to the validation history of the local user. This adjustment

considers the performance of the classifier on the previous trips by analysing the false positives and false

negatives obtained, while favouring the users’ preferred modes. Then, a search goes through the local

validations and the validations obtained from other devices in order to find trips that followed the route

of the trip being evaluated and assign a probability value related with the frequency of each mode along

that route. After considering the predictions received from peers during the trip, DetectP2P averages all

the information to take its transport mode decision.

To evaluate this solution, a group of users helped by using the application in their daily routine. We

started by comparing the initial results, consisting of the random forest decision, with the results obtained

from the adjustment process. This evaluation simulated different adjustments based on different sets of

validations so that we could see how the adjustment process evolved as the users validate trips. Then,

we observed the tendency of the users to travel along repeated paths in their daily routines and showed

how a validation from one user could help the future decision of others that go through a validated route.

Finally, we evaluated the final prediction of this solution in a scenario where multiple users travel together

and share information in real-time. In this scenario, DetectP2P was able to correctly identify the modes

of transport with an accuracy of 87.7%.

6.2 Future Work

There is room for future improvements in DetectP2P. We imported the machine learning solution devel-

oped in Woorti. However, a different solution could be used to implement the Trip Detection module,

particularly a solution that detects more transport modes.

Additionally, DetectP2P is limited to a maximum of 7 simultaneous connections due to the Bluetooth

properties. By using a different communication link, such as Wifi-Direct, the number of connections

could be increased. Although, the problems related to group negotiation would have to be addressed.
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