Performance Isolation in GraalVM Native Image Isolates

Filipe Sousa
Instituto Superior Técnico

ABSTRACT

In the cloud computing service model Function-as-a-Service (FaaS),
small, stateless, and event-driven functions, are invoked countless
times in parallel. For each of these function invocations, a new
container and runtime will have to be started, resulting in non-
negligible latency. One solution to this problem is by co-locating
functions in the same runtime, which reduces the amount of run-
time start ups and improves the memory footprint, since there are
less runtimes.

Since function invocations will share the runtime, there is no
control over how much CPU a function gets in relation to others. If
a function has multiple threads it may grab a bigger slice of the CPU.
In this work, we design and implement a mechanism for managing
the CPU shares between co-located functions in a FaaS environment,
in the form of an http server that receives requests to run client’s
functions. The main purpose is to allow cloud computing clients to
set CPU requirements for their functions and making sure these
are met to the best of the system’s abilities.

To implement the proposed solution, we use GraalVM Native
Image. GraalVM is a technology that works on top of the HotSpot
JVM and offers Isolates, which already provide memory isolation
between the different function instances running in parallel. We
enhance the isolation to also offer CPU isolation. To evaluate the
solution, we use 5 different workloads: Fibonacci, REST API, File
Hashing, Image Classification, and Video Transformation. The main
metric we study is CPU utilization to confirm that the solution
fulfills its goals. Additionally, we evaluate how much latency and
memory overhead the mechanism adds to the system in order to
check that there is no substantial performance degradation.

KEYWORDS

Function-as-a-Service; Function Co-location; GraalVM Native Im-
age Isolates; CPU Management.

1 INTRODUCTION

Function-as-a-Service (FaaS) is a paradigm of cloud computing
where clients create small functions that get triggered by events,
and is usually coupled with Serverless, which leaves the server
management and scaling to the cloud provider. This makes the
client’s life much easier when compared to its Infrastucture-as-
a-Service (IaaS) counterpart because the client does not interact
with a virtual machine to get a server running, the client simply
uploads the code to the cloud provider. With Serverless, users have
automatic scalability, whereas, with IaaS, users would have the extra
work of setting up an autoscaling policy. It also has the advantage
that the client only pays for the time that the code is really running,
which is something that can’t be said for IaaS, where the client pays
for the time that the server is up and idle.

1.1 Motivation and Current Shortcomings

Despite the advantages, FaaS creates a new problem, which is re-
ferred to as "cold start". Each time a function gets triggered, a con-
tainer and the function’s runtime have to be started, which is a big
source of latency. Some solutions to this problem include runtime
recycling, restoring the runtime from a snapshot, and co-locating
functions in the same runtime. With co-location, since multiple
functions are sharing a runtime, the start up latency only occurs for
the first instance. It also improves the memory footprint by having
less runtimes running in parallel. As an extra improvement, if we
co-locate different invocations of the same function it is possible to
improve the memory footprint even more by sharing the common
data between the functions instead of replicating it.

Co-location of functions in the same runtime results in a lack
of isolation between the different functions, which now have to
share resources, such as memory and CPU. It is essential for differ-
ent functions to not be able to access each other’s memories, and
there already are solutions to this, like Photons [10] and GraalVM
Isolates [6]. However, CPU isolation remains a challenge. Without
proper management, the lack of CPU isolation can result in different
users getting varying shares of CPU depending on the number of
threads the functions have. An example of this is when a function
has three threads and another has only one. In Linux, all of these 4
threads will have the same priority and will get the same share of
CPU, which means that, the first function will get 75% of the CPU,
while the other one will only get 25%.

In summary, if we have complete isolation by putting each func-
tion in a new container, we incur high start up latency, but if we
relax the isolation and allow co-location of functions, we potentially
incur unfair resource utilization.

1.2 Goals

Here are described the main goals of this paper:

e Related Work: Study the current state of the art on the
topics discussed and directly related to this project. This
includes: Function-as-a-Service(FaaS), Serverless, Function
Co-location, and CPU management.

e Design: Mechanism in a FaaS server that manages the
amount of CPU a function gets.

e Implementation: Implement the mechanism on top of
Graal VM Native Image Isolates in order to get memory
isolation between functions.

e Evaluation: Evaluate the mechanism against a set of rel-
evant benchmarks. It should keep the CPU constraints as
well as not add significant overhead.

1.3 Document Roadmap

In Chapter 2, we address the related work, which includes the
background and the state of the art. In the background section, we
introduce the technologies that we will use, like GraalVM Native

Image Isolates and cgroups. In the state of the art section, we talk
about other papers that touch topics related to this paper. In Chapter
3, we present our solution to create a mechanism that enables
the management of CPU shares between co-located functions. We
start by presenting the solution architecture, and follow it up by
presenting the implementation details. In Chapter 4, we present
the evaluation methodology, which includes the workloads used
to test our solution, the metrics we captured, the setup where the
tests were performed and what experiments were done, and finally,
the results. In Chapter 5, we conclude by summing up the main
points discussed in this work, the results, and future work.

2 RELATED WORK

This section is divided into Background and State of the Art. In the
Background, we introduce the technologies and concepts that are
relevant to the implementation of our solution. We explain what
they are and, when relevant, how to use them. These technologies
include Cloud Computing and Serverless, GraalVM Native Image
Isolates, CPU Scheduling, and Cgroups. In the State of the Art,
we mention the most recent and relevant works that attempt to
solve similar and adjacent topics to the ones discussed in the project.
More specifically the topics are Serverless functions co-location and
CPU management. We conclude the State of the Art by comparing
the different papers and analyzing what they lack in regard to our
goals.

2.1 Background

2.1.1 Cloud Computing and Serverless. Cloud computing [1] is a
paradigm where a cloud service provider hosts client applications
and takes the responsibility of managing the servers and data stor-
age. The commonly used method of payment is "pay-as-you-go",
which means the client only pays when using the resources. Cloud
computing makes it so that the client does not have to deal with
the responsibility of setting up and maintaining the infrastructure
and, as a result, also allows a company to go faster into market.

There exist two recent concepts in cloud computing that go
hand-in-hand: Function-as-a-Service (FaaS) and Serverless [7]. FaaS
consists in breaking an application in a set of small event-driven
functions that do not keep state in between invocations. Server-
less means that the client does not manage the underlying server
where the application will run. The provider is responsible for the
operating system, containers, runtime and scaling the servers up
and down, whereas the client only writes the code. Cloud tech-
nologies like AWS Lambda [2] and Azure Functions [3] offer these
two cloud computing models together. With FaaS combined with
Serverless, the client only pays when the application is running
instead of paying for a server even when it is idle. It also makes
it easier for developers as the provider automatically implements
scaling policies, freeing the developer from figuring out when and
how to scale.

But this is not always optimal. With Serverless, each time a new
function is triggered, a container and runtime need to be started,
resulting in higher latency than if the application had always been
running. This is known as "cold start" [13]. Following there are
some solutions to this problem:

Filipe Sousa

e Restoring from snapshot: Store a snapshot of a run-
time after it finishes initializing and recreate new runtimes
fromm that snapshot thereby eliminating the repetition of
the runtime initialization.

e Forking hot runtime: This is a similar idea to restoring
from a snapshot. If there is a function executing when an-
other arrives, that runtime can be forked to run the new
function thereby, again, eliminating the repetition of the
runtime initialization.

e Runtime recycling: When a function finishes executing
keep the runtime warm for another function. By doing this
there is only one start up for multiple functions.

e Co-locating functions: With co-location we go a level
deeper than runtime recycling, by running multiple func-
tions in the same runtime.

Regarding language runtimes in a FaaS context, there are some
observations that can be made. The large memory footprint of a
language runtime poses problems since there are a lot of functions
running concurrently on the same machine. Since the functions
are small and end quickly, and there is a long JIT warm-up time,
the runtime can not make the best use of JIT-compiled code. Also,
starting a new runtime causes considerable latency, which is exac-
erbated if there are new runtimes constantly being started. For all
these reasons, it is clear that language runtimes were not made with
a FaaS context in mind, which makes the techniques mentioned
previously necessary.

2.1.2 GraalVM. The GraalVM [5] is a Java Virtual Machine (JVM)
build, which adds to the HotSpot JVM its own JIT compiler and
tools like the Truffle framework and Native Image.

Graal JIT Compiler. The just-in-time compiler is integrated with
the Java HotSpot VM. It provides extensibility by allowing truffle-
implemented languages to run in the same Java Virtual Machine
(JVM). For example, Java code (host), can be integrated with Python
code (guest), and pass data back and forth in the same memory
space, if there is a Python truffle implementation. The compiler
also offers performance advantages through optimizations such as
aggressive inlining and polymorphic inlining.

GraalVM Native Image. Native Image [15] is a technology that
performs ahead-of-time compilation of Java bytecode to create an
executable for a specific architecture. In order to not have to compile
every class, the Native Image first does a step where it finds all the
classes, methods and fields that are reachable at run time. This is
done through iteratively performing points-to analysis and heap
snapshotting until a fixed point is reached. This tool is based on a
closed-world assumption, i.e., all Java classes must be known and
available at build time.

The Native Image also makes it possible to run class static initial-
izations at image build time instead of at run time, which improves
the start up latency of the application. "Image build time" here
means the ahead-of-time compilation of the bytecode, and is used
to differentiate from "build time", which means the compilation of
the source code to bytecode. It is possible to decide which classes

Performance Isolation in GraalVM Native Image Isolates

Isolate 1 I:l AQT compiled code
T shared between isolates
reep Star Image Heap 1 (Reserved address)
Isolate 1 I:l space for isolate
R I:l Copy-on-write mapped
image heap
Committed memory
- I:l for run-time heap
Isolate 2 |
Heap Start Image Heap 1
Isolate 2
Run-time Heap solate
i

Figure 1: Isolates architecture (from [6]).

get initialized at image build time through a flag in the native-image
command. The result of the initializations is called the "image heap".

GraalVM Native Image Isolates. The Native Image Java API offers
Isolates [6], which can only be used when compiling the code with
the Native Image. An Isolate is a heap, which means there can be
multiple separate heaps each running a separate task. All Isolates
use the same AOT compiled code and have access to the "image
heap", which has the static initializations performed at image build
time. The "image heap" uses copy-on-write instead of replicating it
for each Isolate, which improves the memory footprint. An Isolate
does not have access to another Isolate’s heap by design. Isolates
improve the memory footprint, since when a block of memory
is no longer needed it can simply be released, whereas if there
were multiple tasks running in the same heap it would accumulate
until eventually the data got garbage-collected. Figure 1 shows the
Isolates architecture.

2.1.3 CPU Scheduling. In the context of this work, we are inter-
ested in scheduling jobs as regular operating systems. It can be
defined as the task of deciding which process gets the CPU at each
moment and how much.

There are many ways of performing scheduling depending on
the specific goals. The most relevant examples are the following:

e Maximize throughput: The amount of work that is done
by unit of time.

e Minimize wait time: The amount of time a process waits
since it is ready to execute until it gets the CPU.

e Minimize latency: The amount of time a process takes to
finish since it got the CPU.

e Maximize fairness: Make sure that every process gets
an equal amount of time with the CPU, unless processes
have different priority levels in which case their time share
would reflect that.

e Minimize resource starvation: Make sure there is not a
process that is never able to get the CPU.

In multitasking, there are two important mechanisms: scheduling
and dispatching. Scheduling refers to the algorithms used to select
the next process to get the CPU, while dispatching refers to how
the next process in line gets the CPU.

There are two modalities in dispatching: cooperative and pre-
emptive. With cooperative dispatching, the context switch only
happens through the cooperation of the currently running process.
That might be by yielding control periodically, or by being blocked
waiting for some I/O. Preemptive scheduling does the opposite, the
operating system interrupts the currently running process without
assistance from it.

Scheduling algorithms can be logically divided in terms of using
priorities or not. We will introduce some algorithms from both
categories. Two very simple and well-known scheduling algorithms
that do not use priorities are First-In-First-Out (FIFO) and Round-
Robin. With FIFO, as the name implies, the processes are executed
by order of arrival, and once a process starts executing, it executes
until the end. With Round-Robin, there exists the concept of time
quanta. Time quanta is a fixed quantity of time after which the
scheduler evaluates which is the next process to execute. With this
concept out of the way, in round-robin, each time a new process
arrives, it goes to the end of the queue, and, at each time quanta, the
current process running is stopped and put at the end of the queue.
With both of these algorithms there is no starvation problem, that
is, every process will eventually be executed.

Priorities are a mechanism through which more importance
can be given to critical processes, thereby allowing them to finish
quicker. This way, the new process to be executed is the one with
the highest priority. To this can be added preemption, where if a
new process arrives that has higher priority than the one execut-
ing currently, it gets the CPU. Priorities can be fixed, or not. One
example of an algorithm that uses fixed priorities is Shortest-Job-
First (SJF), where the process with the lowest execution duration
has the highest priority. A variant of SJF, that does not use fixed
priorities, is called Shortest-Remaining-Time-First (SRTF). As the
name indicates, the process with the lowest remaining time has the
highest priority and it is preemptive.

There is one problem that arrives with priorities, which is star-
vation. Processes with low priorities may never get the CPU. To
combat this, there exists the concept of aging. With aging, the wait
time for the CPU is incorporated into the priority. The higher the
wait time, the higher the priority. An example of an algorithm that
uses this concept of aging is Highest-Response-Ratio, where the
priority is given by:

waiting time of a process so far + estimated run time

priority = estimated run time

2.1.4 CPU Scheduling in Linux. Linux offers a few ways for the
user to influence the scheduling of processes. One possibility are
the two commands: systemd-run and cpulimit. They both allow
placing a limit on the CPU quota that a process is allowed to get.
Another, less direct way, is by changing the priority of a process.
This is done with the nice command, which allows giving a process
anice value between -20 and +19, which gets summed to the priority.
The default nice value is 0 and lower values represent more priority.

2.1.5 Cgroups. When compared to the other CPU scheduling tech-
niques, cgroups are more direct than nice values, and more powerful
than systemd-run and cpulimit, since it allows dividing resources
by groups of processes instead of only one by one.

Since we will be using them for our solution, in this section we
will do an overview of how to work with them, specifically where it
pertains to the CPU. As mentioned before, cgroups allow organizing
processes hierarchically and distributing resources through the
hierarchy, such as CPU, memory, etc. These resources are called
"Controllers’.

Cgroups also allow more fine-grained control through threads,
i.e., it is possible to group resources per groups of threads. To do this,
the processes that have the threads in question are put in a specific
cgroup, and then other cgroups are created inside it. Then, the
latter cgroup types are changed to ’threaded’, and the threads are
divided through them. This is important because in our work, each
function will actually be a separate thread (or group of threads),
not a process.

2.2 State of the Art

In this project there are two relevant topics: co-location of functions,
and CPU management of co-located functions. In this section we
present some works and technologies that tackle at least one of
these topics.

SAND [8] and SONIC [12] co-locate Serverless functions in the
same container. SAND intends to improve the start-up delay and
communication latency of applications that are divided in multiple
functions that communicate between each other. In order to do
this, functions that belong to the same application run in the same
container as separate processes. They also implement a message
bus between functions in the same container/application. SONIC,
similarly to SAND, is also focused on message passing between
Serverless functions. It proposes a mechanism that chooses between
three message passing options dynamically to minimize data pass-
ing latency and cost. One of the methods is called VM-Storage, and
consists in saving the local state of the sending function in the con-
tainer’s storage and scheduling the receiving function to execute
on the same container. These two papers are the most distant from
this project as they only perform container co-location, not runtime
co-location, and there is no CPU managament between the tasks.

For running multiple functions/applications in the same JVM
runtime, there exist the Multitasking Virtual Machine [9] and Pho-
tons [10]. The MVM is a modification of the JVM that allows sharing
as much of the runtime between two different applications and repli-
cating everything else. The applications are completely isolated and
have their own heap. Photons are directed at Serverless functions,
and consist in running concurrent executions of the same function
in the same JVM. A photon represents an individual lightweight
function invocation. All photons within the same execution environ-
ment, share the same object heap and the application runtime code
cache, meaning that all the optimized code produced during the
code warm up phase (including code interpretation, profiling, and
compilation to native code) benefits all photons, resulting in faster
execution. To provide data separation among multiple function exe-
cutions within the same runtime they implement a function loader
that intercepts and instruments the user bytecode. The function

Filipe Sousa

loader automatically inserts appropriate operations and modifies
access to global static program elements. These two papers are
closer to this project than the previous ones due to performing
runtime co-location, but there is still no CPU management between
co-located tasks.

An important concept we use in this work is the Isolate, which
consists in a separate heap for a function, which allows running
multiple functions in the same runtime. Cloudflare [4] is an example
of a Serverless computing service that offers Isolates. It works with
Javascript and for each function invocation it launches a new Iso-
late, since starting a new Isolate is orders of magnitude faster than
starting a new runtime. Thin Serverless Functions with GraalVM
Native Image [14] is a paper that makes use of the GraalVM Iso-
lates [6] to run Serverless functions. It keeps a pool of Isolates
and re-utilizes them for each new function invocation. It proposes
caching database connections in the Isolates so as to not have to
create them for every new function, as well as storing shareable
data, like a machine learning model, in a specific Isolate for sharing.
The latter is done because machine learning models use native code
which means the models can not be put in the image heap. We keep
getting closer to our project with this technology and paper, since
they perform runtime co-location with separate heaps (Isolates) for
each task, just as we intend to do.

The paper Automated Fine-Grained CPU Cap Control in Server-
less Computing Platform [11] proposes a resource manager that
dynamically adjusts the allocation of CPU capacity of different
applications in a distributed Serverless computing platform with
the goal of minimizing the response time skewness as experienced
by the end-user. To do this it uses cgroups. We intend to do some-
thing similar but with runtime co-location and Isolates, whereas
this paper does it between different containers.

3 SOLUTION ARCHITECTURE

The goal of this project is to create a CPU management mechanism
for functions co-located in the same runtime, thereby allowing a
Serverless cloud provider to set a minimum CPU boundary for the
functions. When a request is sent to a cloud provider, it is first
received by the Load Balancer. The Load Balancer’s purpose is to
select a container to run the function. Once a function reaches the
container, this is where the mechanism we implemented enters into
action. In a container there will be an application running which is
a server waiting for function requests. We implemented this server
and integrated the mechanism into it.

In the next sections, we will start by explaining how the server
and mechanism work. Next, we present some implementation de-
tails. Finally, we present the requirements a client’s function needs
to adhere to in order for the system to function correctly.

3.1 Server and CPU Management Mechanism

The basic concept is that each function that is invoked will have
its own cgroup. Associating a function to a cgroup corresponds to
writing the thread ids of the threads that belong to the function to
a specific file in the cgroup.

In order to give a function a specific CPU quota, that quota needs
to be transformed into a weight, and written to the file cpu.weight
in the function cgroup. This concept was explained in the chapter

Performance Isolation in GraalVM Native Image Isolates

Application Cgrougs file structure

Main cgroup

(Common Runtime) domain

[2) Processes
- 1000

(ooie]

Function 1 cgroup

saok]| | [s J| |[_swec] treaded

Heao || [me)| [Hem]

[2) Threads

- Thread group 1

Isolate Isolate

Isolate
Function 2 cgroup
traaced

[2) Threads
Prosess 0 - Thread group 2

Figure 2: Cgroups file structure with two functions running
in two different Isolates. The thread ids of the threads in a
thread group are put in the cgroup associated to each func-
tion.

dedicated to Related Work. Each cgroup has a weight. To get the
quota of a cgroup, one divides its weight by the sum of all the
weights of the cgroups at the same directory level. To ensure a
minimum quota for a function, we write exactly that quota as the
weight. If all the weights sum to 100, it means the application is full,
there is no more CPU available, and the function will get exactly
the CPU that was set for it. If the sum gives less than 100, then the
function will get more CPU than it had requested.

This is an important detail, we are not going to force a function
to stay at a specific quota. We are setting it as a minimum. So, if it
can get more CPU and wants it, it will get it. We aim to be work
conserving, i.e., we do not waste CPU if there are functions that can
take advantage of it, we just enforce each one gets their minimum
quota.

When the application first starts, it creates the main cgroup
and writes its process id to the file cgroup.procs in that cgroup.
It then starts the server. The server has an integer variable with
the amount of available CPU which is updated with each request
that arrives and leaves. It also has a list of current requests being
computed where each request stores the ideal CPU and the current
CPU. Figure 2 shows the cgroups file structure with two functions
running in two different Isolates.

In Listing 3.1 it is described the procedure when a new request
arrives.

Listing 1: Application that creates an Isolate and enters it.

1 - Receive request

2 - if CPU is available

3 - Get thread id

4 - Create isolate

5 - Get CPU

6 - Store request in list of
current requests

7 - Create function cgroup

8 - Set cgroup weight

9 - Insert thread in cgroup

10 - Enter isolate

11 - Perform computation

12 - Receive request

13 - Exit isolate

14 - Remove thread from cgroup
15 - Delete function cgroup

16 - Return CPU

17 - Iterate active requests and

update CPU if possible

A request is in JSON format and has fields for the name of the
function, an argument to the function (possibly empty), and the
CPU the function wants.

Getting CPU (Step 5) implies checking if there is enough CPU
to satisfy what the function requires. If there is not, we start the
function with less than what it wants and when another function
ends and returns its share of the CPU, we update the functions that
have less than they should (Step 17).

Removing a thread from the function cgroup (Step 14) is done
by writing the thread id to the main cgroup of the application,
which is the parent directory of all the functions’ cgroups. This
automatically removes the threads from the function cgroup.

3.2 Implementation Details

This project was developed in Java SE11, on Ubuntu 20.04.5 LTS.
The project is compiled by the GraalVM ahead-of-time compiler
into an executable. This executable needs to be run with superuser
priveleges in order to be able to manage cgroups. The version of
GraalVM used was built from the source, which is available at
github, https://github.com/oracle/graal. The version used corre-
sponds to commit 05f6853ec39e69ccb0cfa420853530903f2cbf67.

While managing the cgroups, a very important piece of informa-
tion are the thread ids. These thread ids are the ones at operating
system level, not the ones at application level. With Java it was not
possible to get the real thread id. So, in order to get the thread ids,
we use system calls in C++ code, and we call that code through the
Java Native Interface (JNI), which is a programming framework
that enables Java code to call native applications.

After doing this, we also moved all the management of cgroups
(directory creation/deletion and writing to files) to C++ code.

We do not destroy the isolates after they are used. This means
we are just leaving the memory occupied. This is wrong, obviously.
What should be done is the caching of the isolates. The reason we
do not destroy them, is because it is a big source of latency, but
since caching the isolates was not essential to take the results and
there were some time constraints we decided to simply not delete
them. It stays for future work.

3.3 Model of Execution for Functions

A function running in this application needs to follow these restric-
tions:

e It has to be stateless.

o It has to end.

e It cannot launch daemon threads that do not die.

o Allresources need to be released upon function termination.
The first two restrictions are inherited from FaaS. The two last

ones are important so that we can perform a clean release of re-

sources such as the isolates and the cgroups.

4 EVALUATION

In this chapter, we will start by presenting the workloads imple-
mented, which represent the functions running in the cloud. We
explain what they do and why they are relevant. Next, we present
the metrics used to capture the performance of our mechanism,
and how they are captured. This is followed by the setup, in which
we explain on what infrastructure the tests were performed and
exactly what tests were done. Lastly, we present the results of tests
and comment on them.

4.1 Workloads

In our evaluation we have 4 workloads that were used in the Pho-
tons paper and represent a good and encompassing sample of the
functions in use in the current Serverless technologies. These are:
REST, File Hashing, Image Classification, and Video Transformation.
To these workloads we also joined a Fibonacci workload.

e REST API: It is representative of a simple data request
which is ubiquitous in the Internet. When triggered it reads
a field in a database. The database utilized was mongodb.

o File Hashing: It is representative of data processing pipelines
that divide data in chunks and process them in parallel. It
downloads a file and hashes it. The file is downloaded from
a local server implemented in python. The hashing is per-
formed with the MessageDigest class in Java.

o Image Classification: It is representative of machine learn-
ing inference. It loads a machine-learning model and an
image, and classifies the image. It downloads the data from
a local Minio server and the classification is done with the
TensorFlow library.

e Video Transformation: Recent work has proposed using
Serverless functions for implementing video transforma-
tions. It downloads a portion of a video and diminishes its
resolution. It downloads the data from a local Minio server
and the transformation is done with the Ffmpeg library.

e Fibonacci: Represents a pure CPU bound function in con-
trast with the rest of the functions that all have an IO com-
ponent. It receives an integer representing the nth term of
the fibonacci sequence and calculates its value.

The workload Image Classification does not follow the restric-
tions in the model of execution of the Solution Architecture chapter.
It uses the TensorFlow library which launches daemon threads
that do the work and never die. Even when new requests arrive, it
is always the same threads doing the work. Even when there are
concurrent Classification Image functions running concurrently,
those threads are being shared.

This is obviously bad and does not work with this system. This
means we cannot have multiple Image Classification workloads
running concurrently. We anyway used it to compare it against the
other workloads but never with more than one instance of itself.

4.2 Metrics
The metrics we captured were the following:

e CPU Utilization: In order to evaluate the mechanism cre-
ated, we are interested in capturing how well the CPU
quotas are enforced, when running functions concurrently.

Filipe Sousa

100 1- Fibonacci 20%
2 - Fibonacci 30%
3 - Fibonacci 50%

CPU utilization (%)

0 5 10 15 20 25 30 35 40
Timestamp (s)

Figure 3: 3 Fibonacci functions with different CPU percent-
ages

For this, percentage of CPU utilization is captured through
the use of the top command in Linux, which displays mul-
tiple real-time metrics for all the processes and threads in
the system.

e Function Latency: Another relevant aspect is how much
overhead our mechanism adds to the project. Since in a
serverless model, functions are by norm small, the mecha-
nism cannot too much overhead so as to not overshadow
the function execution itself. With this in mind, we capture
the duration of: full request since receiving until sending
response back; execution of the function; creation of the
cgroup; setting the weight of the cgroup; insertion of the
thread in the cgroup; removal of the thread from the cgroup;
and deletion of the cgroup.

e Process Memory: This is another metric to capture how
much overhead our mechanism creates, which works more
as a sanity check since the only extra memory is that of the
list to store the information of what requests are running
and on queue as well as some extra variables for book-
keeping. The memory the process is using is given by the
resident set size (RSS) which is captured, again, from the
top command. Resident set size consists in the amount of
memory a process has in main memory.

4.3 Setup

The experiments were performed on a virtual machine where the
host computer has a Windows 11 Home operating system and an
11th generation i7 intel processor with 2.80GHz and 4 cores. The
virtual machine is Linux Ubuntu 20.04.5 LTS, the virtualization is
done through the Oracle VirtualBox hypervisor, and the virtual
machine has access to all the 4 cores.

In order to simplify the project and the visualization of the re-
sults we pinned the application to a single CPU core in order for
the calculations to be done in relation to 100%. With n cores, the
maximum percentages would be n x 100%. To pin the application
to one CPU core we used cgroups again, by writing 0 to the file
cpuset.cpus in the main cgroup, where 0 identifies one of the CPUs.

4.4 Results

4.4.1 CPU Utilization - CPU Bounded Workloads. Figures 3 and 4
represent 3 Fibonacci functions, running concurrently, with differ-
ent (Figure 3) and same (Figure 4) CPU percentages.

Performance Isolation in GraalVM Native Image Isolates

100 1 - Fibonacci 33%
2 - Fibonacci 33%
3 - Fibonacci 33%

CPU utilization (%)

0 5 10 15 20 25 30 35 40
Timestamp (s)

Figure 4: 3 Fibonacci functions with the same CPU percent-
ages

1- REST 20%
90 2- REST 30%
3 - REST 50%

CPU utilization (%)

] 5 10 15 20 25 30 35 40
Timestamp (s)

Figure 5: 3 REST functions with different CPU percentages

In the first graph, first starts a function which requires 20% CPU.
While running alone it got a mean of ~97% with a standard deviation
of ~2. This makes sense since, because it is running alone and is not
sharing the CPU with any other function, it should get 100%. The
reason it doesn’t get up to exactly 100% and only to 97%, is because
the application is still sharing the CPU with other processes in the
machine.

At ~20 seconds a new function starts up that requires 30%. This
means that they should get, respectively, 40% and 60% CPU. The
first function gets a mean of ~38% with a standard deviation of
~3, and the second function gets a mean of ~57% with a standard
deviation of ~4.

At ~30 seconds a new function starts up that requires 50%. Now
all three functions add up to 100%, which means each function
should get exactly what they asked for (respectively 20%, 30%, and
50%). The first function gets a mean of ~19% with a standard de-
viation of ~3%, the second function gets a mean of ~29% with a
standard deviation of ~2, and the third function gets a mean of
~49% with a standard deviation of ~3.

Regarding the second graph, as each function comes in, the first
function gets ~97%, ~48%, and ~32% (should get 100%, 50% and
~33%), the second function gets ~49% and ~32% (should get 50%,
and ~33%), and the third function gets ~32% (should get ~33%). The
standard deviations are all between 2 and 4.

For this first experiment, the CPU quotas were kept very close
to the requirement, which is an indication that the mechanism is
working. We will now show the results for the IO bound function,
REST.

1-REST33%
0 2-REST 33%
3-REST33%

CPU utilization (%)
@
8

0 5 10 15 20 25 30 35 0
Timestamp (s)

Figure 6: 3 Fibonacci functions with the same CPU percent-
ages

1- FileHashing 20%
90 2 - FileHashing 30%
3 - FileHashing 50%

CPU utilization (%)

o 5 10 15 20 25 30 35 40
Timestamp (s)

Figure 7: 3 File Hashing functions with different CPU per-
centages

4.4.2 CPU Utilization - 10 Bounded Workloads. Figures 5 and 6
represent 3 REST functions, running concurrently, with different
(Figure 5) and same (Figure 6) CPU percentages.

This result is the reason this experiment is divided on if a work-
load is CPU or IO bound. As you can observe through the dashed
lines, the CPU requirements were not kept at all. In all sections of
both graphs where functions are running concurrently, irrespective
of if they have different CPU quotas, they get more or less the
same amount of CPU. And when the first function is running alone,
where it should get 100%, it gets a mean of ~23% on both Figure 5
and Figure 6. There does seem to be a bigger degree of separation
in the first Figure where the CPU quotas are different.

This result shows that the CPU quotas set through cgroups aren’t
absolute. A function will only use the CPU if it needs it. This means
that what this mechanism actually guarantees, is not that a function
always has a minimum CPU quota. (because the function may have
periods of IO blocking, longer or shorter, and therefore not using
CPU at all). In fact, it guarantees that if a function is in a step of its
computation that is CPU bounded, it will get the minimum CPU
requirement.

4.4.3 CPU Utilization - CPU and 10 Workloads. Figures 7 and 8
represent 3 File Hashing functions, running concurrently, with
different (Figure 7) and same (Figure 8) CPU percentages. Figures
9 and 10 represent 3 Video Transformation functions, running
concurrently, with different (Figure 9) and same (Figure 10) CPU
percentages.

These two workloads are in the middle between CPU and 10
bound functions. They both have a phase where they download

1- FileHashing 33%
20 2 - FileHashing 33%
3 - FileHashing 33%

CPU utilization (%)

0 5 10 15 20 25 30 35 40
Timestamp (s)

Figure 8: 3 File Hashing functions with the same CPU per-
centages

1 - TransformVideo 20%
2 - TransformVideo 30%
3 - TransformVideo 50%

CPU utilization (%)
g
g

0 5 10 15 20 25 30 35 40
Timestamp (s)

Figure 9: 3 Video Transformation functions with different
CPU percentages

1 - TransformVideo 33%
2 - TransformVideo 33%
100 3 - TransformVideo 33%

CPU utilization (%)
g
g

0 10 20 30 40
Timestamp (s)

Figure 10: 3 Video Transformation functions with the same
CPU percentages

either a text file or a video, followed by a computation phase. This
is visible in the Figures by the bigger deviation from the CPU set
due to the IO phase. But apart from the bigger deviation, when
compared with a pure CPU bound function, they seem to adhere to
CPU requirements set. This shows that the mechanism is working.

In Figure 7, the first function gets ~71%, ~41%, and ~18% (should
get 100%, 40% and 20%), the second function gets ~44% and ~26%
(should get 60%, and 30%), and the third function gets ~43% (should
get 50%). The standard deviations are all between 3 and 6.

In Figure 8, the first function gets ~71%, ~42%, and ~30% (should
get 100%, 50% and ~33%), the second function gets ~43% and ~29%
(should get 50%, and ~33%), and the third function gets ~29% (should
get ~33%). The standard deviations are all between 3 and 5.

Filipe Sousa

B Fibonacci 1 thread
== Fibonacci 10 threads

With Cgroups, Without Cgroups

Figure 11: Two Fibonacci functions running concurrently,
one function with one thread (blue), and the other function
with ten threads (orange). Left: With cgroups. Right: Without
cgroups.

File Hashing gets particularly bad results when compared with
Video Transformation, which shows that its IO component has a
bigger impact.

In Figure 9, the first function gets ~92%, ~36%, and ~19% (should
get 100%, 40% and 20%), the second function gets ~54% and ~29%
(should get 60%, and 30%), and the third function gets ~48% (should
get 50%). The standard deviations are all between 4 and 16.

In Figure 10, the first function gets ~93%, ~47%, and ~31% (should
get 100%, 50% and ~33%), the second function gets ~47% and ~31%
(should get 50%, and ~33%), and the third function gets ~30% (should
get ~33%). The standard deviations are all between 5 and 17.

Video Transformation gets very good results with particularly
high deviation, in part also due to the big spike that happens, curi-
ously (and probably coincidentally), on both graphs when the first
function is running alone.

4.4.4 CPU Utilization - Multiple Threads in a Function. By set-
ting minimum CPU quotas, it is possible to make sure that some
functions do not end up taking more CPU than they should. This
happens when a function uses threads. CPU scheduling is done at
thread level, so if a function has multiple threads, it will get more
CPU than a function that uses less threads (assuming they are both
trying to use the CPU). In the following experiment we attempt to
verify if our mechanism regulates this situation.

In Figure 11 there are represented two experiments. The two bars
to the left represent two Fibonacci functions that ran concurrently
with the cgroups mechanism where each function got 50% CPU.
The two bars to the right represent two Fibonacci functions that ran
concurrently without the cgroups mechanism. On both experiments
the blue function had only 1 thread, and the orange function had
10 threads all doing exactly the same computation.

Here the absolute values between the experiments are not very
relevant because there is always a little variance. The important
thing, is to compare the blue bar to the orange bar on both experi-
ments.

If we look first to the bar to the right, what is happening is that
11 threads, all performing the same computation (Fibonacci), are
fighting for the CPU, and they all get the same amount. This means
that the orange function will get 10 times more CPU than the blue
function and the blue function will not be able to run as fast.

Now looking to the bar to the left. By using the cgroup mech-
anism we can observe that the function with only 1 thread runs

Performance Isolation in GraalVM Native Image Isolates

30
27
24

EoE N
G & R

Latency (ms)

9
6
3
o
Cgroup Creation Weight Insertion Removal Deletion
Figure 12: Fibonacci
28
26
24
22
20
18
Ee
14
E 12
310
8
6
.
2
o
Cgroup Creation Weight Insertion Removal Deletion

Figure 13: File Hashing

60
54
48
2
36
30
24
18
12
6
0

Cgroup Creation Weight Insertion Removal Deletion

Latency (ms)

Figure 14: Image Classification

Cgroup Creation Weight Insertion Removal Deletion

Figure 15: REST

much faster since we are dividing the CPU per function, and not
per thread.

4.4.5 Latency Overhead. In the Figures 12 through 16 the pink bar
to the left represents the total cgroup overhead. It is the sum of all
the bars to the right.

Setting the the cgroup’s weight and deleting a cgroup have neg-
ligible latency for all the workloads. The creation of the cgroup is
consistent throughout the workloads at ~20ms. Insertion of threads
in the cgroup is between 3ms and 5ms on all workloads except
Image Classification. Removal of threads from cgroup is 3ms for

w
]

Latency (ms)
~
b

20
15
10
5
0

Cgroup Creation Weight Insertion Removal Deletion

Figure 16: Video Transformation

= Cgroup Overhead
—pase

Fbonacci FleHashing Image Classification REST Video Transformation

Figure 17: How much does the cgroup latency overhead weigh
on the total function latency.

Abonacei FleHashing _ Image Classification REST Video Tra

Figure 18: Ratio between the total function latency with the
cgroup mechanism and without.

Fibonacci, negligible for File Hashing and REST, and ~25ms for
Image Classification and Video Transformation.

In the case of insertion, what is measured is just the insertion of
the main threads that start the computation. Any threads that start
during the computation are automatically inserted in the cgroup,
but this is not measured. The reason Image Classification has a
higher insertion latency is because it is treated specially, since
it behaves badly, as mentioned before. And so, in truth, multiple
threads are inserted at the beginning, resulting in more latency.

For removals, the explanation for the bigger latency in the Image
Classification workload is the same as for the insertion. For the
Video Transformation, more investigation needs to be done to
understand, since only the removal of the first thread is being
accounted for.

Fibonacci, File Hashing, and REST have a total cgroup latency
below 30ms. Image Classification and Video Transformation have
a total cgroup latency below 60ms. In order for this mechanism
to make sense, the function should have significantly bigger la-
tency than the cgroup overhead. We verify if that is the case in the
following Figures.

In Figure 17, it shows how big is the cgroup overhead (blue)
when compared to the base latency of the function (orange). The
smaller the blue section the better. In Figure 18, it shows the ratio
between the total function latency with the cgroup mechanism and
without.

100

075
&

0s0

025

00

Fbonacci FileHashing Image Classification REST Video Transformation

Figure 19: Ratio between the memory used by each workload
with the cgroups mechanism and without.

This shows that for faster functions like Fibonacci, File Hashing,
and REST, where the cgroup overhead is a big part of the total
function latency, it will worsen the total latency between 2 and 5
times. This is very bad, obviously.

For slower, more computationally intensive functions, like Im-
age Classification and Video Transformation, the cgroup overhead
represents very little of the total function latency, and so, it makes
sense to implement the mechanism.

4.4.6 Memory Overhead. In Figure 19, is the ratio between the
memory used by each workload with the cgroups mechanism and
without. This memory is only in relation with the process of the
application, so it does not include the cgroup directories.

This Figure shows that the application is not using exceedingly
more memory that it could become a problem. The reason some
values are a bit over 1 and other a bit under is due to the different
conditions in the system when the workloads were run, which
cause a little variability. The important takeaway is that it is close
to 1.

Regarding the cgroup directories, their size is negligible. They
just contain a series of very small files, each just containing either
one or a considerably small amount of lines with a number or small
string. They grow linearly with the function invocations, not with
the number of threads.

5 CONCLUSION

In the Cloud Computing service model Function-as-a-Service, it
makes a lot of sense to run functions in the same runtime in order
to reduce start-up latency and memory footprint. This is known as
co-location. By doing this, functions are now sharing resources and
it is important to have a way of managing the resources to make
sure no function is treated unfairly.

The goal of this project is to create a mechanism that manages
the amount of CPU that a co-located function has access to, without
adding significant overhead. When running functions in separate
containers, there already exist products that offer some form of
CPU management. A good example of this is Docker, that uses the
Linux technology, cgroups, to manage each container’s resources
separately. But there is no mechanism to do this dynamically, when
co-locating functions in the same runtime.

In our solution we use the GraalVM Native Image Isolates [6]
technology to run each separate function in a different Isolate,
which already provides memory isolation. To manage the CPU we
use cgroups. The solution consists in an http server that receives
requests to run functions with a specific minimum CPU quota that
needs to be guaranteed, and dynamically creates cgroups, adjusts
its weights and inserts threads into them.

Filipe Sousa

We test this solution in how well the CPU quotas are guaranteed
for the functions, and how much latency and memory overhead the
mechanism adds. We use 5 workloads which are based in a previous
work [10] and are representative of the functions used in current
Serverless technologies.

We found that, how well the CPU quotas are guaranteed, de-
pends on how much IO the function has. If the function is very
10 bound it will not use the CPU a lot, thereby getting less than it
had been given. With CPU bound functions the mechanism works
very well. Regarding the overhead, the cgroup management adds
between 20ms and 70ms of latency overhead and insignificant mem-
ory overhead. A function needs to be significantly longer than this
latency overhead in order for it not to be relevant.

As future work, a way to improve the problem of the latency
overhead is to cache the cgroups and reuse them for different func-
tions instead of just deleting them. The creation of cgroups costs
20ms so it would be a great cut. In the same logic, the isolates should
also be cached, since destroying them is too expensive in terms of
latency.

REFERENCES

[1] 2020 idg cloud computing survey. https://www.infoworld.com/article/3561269/
the-2020-idg-cloud-computing-survey.html. Accessed: 2022-01-14.

[2] Amazon web services lambda. https://aws.amazon.com/pt/lambda/. Accessed:
2022-01-14.

[3] Azure functions. https://docs.microsoft.com/en-us/azure/azure-functions/. Ac-
cessed: 2022-01-14.

[4] Cloudflare: how workers works. https://developers.cloudflare.com/workers/
learning/how-workers-works. Accessed: 2022-01-14.

[5] Graalvim documentation. https://www.graalvm.org/docs/introduction/. Ac-
cessed: 2022-01-14.

[6] Isolates and compressed references: More flexible and efficient memory man-
agement via graalvm. https://medium.com/graalvm/isolates-and-compressed-
references- more-flexible-and- efficient-memory-management- for- graalvm-
a044cc50b67e. Accessed: 2022-01-14.

[7] The state of serverless. https://www.datadoghq.com/state-of-serverless/. Ac-
cessed: 2022-01-14.

[8] I E.Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya, and V. Hilt.
{SAND}: Towards high-performance serverless computing. In 2018 { Usenix}
Annual Technical Conference ({ USENIX} { ATC} 18), pages 923-935, 2018.

[9] G. Czajkowski and L. Daynes. Multitasking without compromise: a virtual
machine evolution. ACM SIGPLAN Notices, 47(4a):60-73, 2012.

[10] V. Dukic, R. Bruno, A. Singla, and G. Alonso. Photons: Lambdas on a diet. In
Proceedings of the 11th ACM Symposium on Cloud Computing, pages 45-59, 2020.

[11] Y.K. Kim, M. R. HoseinyFarahabady, Y. C. Lee, and A. Y. Zomaya. Automated
fine-grained cpu cap control in serverless computing platform. IEEE Transactions
on Parallel and Distributed Systems, 31(10):2289-2301, 2020.

[12] A. Mahgoub, L. Wang, K. Shankar, Y. Zhang, H. Tian, S. Mitra, Y. Peng, H. Wang,
A.Klimovic, H. Yang, et al. {SONIC}: Application-aware data passing for chained
serverless applications. In 2021 USENIX Annual Technical Conference (USENLX
ATC 21), pages 285-301, 2021.

[13] J. Manner, M. Endref, T. Heckel, and G. Wirtz. Cold start influencing factors in
function as a service. In 2018 IEEE/ACM International Conference on Utility and
Cloud Computing Companion (UCC Companion), pages 181-188. IEEE, 2018.

[14] S. Wang. Thin serverless functions with graalvm native image. Master’s thesis,
2021.

[15] C. Wimmer, C. Stancu, P. Hofer, V. Jovanovic, P. Wogerer, P. B. Kessler, O. Pliss,
and T. Wirthinger. Initialize once, start fast: application initialization at build
time. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1-29, 2019.

https://www.infoworld.com/article/3561269/the-2020-idg-cloud-computing-survey.html
https://www.infoworld.com/article/3561269/the-2020-idg-cloud-computing-survey.html
https://aws.amazon.com/pt/lambda/
https://docs.microsoft.com/en-us/azure/azure-functions/
https://developers.cloudflare.com/workers/learning/how-workers-works
https://developers.cloudflare.com/workers/learning/how-workers-works
https://www.graalvm.org/docs/introduction/
https://medium.com/graalvm/isolates-and-compressed-references-more-flexible-and-efficient-memory-management-for-graalvm-a044cc50b67e
https://medium.com/graalvm/isolates-and-compressed-references-more-flexible-and-efficient-memory-management-for-graalvm-a044cc50b67e
https://medium.com/graalvm/isolates-and-compressed-references-more-flexible-and-efficient-memory-management-for-graalvm-a044cc50b67e
https://www.datadoghq.com/state-of-serverless/

	Abstract
	1 Introduction
	1.1 Motivation and Current Shortcomings
	1.2 Goals
	1.3 Document Roadmap

	2 Related Work
	2.1 Background
	2.2 State of the Art

	3 Solution Architecture
	3.1 Server and CPU Management Mechanism
	3.2 Implementation Details
	3.3 Model of Execution for Functions

	4 Evaluation
	4.1 Workloads
	4.2 Metrics
	4.3 Setup
	4.4 Results

	5 Conclusion
	References

