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Abstract: A cloud provider is a company that offers some component of cloud computing – typically 

Infrastructure as a Service (IaaS), Software as a Service (SaaS) or Platform as a Service (PaaS) – to other 

businesses or individuals. Ever Cloud storage services have become commercially popular due to their 

overwhelming advantages. To provide ubiquitous always-on access, a cloud service provider (CSP) 

maintains multiple replicas for each piece of data on geographically distributed servers. A key problem of 

using the replication technique in clouds is that it is very expensive to achieve strong consistency on a 

worldwide scale. In this paper, we first present a novel consistency as a service (CaaS) model, which 

consists of a large data cloud and multiple small audit clouds. In the CaaS model, a data cloud is 

maintained by a CSP, and a group of users that constitute an audit cloud can verify whether the data cloud 

provides the promised level of consistency or not. We propose a two-level auditing architecture, which 

only requires a loosely synchronized clock in the audit cloud. Then, we design algorithms to quantify the 

severity of violations with two metrics: the commonality of violations, and the staleness of the value of a 

read. Finally, we devise a heuristic auditing strategy (HAS) to reveal as many violations as possible. 

Extensive experiments were performed using a combination of simulations and real cloud deployments to 

validate HAVE. 

Keywords: Cloud storage, consistency as a service (CaaS), Two-level auditing, heuristic auditing 

strategy (HAS). 

I. INTRODUCTION 

Ever since Cloud computing is a model for 

enabling ubiquitous network access to a shared pool 

of configurable computing resources. Cloud 

computing has become commercially popular, as it 

promises to guarantee scalability, elasticity, and 

high availability at a low cost [1], [2]. Guided by 

the trend of the everything-as-a-service (XaaS) 

model, data storages, virtualized infrastructure, 

virtualized platforms, as well as software and 

applications are being provided and consumed as 

services in the cloud. Cloud storage services can be 

regarded as a typical service in cloud computing, 

which Fig.1.An application that requires causal 

consistency; involves the delivery of data storage as 

a service, including database-like services and 

network attached storage, often billed on a utility 

computing basis, e.g., per gigabyte per month. 

Examples include Amazon SimpleDB1, Microsoft 

Azure storage2, and so on. By using the cloud 

storage services, the customers can access data 

stored in a cloud anytime and anywhere, using any 

device, without caring about a large amount of 

capital investment when deploying the underlying 

hardware infrastructures. To meet the promise of 

ubiquitous 24/7 access, the cloud service provider 

(CSP) stores data replicas on multiple 

geographically distributed servers. A key problem 

of using the replication technique in clouds is that it 

is very expensive to achieve strong consistency on a 
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worldwide scale, where a user is ensured to see the 

latest updates. Actually, mandated by the CAP 

principle3, many CSPs (e.g., Amazon S3) only 

ensure weak consistency, such as eventual 

consistency, for performance and high availability, 

where a user can read stale data for a period of 

time. The domain name system (DNS) is one of the 

most popular applications that implement eventual 

consistency. Updates to a name will not be visible 

immediately, but all clients are ensured to see them 

eventually. However, eventual consistency is not a 

catholicon for all applications. Especially for the 

interactive applications, stronger consistency 

assurance is of increasing importance. Consider the 

following scenario as shown in Fig. 1.  Suppose that 

Alice and Bob are cooperating on a project using a 

cloud storage service, where all of the related data 

is replicated to five cloud servers, CS1, . . ., CS5. 

After uploading a new version of the requirement 

analysis to a CS4, Alice calls Bob to download the 

latest version for integrated design. Here, after 

Alice calls Bob, the causal relationship [5] is 

established between Alice’s update and Bob’s read. 

Therefore, the cloud should provide causal 

consistency, which ensures that Alice’s update is 

committed to all of the replicas before Bob’s read. 

If the cloud provides only eventual consistency, 

then Bob is allowed to access an old version of the 

requirement analysis from CS5. In this case, the 

integrated design that is based on an old version 

may not satisfy the real requirements of customers. 

Actually, different applications have different 

consistency requirements. For example, mail 

services need monotonic read consistency and read-

your-write consistency, but social network services 

need causal consistency [6]. In cloud storage, 

consistency not only determines correctness but 

also the actual cost per transaction. In this paper, we 

present a novel consistency as a service (CaaS) 

model for this situation. The CaaS model consists 

of a large data cloud and multiple small audit 

clouds. The data cloud is maintained by a CSP, and 

an audit cloud consists of a group of users that 

cooperate on a job, e.g., a document or a project. A 

service level agreement (SLA) will be engaged 

between the data cloud and the audit cloud, which 

will stipulate what level of consistency the data 

cloud should provide, and how much (monetary or 

otherwise) will be charged if the data cloud violates 

the SLA. 

The implementation of the data cloud is opaque to 

all users due to the virtualization technique. Thus, it 

is hard for the users to verify whether each replica 

in the data cloud is the latest one or not. Inspired by 

the solution in [7], we allow the users in the audit 

cloud to verify cloud consistency by analyzing a 

trace of interactive operations. Unlike their work, 

we do not require a global clock among all users for 

total ordering of operations. A loosely synchronized 

clock is suitable for our solution. Specifically, we 

require each user to maintain a logical vector [8] for 

partial ordering of operations, and we adopt a two-

level auditing structure: each user can perform local 

auditing independently with a local trace of 

operations; periodically, an auditor is elected from 

the audit cloud to perform global auditing with a 

global trace of operations. Local auditing focuses 

on monotonic-read and read-your-write 

consistencies, which can be performed by a light-

weight online algorithm. Global auditing focuses on 

causal consistency, which is performed by 

constructing a directed graph. If the constructed 

graph is a directed acyclic graph (DAG), we claim 

that causal consistency is preserved. We quantify 

the severity of violations by two metrics for the 

CaaS model: commonality of violations and 

staleness of the value of a read, as in [9]. Finally, 

we propose a heuristic auditing strategy (HAS) 

which adds appropriate reads to reveal as many 

violations as possible. 

Our key contributions are as follows: 

1) We present a novel consistency as a service 

(CaaS) model, where a group of users that 

constitute an audit cloud can verify whether the 

data cloud provides the promised level of 

consistency or not. 

2) We propose a two-level auditing structure, which 

only requires a loosely synchronized clock for 

ordering operations in an audit cloud.  

3) We design algorithms to quantify the severity of 

violations with different metrics. 

4) We devise a heuristic auditing strategy (HAS) to 

reveal as many violations as possible. Extensive 

experiments were performed using a combination 

of simulations and real cloud deployments to 

validate HAVE. 

 

II. PROBLEM STATEMENT 

By using the cloud storage services, the 

customers can access data stored in a cloud anytime 

and anywhere using any device, without caring 

about a large amount of capital investment when 

deploying the underlying hardware infrastructures. 

The cloud service provider (CSP) stores data 

replicas on multiple geographically distributed 
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servers. Where a user can read stale data for a 

period of time. The domain name system (DNS) is 

one of the most popular applications that implement 

eventual consistency. Updates to a name will not be 

visible immediately, but all clients are ensured to 

see them eventually. The replication technique in 

clouds is that it is very expensive to achieve strong 

consistency. Hard to verify replica in the data cloud 

is the latest one or not. 

III. RELATED WORK 

In this paper, we presented a consistency as a 

service (CaaS) model and a two-level auditing 

structure to help users verify whether the cloud 

service provider (CSP) is providing the promised 

consistency, and to quantify the severity of the 

violations, if any. With the CaaS model, the users 

can assess the quality of cloud services and choose 

a right CSP among various candidates, e.g, the least 

expensive one that still provides adequate 

consistency for the users’ applications. Do not 

require a global clock among all users for total 

ordering of operations. The users can assess the 

quality of cloud services. Choose a right CSP. 

Among various candidates, e.g, the least expensive 

one that still provides adequate consistency for the 

users’ applications. 

  A cloud is essentially a large-scale 

distributed system where each piece of data is 

replicated on multiple   geographically distributed 

servers to achieve high availability and high 

performance. Thus, we first review the 

consistency models in distributed systems. Ref. 

[10], as a standard textbook, proposed two classes 

of consistency models: data-centric consistency 

and client-centric consistency. Data-centric 

consistency model considers the internal state of 

a storage system, i.e., how updates flow through 

the system and what guarantees the system can 

provide with respect to updates. Therefore, client-

centric consistency model concentrates on what 

specific customers want, i.e., how the customers 

observe data updates. Their work also describes 

different levels of consistency in distributed 

systems, from strict consistency to weak 

consistency. High consistency implies high cost and 

reduced availability. Ref. [11] states that strict 

consistency is never needed in practice, and is even 

considered harmful. In reality, mandated by the 

CAP protocol [3], [4], many distributed systems 

sacrifice strict consistency for high availability. 

Then, we review the work on achieving different 

levels of consistency in a cloud. Ref. [12] 

investigated the consistency properties provided by 

commercial clouds and made several useful 

observations. Existing commercial clouds usually 

restrict strong consistency guarantees to small 

datasets (Google’s Mega Store and Microsoft’s 

SQL Data Services), or provide only eventual 

consistency (Amazon’s simple DB and Google’s 

Big Table). Ref. [13] described several solutions to 

achieve different levels of consistency while 

deploying database applications on Amazon S3. In 

Ref. [14], the consistency requirements vary over 

time depending on actual availability of the data, 

and the authors provide techniques that make the 

system dynamically adapt to the consistency level 

by monitoring the state of the data. Ref. [15] 

proposed a novel consistency model that allows it 

to automatically adjust the consistency levels for 

different semantic data. Existing solutions can be 

classified into trace-based verifications [7], [9] and 

benchmark-based verifications [13]–[16].  Trace-

based verifications focus on three consistency 

semantics: safety, regularity, and atomicity, which 

are proposed by Lamport [10], and extended by 

Aiyer et al. [11]. A register is safe if a read that is 

not concurrent with any write returns the value of 

the most recent write, and a read that is concurrent 

with a write can return any value. A register is 

regular if a  

 

 

 

Fig. 2. Consistency as a service model. 

read that is not concurrent with any write returns 

the value of the most recent write, and a read that is 

concurrent with a write returns either the value of 

the most recent write, or the value of the concurrent 

write. A register is atomic if every read returns the 

value of the most recent write. Misra [2] is the first 

to present an algorithm for verifying whether the 

trace on a read/write register is atomic. Following 

his work, Ref. [7] proposed offline algorithms for 
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verifying whether a key-value storage system has 

safety, regularity, and atomicity properties 

by constructing a directed graph. Ref. [9] proposed 

an online verification algorithm by using the GK 

algorithm [13], and used different metrics to 

quantify the severity of violations. The main 

weakness of the existing trace-based verifications is 

that a global clock is required among all users. Our 

solution belongs to trace-based verifications. 

However, we focus on different consistency 

semantics in commercial cloud systems, where a 

loosely synchronized clock is suitable for our 

solution. Benchmark-based verifications focus on 

benchmarking staleness in a storage system. Both 

[16] and [7] evaluated consistency in Amazon’s S3, 

but showed different results. Ref. [16] used only 

one user to read data in the experiments, and 

showed that few inconsistencies exist in S3. Ref. 

[7] used multiple geographically-distributed users 

to read data, and found that S3 frequently violates 

monotonic-read consistency. The results of [7] 

justify our two-level auditing structure. Ref. [8] 

presents a client-centric benchmarking 

methodology for understanding eventual 

consistency in distributed key value storage 

systems. Ref. [1] assessed Amazon, Google, and 

Microsoft’s offerings, and showed that, in Amazon 

S3, consistency was sacrificed and only a weak 

consistency level known as, eventual consistency 

was achieved. 

 

 
 

Fig. 3. The update process of logical vector and 

physical vector. A black 

Solid circle denotes an event (read/write/send 

message/receive message), and 

the arrows from top to bottom denote the increase 

of physical time. 

The physical vector is updated in the same way as 

the logical vector, except that the user’s physical 

clock keeps increasing as time passes, no matter 

whether an event (read/write/send message/receive 

message) happens or not. The update process is as 

follows: All clocks are initialized with zero (for two 

vectors); The user increases his own physical clock 

in the physical vector continuously, and increases 

his own logical clock in the logical vector by one 

only when an event happens; Two vectors will be 

sent along with the message being sent. When a 

user receives a message, he updates each element in 

his vector with the maximum of the value in his 

own vector and the value in the received vector (for 

two vectors). Monotonic-read consistency. If a 

process reads the value of data K, any successive 

reads on data K by that process will 

 
 

Fig. 4. An application that has different consistency 

requirements. 

 

 

 
Always return that same value or a more recent 

value. Read-your-write consistency. The effect of a 

write by a process on data K will always be seen by 

a successive read on data K by the same process. 

Intuitively, monotonic-read consistency requires 

that a user must read either a newer value or the 

same value, and read your-write consistency 

requires that a user always reads his latest updates. 

To illustrate, let us consider the example in Fig.4. 
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Suppose that Alice often commutes between New 

York and Chicago to work, and the CSP maintains 

two replicas on cloud servers in New York and 

Chicago, respectively, to provide high availability. 

In Fig. 4, after reading Bob’s new report and 

revising this report in New York, Alice moves to 

Chicago. Alice must read Bob’s new version, i.e., 

the last update she ever saw in New York must 

have been propagated to the server in Chicago. 

Read-your-write consistency requires that, in 

Chicago, Alice must read her revision for the new 

report, i.e., her own last update issued in New York 

must have been propagated to the server in 

Chicago.  

IV. VERIFICATION OF CONSISTENCY 

PROPERTIES 

In this section, we first provide the algorithms 

for the two-level auditing structure for the CaaS 

model, and then analyze their effectiveness. Finally, 

we illustrate how to perform a garbage collection 

on UOTs to save space. Since the accesses of data 

with different keys are independent of each other, a 

user can group operations by key and then verify 

whether each group satisfies the promised level of 

consistency. In the remainder of this paper, we 

abbreviate read operations with R(a) and write 

operations with W(a). 

 

Local Consistency Auditing 

Local consistency auditing is an online 

algorithm (Alg. 1). In Alg. 1, each user will record 

all of his operations in his UOT. While issuing a 

read operation, the user will perform local 

consistency auditing independently. Let R(a) denote 

a user’s current read whose dictating write is W(a), 

W(b) denote the last write in the UOT, and R(c) 

denote the last read in the UOT whose dictating 

write is W(c). Read-your-write consistency is 

violated if W(a) happens before W(b), and 

monotonic-read consistency is violated if W(a) 

happens before W(c). Note that, from the value of a 

read, we can know the logical vector and physical 

vector of its dictating write. Therefore, we can 

order the dictating writes by their logical vectors. 

Global Consistency Auditing 

Global consistency auditing is an offline 

algorithm (Alg. 2). Periodically, an auditor will be 

elected from the audit cloud to perform global 

consistency auditing. In this case, all other users 

will send their UOTs to the auditor for obtaining a 

global trace of operations. After executing global 

auditing, the auditor will send auditing results as 

well as its vectors to all other users. 

 

4Let LV (ei)j denote user j’s logical clock in LV 

(ei). LV (e1) < 

LV (e2) if ∀ j[LV (e1)j ≤ LV (e2)j ] ∧  ∃ j[LV 

(e1)j < LV (e2)j ]. 

 

Algorithm 2 Global consistency auditing Each 

operation in the global trace is denoted by a vertex 

for any two operations op1 and op2 do 

     if op1 → op2 then 

                           A time edge is added from op1 to 

op2 

            if op1 = W(a), op2 = R(a), and two 

operations come 

              from different users then 

        A data edge is added from op1 to op2 

   if op1 = W(a), op2 = W(b), two operations come 

from 

   different users, and W(a) is on the route from 

W(b) to 

     R(b) then 

      A causal edge is added from op1 to op2 

Check whether the graph is a DAG by 

topological sorting 

 

 

 

 

 

 

 

 

Fig. 5. Sample graph constructed with Alg. 2. 

Given the auditor’s vectors, each user will know 

other users’ latest clocks up to global auditing. 

Inspired by the solution in [7], we verify 

consistency by constructing a directed graph based 

on the global trace. We claim that causal 

consistency is preserved if and only if the 

constructed graph is a directed acyclic graph 

(DAG). In Alg. 2, each operation is denoted by a 

vertex. Then, three kinds of directed edges are 

added by the following rules: 

1) Time edge. For operation op1 and op2, if 

op1 → op2,                then a directed edge is 

added from op1 to op2. 
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2) Data edge. For operations R(a) and W(a) that 

come from different users, a directed edge is 

added from W(a) to R(a). 

3) Causal edge. For operations W(a) and W(b) 

that come from different users, if W(a) is on 

the route from W(b) to R(b), then a directed 

edge is added from W(a) to W(b). 

 

Take the sample UOTs in Table I as an example. 

The graph constructed with Alg. 2 is shown in Fig. 

5. This graph is not a DAG. From Table I, we know 

that W(a) → W(d), as LV (W(a)) < LV(W(d)). 

Ideally, a user should first read the value of a and 

then d. However, user Clark first reads the value of 

d and then a, violating causal consistency. To 

determine whether a directed graph is a DAG or 

not, we can perform topological sorting [5] on the 

graph. Any DAG has at least one topological 

ordering, and the time complexity of topological 

sorting is O(V +E), where V is the number of 

vertexes and E is the number of edges in the graph. 

To reduce the running time of topological sorting, 

we can modify Alg. 2 as follows: First, before 

constructing the graph, we move all writes that do 

not have any dictated reads. This is because only 

reads can reveal violations by their values. Second, 

we move redundant time edges. For two operations 

op1 and op2, a time edge is added from op1 to op2 

only if op1 → op2 and there is no op3 that has the 

properties op1 → op3 and op3 → op2. 

 To provide the promised consistency, the 

data cloud should wait for a period of time to 

execute operations in the order of their logical 

vectors. For example, suppose that the logical 

vector of the latest write seen by the data cloud is < 

0, 1, 0 >. When it receives a read from Alice with 

logical vector < 2, 3, 0 >, the data cloud guesses 

that there may be a write with logical vector < 0, 2, 

0 > coming from Bob. To ensure causal 

consistency, the data cloud will wait σ time to 

commit Alice’s read, where σ is the maximal delay 

between servers in the data cloud. The maximal 

delay σ should also be written in the SLA. After 

waiting for σ + Δ time, where Δ is the maximal 

delay between the data cloud and the audit cloud, if 

the user still cannot get a response from the data 

cloud, or the response violates the promised 

consistency, he can claim that the data cloud 

violates the SLA. 

Garbage Collection 

In the auditing process, each user should 

keep all operations in his UOT. Without 

intervention, the size of the UOT would grow 

without bound. Furthermore, the communication 

cost for transferring the UOT to the auditor will be 

excessive. Therefore, we should provide a garbage 

collection mechanism which can delete unneeded 

records, while preserving the effectiveness of 

auditing.  

     In our garbage collection mechanism, each user 

can clear the UOT, keeping only his last read and 

last write, after each global consistency verification. 

This makes sure that a user’s last write and last read 

will always exist in his UOT. In local consistency 

auditing, if the dictating write of a new read does 

not exist in the user’s UOT and the dictating write 

is issued by the user, the user concludes that he has 

failed to read his last updates, and claims that read-

your-write consistency is violated. If the dictating 

write of this read happens before the dictating write 

of his last read recorded in the UOT, the user 

concludes that he has read an old value, and claims 

that monotonic-read consistency is violated. If the 

dictating write of a new read does not exist in the 

user’s UOT and the dictating write comes from 

other users, then a violation will be revealed by the 

auditor. In global consistency auditing, if there 

exists a read that does not have a dictating write, 

then the auditor concludes that the value of this read 

is too old, and claims that causal consistency is 

violated. 

Effectiveness 

    The effectiveness of the local consistency 

auditing algorithm is easy to prove. For monotonic-

read consistency, a user is required to read either 

the same value or a newer value. Therefore, if the 

dictating write of a new read happens before the 

dictating write of the last read, we conclude that 

monotonicread consistency is violated. For read-

your-write consistency, the user is required to read 

his latest write. Therefore, if the dictating write of a 

new read happens before his last write, we conclude 

that read-your-write consistency is violated. 

For causal consistency, we should prove that: (1) If 

the constructed graph is not a DAG, there must be a 

violation; (2) If the constructed graph is a DAG, 

there is no violation. It is easy to prove proposition 

(1). If a graph has a cycle, then there exists an 

operation that is committed before itself, which is 

impossible. We prove proposition (2) by 

contradiction. Assume that there is a violation when 

the graph is a DAG. A violation means that, given 

two writes W(a) and W(b) that have causal 

relationships W(a) → W(b), we have two reads R(b) 

→ R(a). According to our construction, there must 

be a time edge from W(a) to W(b), a time edge from 
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R(b) to R(a), a data edge from W(a) → R(a), and a 

data edge from W(b) → R(b). Therefore, there is a 

route W(a)W(b)R(b)W(a), where the source is the 

dictating write  W(a) and the destination is the 

dictated read R(a). Since there is a write W(b) on 

the route, according to our rule, a causal edge from 

W(b) to W(a) will be added. This will cause a cycle, 

and thus contradicts our assumption. 

V. CONCLUSION 

In this paper, with the CaaS model, the users can 

assess the quality of cloud services and choose a 

right CSP among various candidates, e.g, the least 

expensive one that still provides adequate 

consistency for the users’ applications .We have 

presented a consistency as a service (CaaS) model 

and a two-level auditing structure to help users 

verify whether the cloud service provider (CSP) is 

providing the promised consistency, and to quantify 

the severity of the violations, if any. For our future 

work, we will conduct a thorough theoretical study 

of consistency models in cloud computing. 
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