
79 | P a g e I J C S M V o l . 1 . I s s u e . 2

International Journal of Computer Science & Mechatronics
A peer reviewed International Journal | Articles available online www.ijcsm.in

©smsamspublications.com | Vol.1.Issue.2 2015

 Providing Secured Auditing and Consistency as a Service in Cloud

Abeed Shaik
1
, G Preethi

2
, Sayeed Yasin

3

1
M.Tech (CSE),

2
Assistant Professor,

3
Head of the Department,

Nimra College of Engineering and Technology, A.P., India.

Abstract: A cloud provider is a company that offers some component of cloud computing – typically

Infrastructure as a Service (IaaS), Software as a Service (SaaS) or Platform as a Service (PaaS) – to other

businesses or individuals. Ever Cloud storage services have become commercially popular due to their

overwhelming advantages. To provide ubiquitous always-on access, a cloud service provider (CSP)

maintains multiple replicas for each piece of data on geographically distributed servers. A key problem of

using the replication technique in clouds is that it is very expensive to achieve strong consistency on a

worldwide scale. In this paper, we first present a novel consistency as a service (CaaS) model, which

consists of a large data cloud and multiple small audit clouds. In the CaaS model, a data cloud is

maintained by a CSP, and a group of users that constitute an audit cloud can verify whether the data cloud

provides the promised level of consistency or not. We propose a two-level auditing architecture, which

only requires a loosely synchronized clock in the audit cloud. Then, we design algorithms to quantify the

severity of violations with two metrics: the commonality of violations, and the staleness of the value of a

read. Finally, we devise a heuristic auditing strategy (HAS) to reveal as many violations as possible.

Extensive experiments were performed using a combination of simulations and real cloud deployments to

validate HAVE.

Keywords: Cloud storage, consistency as a service (CaaS), Two-level auditing, heuristic auditing

strategy (HAS).

I. INTRODUCTION

Ever since Cloud computing is a model for

enabling ubiquitous network access to a shared pool

of configurable computing resources. Cloud

computing has become commercially popular, as it

promises to guarantee scalability, elasticity, and

high availability at a low cost [1], [2]. Guided by

the trend of the everything-as-a-service (XaaS)

model, data storages, virtualized infrastructure,

virtualized platforms, as well as software and

applications are being provided and consumed as

services in the cloud. Cloud storage services can be

regarded as a typical service in cloud computing,

which Fig.1.An application that requires causal

consistency; involves the delivery of data storage as

a service, including database-like services and

network attached storage, often billed on a utility

computing basis, e.g., per gigabyte per month.

Examples include Amazon SimpleDB1, Microsoft

Azure storage2, and so on. By using the cloud

storage services, the customers can access data

stored in a cloud anytime and anywhere, using any

device, without caring about a large amount of

capital investment when deploying the underlying

hardware infrastructures. To meet the promise of

ubiquitous 24/7 access, the cloud service provider

(CSP) stores data replicas on multiple

geographically distributed servers. A key problem

of using the replication technique in clouds is that it

is very expensive to achieve strong consistency on a

Research Article

ISSN: 2445-1910

80 | P a g e I J C S M V o l . 1 . I s s u e . 2

worldwide scale, where a user is ensured to see the

latest updates. Actually, mandated by the CAP

principle3, many CSPs (e.g., Amazon S3) only

ensure weak consistency, such as eventual

consistency, for performance and high availability,

where a user can read stale data for a period of

time. The domain name system (DNS) is one of the

most popular applications that implement eventual

consistency. Updates to a name will not be visible

immediately, but all clients are ensured to see them

eventually. However, eventual consistency is not a

catholicon for all applications. Especially for the

interactive applications, stronger consistency

assurance is of increasing importance. Consider the

following scenario as shown in Fig. 1. Suppose that

Alice and Bob are cooperating on a project using a

cloud storage service, where all of the related data

is replicated to five cloud servers, CS1, . . ., CS5.

After uploading a new version of the requirement

analysis to a CS4, Alice calls Bob to download the

latest version for integrated design. Here, after

Alice calls Bob, the causal relationship [5] is

established between Alice’s update and Bob’s read.

Therefore, the cloud should provide causal

consistency, which ensures that Alice’s update is

committed to all of the replicas before Bob’s read.

If the cloud provides only eventual consistency,

then Bob is allowed to access an old version of the

requirement analysis from CS5. In this case, the

integrated design that is based on an old version

may not satisfy the real requirements of customers.

Actually, different applications have different

consistency requirements. For example, mail

services need monotonic read consistency and read-

your-write consistency, but social network services

need causal consistency [6]. In cloud storage,

consistency not only determines correctness but

also the actual cost per transaction. In this paper, we

present a novel consistency as a service (CaaS)

model for this situation. The CaaS model consists

of a large data cloud and multiple small audit

clouds. The data cloud is maintained by a CSP, and

an audit cloud consists of a group of users that

cooperate on a job, e.g., a document or a project. A

service level agreement (SLA) will be engaged

between the data cloud and the audit cloud, which

will stipulate what level of consistency the data

cloud should provide, and how much (monetary or

otherwise) will be charged if the data cloud violates

the SLA.

The implementation of the data cloud is opaque to

all users due to the virtualization technique. Thus, it

is hard for the users to verify whether each replica

in the data cloud is the latest one or not. Inspired by

the solution in [7], we allow the users in the audit

cloud to verify cloud consistency by analyzing a

trace of interactive operations. Unlike their work,

we do not require a global clock among all users for

total ordering of operations. A loosely synchronized

clock is suitable for our solution. Specifically, we

require each user to maintain a logical vector [8] for

partial ordering of operations, and we adopt a two-

level auditing structure: each user can perform local

auditing independently with a local trace of

operations; periodically, an auditor is elected from

the audit cloud to perform global auditing with a

global trace of operations. Local auditing focuses

on monotonic-read and read-your-write

consistencies, which can be performed by a light-

weight online algorithm. Global auditing focuses on

causal consistency, which is performed by

constructing a directed graph. If the constructed

graph is a directed acyclic graph (DAG), we claim

that causal consistency is preserved. We quantify

the severity of violations by two metrics for the

CaaS model: commonality of violations and

staleness of the value of a read, as in [9]. Finally,

we propose a heuristic auditing strategy (HAS)

which adds appropriate reads to reveal as many

violations as possible.

Our key contributions are as follows:

1) We present a novel consistency as a service

(CaaS) model, where a group of users that

constitute an audit cloud can verify whether the

data cloud provides the promised level of

consistency or not.

2) We propose a two-level auditing structure, which

only requires a loosely synchronized clock for

ordering operations in an audit cloud.

3) We design algorithms to quantify the severity of

violations with different metrics.

4) We devise a heuristic auditing strategy (HAS) to

reveal as many violations as possible. Extensive

experiments were performed using a combination

of simulations and real cloud deployments to

validate HAVE.

II. PROBLEM STATEMENT

By using the cloud storage services, the

customers can access data stored in a cloud anytime

and anywhere using any device, without caring

about a large amount of capital investment when

deploying the underlying hardware infrastructures.

The cloud service provider (CSP) stores data

replicas on multiple geographically distributed

81 | P a g e I J C S M V o l . 1 . I s s u e . 2

servers. Where a user can read stale data for a

period of time. The domain name system (DNS) is

one of the most popular applications that implement

eventual consistency. Updates to a name will not be

visible immediately, but all clients are ensured to

see them eventually. The replication technique in

clouds is that it is very expensive to achieve strong

consistency. Hard to verify replica in the data cloud

is the latest one or not.

III. RELATED WORK

In this paper, we presented a consistency as a

service (CaaS) model and a two-level auditing

structure to help users verify whether the cloud

service provider (CSP) is providing the promised

consistency, and to quantify the severity of the

violations, if any. With the CaaS model, the users

can assess the quality of cloud services and choose

a right CSP among various candidates, e.g, the least

expensive one that still provides adequate

consistency for the users’ applications. Do not

require a global clock among all users for total

ordering of operations. The users can assess the

quality of cloud services. Choose a right CSP.

Among various candidates, e.g, the least expensive

one that still provides adequate consistency for the

users’ applications.

 A cloud is essentially a large-scale

distributed system where each piece of data is

replicated on multiple geographically distributed

servers to achieve high availability and high

performance. Thus, we first review the

consistency models in distributed systems. Ref.

[10], as a standard textbook, proposed two classes

of consistency models: data-centric consistency

and client-centric consistency. Data-centric

consistency model considers the internal state of

a storage system, i.e., how updates flow through

the system and what guarantees the system can

provide with respect to updates. Therefore, client-

centric consistency model concentrates on what

specific customers want, i.e., how the customers

observe data updates. Their work also describes

different levels of consistency in distributed

systems, from strict consistency to weak

consistency. High consistency implies high cost and

reduced availability. Ref. [11] states that strict

consistency is never needed in practice, and is even

considered harmful. In reality, mandated by the

CAP protocol [3], [4], many distributed systems

sacrifice strict consistency for high availability.

Then, we review the work on achieving different

levels of consistency in a cloud. Ref. [12]

investigated the consistency properties provided by

commercial clouds and made several useful

observations. Existing commercial clouds usually

restrict strong consistency guarantees to small

datasets (Google’s Mega Store and Microsoft’s

SQL Data Services), or provide only eventual

consistency (Amazon’s simple DB and Google’s

Big Table). Ref. [13] described several solutions to

achieve different levels of consistency while

deploying database applications on Amazon S3. In

Ref. [14], the consistency requirements vary over

time depending on actual availability of the data,

and the authors provide techniques that make the

system dynamically adapt to the consistency level

by monitoring the state of the data. Ref. [15]

proposed a novel consistency model that allows it

to automatically adjust the consistency levels for

different semantic data. Existing solutions can be

classified into trace-based verifications [7], [9] and

benchmark-based verifications [13]–[16]. Trace-

based verifications focus on three consistency

semantics: safety, regularity, and atomicity, which

are proposed by Lamport [10], and extended by

Aiyer et al. [11]. A register is safe if a read that is

not concurrent with any write returns the value of

the most recent write, and a read that is concurrent

with a write can return any value. A register is

regular if a

Fig. 2. Consistency as a service model.

read that is not concurrent with any write returns

the value of the most recent write, and a read that is

concurrent with a write returns either the value of

the most recent write, or the value of the concurrent

write. A register is atomic if every read returns the

value of the most recent write. Misra [2] is the first

to present an algorithm for verifying whether the

trace on a read/write register is atomic. Following

his work, Ref. [7] proposed offline algorithms for

82 | P a g e I J C S M V o l . 1 . I s s u e . 2

verifying whether a key-value storage system has

safety, regularity, and atomicity properties

by constructing a directed graph. Ref. [9] proposed

an online verification algorithm by using the GK

algorithm [13], and used different metrics to

quantify the severity of violations. The main

weakness of the existing trace-based verifications is

that a global clock is required among all users. Our

solution belongs to trace-based verifications.

However, we focus on different consistency

semantics in commercial cloud systems, where a

loosely synchronized clock is suitable for our

solution. Benchmark-based verifications focus on

benchmarking staleness in a storage system. Both

[16] and [7] evaluated consistency in Amazon’s S3,

but showed different results. Ref. [16] used only

one user to read data in the experiments, and

showed that few inconsistencies exist in S3. Ref.

[7] used multiple geographically-distributed users

to read data, and found that S3 frequently violates

monotonic-read consistency. The results of [7]

justify our two-level auditing structure. Ref. [8]

presents a client-centric benchmarking

methodology for understanding eventual

consistency in distributed key value storage

systems. Ref. [1] assessed Amazon, Google, and

Microsoft’s offerings, and showed that, in Amazon

S3, consistency was sacrificed and only a weak

consistency level known as, eventual consistency

was achieved.

Fig. 3. The update process of logical vector and

physical vector. A black

Solid circle denotes an event (read/write/send

message/receive message), and

the arrows from top to bottom denote the increase

of physical time.

The physical vector is updated in the same way as

the logical vector, except that the user’s physical

clock keeps increasing as time passes, no matter

whether an event (read/write/send message/receive

message) happens or not. The update process is as

follows: All clocks are initialized with zero (for two

vectors); The user increases his own physical clock

in the physical vector continuously, and increases

his own logical clock in the logical vector by one

only when an event happens; Two vectors will be

sent along with the message being sent. When a

user receives a message, he updates each element in

his vector with the maximum of the value in his

own vector and the value in the received vector (for

two vectors). Monotonic-read consistency. If a

process reads the value of data K, any successive

reads on data K by that process will

Fig. 4. An application that has different consistency

requirements.

Always return that same value or a more recent

value. Read-your-write consistency. The effect of a

write by a process on data K will always be seen by

a successive read on data K by the same process.

Intuitively, monotonic-read consistency requires

that a user must read either a newer value or the

same value, and read your-write consistency

requires that a user always reads his latest updates.

To illustrate, let us consider the example in Fig.4.

83 | P a g e I J C S M V o l . 1 . I s s u e . 2

Suppose that Alice often commutes between New

York and Chicago to work, and the CSP maintains

two replicas on cloud servers in New York and

Chicago, respectively, to provide high availability.

In Fig. 4, after reading Bob’s new report and

revising this report in New York, Alice moves to

Chicago. Alice must read Bob’s new version, i.e.,

the last update she ever saw in New York must

have been propagated to the server in Chicago.

Read-your-write consistency requires that, in

Chicago, Alice must read her revision for the new

report, i.e., her own last update issued in New York

must have been propagated to the server in

Chicago.

IV. VERIFICATION OF CONSISTENCY

PROPERTIES

In this section, we first provide the algorithms

for the two-level auditing structure for the CaaS

model, and then analyze their effectiveness. Finally,

we illustrate how to perform a garbage collection

on UOTs to save space. Since the accesses of data

with different keys are independent of each other, a

user can group operations by key and then verify

whether each group satisfies the promised level of

consistency. In the remainder of this paper, we

abbreviate read operations with R(a) and write

operations with W(a).

Local Consistency Auditing

Local consistency auditing is an online

algorithm (Alg. 1). In Alg. 1, each user will record

all of his operations in his UOT. While issuing a

read operation, the user will perform local

consistency auditing independently. Let R(a) denote

a user’s current read whose dictating write is W(a),

W(b) denote the last write in the UOT, and R(c)

denote the last read in the UOT whose dictating

write is W(c). Read-your-write consistency is

violated if W(a) happens before W(b), and

monotonic-read consistency is violated if W(a)

happens before W(c). Note that, from the value of a

read, we can know the logical vector and physical

vector of its dictating write. Therefore, we can

order the dictating writes by their logical vectors.

Global Consistency Auditing

Global consistency auditing is an offline

algorithm (Alg. 2). Periodically, an auditor will be

elected from the audit cloud to perform global

consistency auditing. In this case, all other users

will send their UOTs to the auditor for obtaining a

global trace of operations. After executing global

auditing, the auditor will send auditing results as

well as its vectors to all other users.

4Let LV (ei)j denote user j’s logical clock in LV

(ei). LV (e1) <

LV (e2) if ∀ j[LV (e1)j ≤ LV (e2)j] ∧ ∃ j[LV

(e1)j < LV (e2)j].

Algorithm 2 Global consistency auditing Each

operation in the global trace is denoted by a vertex

for any two operations op1 and op2 do

 if op1 → op2 then

 A time edge is added from op1 to

op2

 if op1 = W(a), op2 = R(a), and two

operations come

 from different users then

 A data edge is added from op1 to op2

 if op1 = W(a), op2 = W(b), two operations come

from

 different users, and W(a) is on the route from

W(b) to

 R(b) then

 A causal edge is added from op1 to op2

Check whether the graph is a DAG by

topological sorting

Fig. 5. Sample graph constructed with Alg. 2.

Given the auditor’s vectors, each user will know

other users’ latest clocks up to global auditing.

Inspired by the solution in [7], we verify

consistency by constructing a directed graph based

on the global trace. We claim that causal

consistency is preserved if and only if the

constructed graph is a directed acyclic graph

(DAG). In Alg. 2, each operation is denoted by a

vertex. Then, three kinds of directed edges are

added by the following rules:

1) Time edge. For operation op1 and op2, if

op1 → op2, then a directed edge is

added from op1 to op2.

84 | P a g e I J C S M V o l . 1 . I s s u e . 2

2) Data edge. For operations R(a) and W(a) that

come from different users, a directed edge is

added from W(a) to R(a).

3) Causal edge. For operations W(a) and W(b)

that come from different users, if W(a) is on

the route from W(b) to R(b), then a directed

edge is added from W(a) to W(b).

Take the sample UOTs in Table I as an example.

The graph constructed with Alg. 2 is shown in Fig.

5. This graph is not a DAG. From Table I, we know

that W(a) → W(d), as LV (W(a)) < LV(W(d)).

Ideally, a user should first read the value of a and

then d. However, user Clark first reads the value of

d and then a, violating causal consistency. To

determine whether a directed graph is a DAG or

not, we can perform topological sorting [5] on the

graph. Any DAG has at least one topological

ordering, and the time complexity of topological

sorting is O(V +E), where V is the number of

vertexes and E is the number of edges in the graph.

To reduce the running time of topological sorting,

we can modify Alg. 2 as follows: First, before

constructing the graph, we move all writes that do

not have any dictated reads. This is because only

reads can reveal violations by their values. Second,

we move redundant time edges. For two operations

op1 and op2, a time edge is added from op1 to op2

only if op1 → op2 and there is no op3 that has the

properties op1 → op3 and op3 → op2.

 To provide the promised consistency, the

data cloud should wait for a period of time to

execute operations in the order of their logical

vectors. For example, suppose that the logical

vector of the latest write seen by the data cloud is <

0, 1, 0 >. When it receives a read from Alice with

logical vector < 2, 3, 0 >, the data cloud guesses

that there may be a write with logical vector < 0, 2,

0 > coming from Bob. To ensure causal

consistency, the data cloud will wait σ time to

commit Alice’s read, where σ is the maximal delay

between servers in the data cloud. The maximal

delay σ should also be written in the SLA. After

waiting for σ + Δ time, where Δ is the maximal

delay between the data cloud and the audit cloud, if

the user still cannot get a response from the data

cloud, or the response violates the promised

consistency, he can claim that the data cloud

violates the SLA.

Garbage Collection

In the auditing process, each user should

keep all operations in his UOT. Without

intervention, the size of the UOT would grow

without bound. Furthermore, the communication

cost for transferring the UOT to the auditor will be

excessive. Therefore, we should provide a garbage

collection mechanism which can delete unneeded

records, while preserving the effectiveness of

auditing.

 In our garbage collection mechanism, each user

can clear the UOT, keeping only his last read and

last write, after each global consistency verification.

This makes sure that a user’s last write and last read

will always exist in his UOT. In local consistency

auditing, if the dictating write of a new read does

not exist in the user’s UOT and the dictating write

is issued by the user, the user concludes that he has

failed to read his last updates, and claims that read-

your-write consistency is violated. If the dictating

write of this read happens before the dictating write

of his last read recorded in the UOT, the user

concludes that he has read an old value, and claims

that monotonic-read consistency is violated. If the

dictating write of a new read does not exist in the

user’s UOT and the dictating write comes from

other users, then a violation will be revealed by the

auditor. In global consistency auditing, if there

exists a read that does not have a dictating write,

then the auditor concludes that the value of this read

is too old, and claims that causal consistency is

violated.

Effectiveness

 The effectiveness of the local consistency

auditing algorithm is easy to prove. For monotonic-

read consistency, a user is required to read either

the same value or a newer value. Therefore, if the

dictating write of a new read happens before the

dictating write of the last read, we conclude that

monotonicread consistency is violated. For read-

your-write consistency, the user is required to read

his latest write. Therefore, if the dictating write of a

new read happens before his last write, we conclude

that read-your-write consistency is violated.

For causal consistency, we should prove that: (1) If

the constructed graph is not a DAG, there must be a

violation; (2) If the constructed graph is a DAG,

there is no violation. It is easy to prove proposition

(1). If a graph has a cycle, then there exists an

operation that is committed before itself, which is

impossible. We prove proposition (2) by

contradiction. Assume that there is a violation when

the graph is a DAG. A violation means that, given

two writes W(a) and W(b) that have causal

relationships W(a) → W(b), we have two reads R(b)

→ R(a). According to our construction, there must

be a time edge from W(a) to W(b), a time edge from

85 | P a g e I J C S M V o l . 1 . I s s u e . 2

R(b) to R(a), a data edge from W(a) → R(a), and a

data edge from W(b) → R(b). Therefore, there is a

route W(a)W(b)R(b)W(a), where the source is the

dictating write W(a) and the destination is the

dictated read R(a). Since there is a write W(b) on

the route, according to our rule, a causal edge from

W(b) to W(a) will be added. This will cause a cycle,

and thus contradicts our assumption.

V. CONCLUSION

In this paper, with the CaaS model, the users can

assess the quality of cloud services and choose a

right CSP among various candidates, e.g, the least

expensive one that still provides adequate

consistency for the users’ applications .We have

presented a consistency as a service (CaaS) model

and a two-level auditing structure to help users

verify whether the cloud service provider (CSP) is

providing the promised consistency, and to quantify

the severity of the violations, if any. For our future

work, we will conduct a thorough theoretical study

of consistency models in cloud computing.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R.

Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al., ―A

view of cloud computing,‖ Commun. ACM, vol. 53,

no. 4, 2010.

[2] P. Mell and T. Grance, ―The NIST definition of

cloud computing (draft),‖

NIST Special Publication 800-145 (Draft), 2011.

[3] E. Brewer, ―Towards robust distributed

systems,‖ in Proc. 2000 ACM PODC.

[4] ——, ―Pushing the CAP: strategies for

consistency and availability,‖ Computer, vol. 45,

no. 2, 2012.

[5] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and

P. Hutto, ―Causal memory: definitions,

implementation, and programming,‖ Distributed

Computing, vol. 9, no. 1, 1995.

[6] W. Lloyd, M. Freedman, M. Kaminsky, and D.

Andersen, ―Don’t settle for eventual: scalable

causal consistency for wide-area storage with

COPS,‖ in Proc. 2011 ACM SOSP.

[7] E. Anderson, X. Li, M. Shah, J. Tucek, and J.

Wylie, ―What consistency does your key-value

store actually provide,‖ in Proc. 2010 USENIX

HotDep.

[8] C. Fidge, ―Timestamps in message-passing

systems that preserve the partial ordering,‖ in Proc.

1988 ACSC.

[9] W. Golab, X. Li, and M. Shah, ―Analyzing

consistency properties for fun and profit,‖ in Proc.

2011 ACM PODC.

[10] A. Tanenbaum and M. Van Steen, Distributed

Systems: Principles and Paradigms. Prentice Hall

PTR, 2002.

[11] W. Vogels, ―Data access patterns in the

Amazon.com technology platform,‖ in Proc. 2007

VLDB.

[12] ——, ―Eventually consistent,‖ Commun. ACM,

vol. 52, no. 1, 2009.

 [13] M. Brantner, D. Florescu, D. Graf, D.

Kossmann, and T. Kraska, ―Building a database on

S3,‖ in Proc. 2008 ACM SIGMOD.

[14] T. Kraska, M. Hentschel, G. Alonso, and D.

Kossmann, ―Consistency rationing in the cloud: pay

only when it matters,‖ in Proc. 2009 VLDB.

[15] S. Esteves, J. Silva, and L. Veiga, ―Quality-of-

service for consistency of data geo-replication in

cloud computing,‖ Euro-Par 2012 Parallel

Processing, vol. 7484, 2012.

[16] H. Wada, A. Fekete, L. Zhao, K. Lee, and A.

Liu, ―Data consistency properties and the trade-offs

in commercial cloud storages: the consumers’

perspective,‖ in Proc. 2011 CIDR.

