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Abstract: With the advent of Cloud Computing, Big Data management has become a
fundamental challenge during the deployment and operation of distributed highly available and
fault-tolerant storage systems such as the HBase extensible record-store. These systems can
provide support for geo-replication, which comes with the issue of data consistency among
distributed sites. In order to offer a best-in-class service to applications, one wants to maximise
performance while minimising latency. In terms of data replication, that means incurring in as
low latency as possible when moving data between distant data centres. Traditional consistency
models introduce a significant problem for systems architects, which is specially important to
note in cases where large amounts of data need to be replicated across wide-area networks.
In such scenarios it might be suitable to use eventual consistency, and even though not
always convenient, latency can be partly reduced and traded for consistency guarantees so that
data-transfers do not impact performance. In contrast, this work proposes a broader range of
data semantics for consistency while prioritising data at the cost of putting a minimum latency
overhead on the rest of non-critical updates. Finally, we show how these semantics can help
in finding an optimal data replication strategy for achieving just the required level of data
consistency under low latency and a more efficient network bandwidth utilisation.
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1 Introduction

Distributed systems in general, rely on geo-located
infrastructures around the globe (Nygren et al., 2010).
This is due to their replicated built-in nature, which
provides highly available and consistent data at good
performance levels. In particular, the Cloud Computing
model has widely embraced that idea, and proven to be very
convenient for users and providers willing to deploy and
manage large clusters of machines with such on-demand
services that promise the best possible scalability and
performance.

On the other hand, with large amounts of information
requiring to be consistent while highly available, there is a
continuous need to find suitable workarounds to the early
problem stated in the CAP theorem (Gilbert and Lynch,
2002). Brewer stated that it was not possible to ensure
the three of these properties in a distributed system all
at once (consistency, availability and partition tolerance).
In this sense applications were traditionally compromising
and choosing between two out of those three. More often
this trade-off was a matter of a binary choice among data
consistency or availability, assuming partition tolerance was
a must due to failures in the network. Although possible,
partitions are actually rare enough to give up entirely
either consistency or availability first of all. Therefore, this
trade-off later evolved into a discussion about consistency
versus latency, more formally defined in PACELC (Abadi,
2012). To understand the meaning of that trade-off, one
can think about how strong and eventual implementations
of consistency differ in the way they replicate data,
synchronous or asynchronously respectively. To tackle that,
there is an ongoing wave of research efforts around that
area for ensuring fully strong consistent geo-replicated
data storage without giving up on availability. In that
regard, for instance Google recently released a yet more
robust geo-replicated storage system for fulfillment of such
extreme needs (Corbett et al., 2012). All that comes at
the extra cost of implementing several synchronisation
techniques on top of each other such as atomic schema
changes and extended clocks accounting for uncertainty.

Therefore, the key is to understand how to keep
such distributed systems scalable while still delivering
good performance to applications. These architectural
requirements may change from application to application,
and so will their end goals. For instance, today each
non-relational database optimises its architecture with a
particular goal in mind and therein considers also different
trade-offs. For instance Cassandra (Lakshman and Malik,

2010) quorum approach can provide more consistency at the
expense of more latency as well, as it will need to update a
majority of replicas prior to starting reading new data from
any of them. While this can reduce data inconsistencies
and staleness, it is also important to reduce latency while
providing a sufficiently strong level of consistency that
caters for all types of applications and data semantics.
In practice, that means replicating data across geo-located
data centers without incurring into long network delays
and optimising bandwidth utilisation (García-Recuero et al.,
2013).

There are a number of existing systems where data
semantics are analysed in order to provide operations with
faster (eventual) or slower (stronger) consistency without
compromising performance (Li et al., 2012). In some,
causal serialisation and therefore commutative updates
are provided also based on data semantics, but require
redesigning application data types (Shapiro et al., 2011) or
intercepting and reflecting APIs via middleware (Esteves
et al., 2012). Unlike linearisability, eventual consistency
does work well for systems with shared distributed data that
is often queried and/or updated. That is because updates can
be performed on any replicas at any given time (Burckhardt
et al., 2012). Most systems implement eventual consistency,
in order to avoid expensive synchronous operations across
wide area networks, while still maintaining data consistent
through low latency operations in large geo-located
deployments.

HBase is a well-known and widely deployed open
source extensible record data-store (Cattell, 2011), written
and inspired on the idea of BigTable (Chang et al.,
2008), which targets the management of large amounts of
information. HBase provides eventual consistency through
replication between sites (inter-cluster). Eventuality is
therefore the promise and for that purpose a write-ahead log
is maintained.

In this paper, we outline the advantages of applying
a quality-of-service (QoS) to data replication, namely
quality-of-data (QoD), as described in García-Recuero et al.
(2013). Therefore, we will refer to it as QoD from this
point onward. The concept is implemented for HBase, and
targeting applications which require stonger levels of data
consistency than just eventual, while being highly-replicated
and available. Previous work in the area, such as Snapshot
Isolation techniques (Sovran et al., 2011), work within
but not across data centers. In several other models,
bounded consistency is modelled based on generality but
not practicality (Yu and Vahdat, 2001). We find the latter
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to be more useful to applications, as stated in Alvaro et al.
(2013).

1.1 Contributions

The main contributions here focus on what other
consistency properties can No-SQL data stores such as
HBase provide when geographically distributed during
replication. Using a data-centric based approach, such as
QoD, enables application developers to consider semantics
of updates in a storage system and tag them for replication
in a self-contained manner. This work therefore applies that
concept into HBase as a first use case.

We offer custom levels of consistency guarantees to
applications, geared with data semantics and driven towards
bandwidth resource optimisation. Therefore, the behaviour
of the system can be tuned and the data semantics become
the key decision-maker of a more efficient consistency
paradigm for geo-located data stores. This is very relevant
for Big Data stores such as HBase, where some eventually
replicated updates might be necessary earlier than others.
Unlike a uniform processing of updates during replication,
with a QoD in place, one can aim at satisfying a
more fine-grained data consistency and delivery model.
Interestingly, service level objective (SLOs) management
have also been proposed for HBase, but in order to handle
application multi-tenancy performance (Wang et al., 2012).

On the other hand, we use QoD so we can perform
more functional and reliable decisions from the data
storage layer upwards in order to fulfil the needs of
consolidated application workloads. This is a step forward
from the strictly eventual or strong consistency model
in most cross-site replicated storage deployments. And
consequently, shall evolve into more flexible consistency
models for Big Data management. Our implementation
provides several levels of data consistency, namely
QoD-consistency fulfillment. This is used to ensure
consistency among a group of updates as they become
available to applications. For that, the value of one, several
or a combination of the three dimensions of the vector-field
consistency model in (Veiga et al., 2010) can be used.

The vector-field model defines the following
data-semantics: K (θ, σ, ν), representing Time, Sequence
and Value respectively. To realise our consistency
guarantees, we extend HBase client libraries in order to
provide grouping of operations during replication, where
each grouping can support the required level of consistency:
ANY, IMMEDIATE, or even with a specific-custom bound
on data-consistency.

1.2 Roadmap

In the next sections of the article, we offer a brief overview
of fundamental consistency models and background work in
this well-studied area of distributed systems, having special
focus on the concept of eventual versus strong consistency,
and what possible variations of the two exist in the middle
of the spectrum. As an intermediate approach, we position

QoD, applied to HBase leveraging the aforementioned
three-dimensional vector-field model.

The rest of the article is organised as follows: related
work in Section 2, our HBase extension architecture in
Section 3, the implementation details in Section 4, and
evaluation in Section 5. The evaluation results show that
from the architectural point of view our solution integrates
well in HBase and provides the intended data guarantees.
Finally, with Section 6 we conclude. And, in Section 7, we
point to some future hints for Cloud Computing regarding
Big Data management.

2 Background and related work

The architecture of HBase is inspired in previous work
at Google, BigTable (Chang et al., 2008), a distributed,
persistent and multi-dimensional sorted map. HBase is
being used for instance at Facebook data centres for
holding and managing the storage of messages and user
data, as in partial replacement of Cassandra (Lakshman
and Malik, 2010). Cassandra offers replica-set consistency
tuning, but not divergence bounded consistency regarding
data semantics. In geo-replicated scenarios, HBase provides
eventual guarantees to data consistency through remote
procedure call (RPC) mechanisms and only inside of a
same cluster location strong consistency is supported (Aiyer
et al., 2012).

Eventual consistency might be sufficient in most
cases. Although, complex applications require stronger
consistency guarantees and can be difficult to manage.
Due to that, there have been recent research efforts to
address these shortcomings in geo-replicated data centers,
with Google developing earlier in 2012 an evolution of
BigTable that provides external consistency through atomic
clocks for instance, Spanner (Corbett et al., 2012). This
makes applications highly-available while ensuring as much
synchronicity among distant replicas as possible and more
importantly, atomic schema changes. Data locality is also
an important feature for partitioning of data across multiple
sites. Spanner does use Paxos for strong guarantees on
replicas.

Strong consistency does not work well for systems
where we need to achieve low latency. So the reason
for most systems to use eventual consistency is mostly to
avoid expensive synchronous operations across wide area
networks. In other cases such as COPS (Lloyd et al.,
2011) causality is guaranteed, although it does not guarantee
the quality of data by bounding divergence, which can
still lead to outdated values being read. Previous inspiring
work from Yu and Vahdat (2000) also shows divergence
bounding approaches to be feasible in that regard. On that
topic, Kraska et al. (2009) proposed rationing the level of
consistency on data, rather than transactions. The missing
gap in all cases, and what mainly differentiates them from
this work, is taking into account semantics that are based in
data itself.
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Systems such as PNUTS from Yahoo (Cooper et al.,
2008), introduced a novel approach for consistency on
a per-record basis, but not explicitly stating QoD levels.
Even though, it became clear that it is possible to provide
low latency during heavy replication operations for large
web scale applications. As in our work, they provide
finer-grained guarantees on certain data, so in other words,
new updates are not always seen right away by the clients
(which is also the case with QoD), but only if strictly
necessary. Keeping that in mind, it is not mandatory for
applications to be highly-available and consistent both at
once. That is applicable to our use case. Yahoo made the
point for eventual consistency not being enough, and as
in the case of social networks, stale replicas can introduce
privacy issues if not handled adequately. We propose using
grouping of operations within QoD in order to resolve the
consistency issues among blocks of updates, and their more
efficient and straightforward management.

3 Consistency architecture

QoD stands for quality-of-data consistency, which applied
to a cloud data store such as HBase, allows entries to be
evaluated and sorted in a priority queue prior to replication.
That is achieved by scheduling data-transfers according to
their priority, in the context of the application requirements.
The unit of replication, includes HBase column family
(used for instance to organise data from different business
users of the application). For experimental purposes we
also define a data-container that extends that notion.
Data-containers are simply a concatenation of existing
row-fields into the data store schema where to apply data
semantics (e.g., identified as tableName:columnFamily).

In this context, solutions like FIFO (Data Structures I
and Program Design, 1984) queues can be effective when
treating all incoming items in an equal manner (e.g., priority
in starting to propagate and take items out of the queue).
Unlike the previous approach, our implementation uses a
priority queue that resembles deadlines as defined in the
earliest deadline first (EDF) algorithm by Liu and Layland
(1973). EDF sets priorities based on the task absolute
deadline. Basically, the ealier the deadline, the higher the
priority. There is actually, recent research regarding HBase
with EDF (Zhang et al., 2013) but unlike that approach,
our intuition mostly relies on the use of data semantics
applied to the replication mechanisms into HBase. To the
best of our knowledge, ours is the first work in the area
which takes into consideration system-round knowledge
about data semantics in order to decide which items are
most relevant to applications, so replicated first. This is
a very useful consideration if we take into account that
we are talking about data, Big Data to be more specific,
and the implications of replication over wide-area networks
(a.k.a geo-replication). Facebook users suffer about 66%
stale reads on average (Wada et al., 2011), which suggests
to treat data according to its meaning during replication so
serving a just enough up to date version when reading it
next.

In order to achieve the aforementioned goals, our
solution focuses on data semantics and leverage them
through a vector-field consistency model, which results
into a sorted priority queue engine, namely QoD for
consistency. That allows for a combination of one or
several of the fields of the vector to act as actual
deadlines (always enforcing first the most restrictive
deadline among the deadlines concerned with a particular
column family or data-container). This is particularly
helpful in geo-replicated scenarios where data stores can
hardly provide strong consistency guarantees without losig
the benefits of eventuality. Solutions like Windows Azure,
claim to provide such strong consistency (Calder et al.,
2011) but at first, really seemed more to be a mixed of both,
eventual and strong (Calder and Atkinson, 2011), which
proves the burdens of dealing with consistency.

The parameters in the vector, defined as K(θ, σ, ν),
correspond to θ (data refreshing time interval), σ (maximum
number of fresh-data misses), and ν (maximum value
divergence in data inconsistency allowed) in each case.
They are the building blocks that define which consistency
priority is applied to each column family or data container
used. Vector-fields act as consistency bounds. Therefore,
client insertion of newer updates at one site involve a new
iteration at the QoD engine for first, evaluating the actual
values of the vector for the update in the given column
family or data container. And secondly, comparing them
with their existing maximum vector-bounds for determining
if replication must yet occur. If the maximum vector-bound
threshold since the last replicated version of the update is
reached, its priority is increased and therefore immediately
scheduled for propagation as well as the priority reset back
to its initial status.

The time constraint can be always validated after
every θ number of seconds, and the other two through
Algorithm 1 as updates arrive. For the work presented here
we use sequence (σ) as the main vector-field constraint
to showcase the model in practice. For this, we define a
set of customised data structures, which hold the values of
database row items due to be checked for replication on a
particular data container.

For instance, given actualK(θ, σ, ν) and containerMaxK
(0,1,0) belonging to column family c0, we can determine
updates assigned to that column family will only be
replicated once the following condition is satisfied:

actualK(σ) >= containerMaxK(σ)

In order to track and compare QoD fields (which act
as constraints during replication) against stored updates,
data containers are defined for the purpose, controlling
both current and maximum (then reset) bound values.
Therefore, a QoD percentage is relative to the updates
due to be propagated for a given vector-field combination
(e.g., using σ).
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Figure 1 HBase QoD high-level (see online version for colours)
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3.1 Typical distributed and replicated deployment

The underlying HDFS layer, is part of the HBase
architectural design, which has built-in properties derived
from it. In distributed clusters today Facebook (Harter et al.,
2014) is currently using HDFS together with HBase in order
to manage their messaging information across data centres.
That is because of the layered architecture of HBase and
its ability to handle both a short set of volatile data and
ever-growing data, that rarely gets accessed more than
once. In HBase, the WALEdit data structure can store data
temporarily before being replicated, or be helpful when
copying data between several HBase clusters. Originally the
eventual consistency model provided, allows updates and
insertions to be propagated asynchronously between clusters
and Zookeeper (Hunt et al., 2010) is used for storing their
positions in log files that hold the next log entry to be
shipped in HBase. Therefore, if we can control the edits to
be shipped, we can also decide what is replicated, when or
in other words, how often.

3.2 Extensions to the HBase internal mechanisms

The QoD algorithm (shown in Algorithm 1) uses but needs
to extend the WALEdit data structure for its purposes.
We do so in order to retain meaningful information that
supports the management of outgoing updates marked for
replication within the QoD framework. We extend HBase,

handling updates due to be replicated in a priority queue
according to the QoD specified for each of their data
containers. Thereafter, once the specified QoD threshold
is reached, the working thread in HBase, in the form of
Remote Procedure Call, collects and ships them as usual.

Algorithm 1 Simplified QoD algorithm using σ criteria
(with time and value would be the same or
similar) returns true means replicate

Require: containerId

Ensure: maxBound 6= 0 and controlBound 6= 0
1: while enforceQoD(containerId) do

2: if getMaxK(containerId) = 0 then

3: return true

4: else {getactualK(containerId)}
5: actualK(σ)← actualK(σ) + 1
6: if actualK(σ) ≥ containerMaxK(σ) then

7: actualK(σ)← 0
8: return true

9: else

10: return false

11: end if

12: end if

13: end while

A high-level view of the mechanisms introduced with QoD
are outlined in Figure 1, and it is based in a specific
QoD bound in each case. This is applied to a defined data
container in a per-user basis in this case. Replicating when
the QoD is reached means here, every three updates for
using σ in the case of QoD-1 for User A. Each second
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for the User D with QoD-2 of θ field instead; in this case
also showing the last-writer wins behaviour on the remote
side, user N, for a same propagating remote data container
value during replication. The architectural layout showcases
a scenario accounting for propagation of updates during
geo-replication.

3.3 Operation grouping

At the application level, it may be useful for HBase
clients to enforce the same consistency level on groups
of operations, despite the affected data containers possibly
having different QoD bounds associated. In other words,
there may be specific situations where write operations need
to be grouped so that they can be all handled with the
same consistency level and propagated atomically to slave
clusters (e.g., set of tightly-related log activities involved
with a new status update on Facebook).
For instance, publication of user status in social networks
is usually handled at eventual consistency, but if they
refer to new friends being added (e.g., an update to the
data container holding the friends of a user), they should
most likely be handled at a stronger consistency level to
ensure they become visible atomically, along with the list of
friends of the user, in respect to the semantics we describe
here.

In order not to violate QoD bounds and maintain
consistency guarantees, all data containers of operations
being grouped must be propagated either immediately after
the block execution, or when any of the QoD bounds
associated to the operations has been reached. When a block
is triggered for replication, all respective QoD bounds are
naturally reset.

To enable this behaviour we devised extending the
HBase client libraries to provide atomically consistent
blocks. Namely, adding two new methods to HTable
class in order to delimit the consistency blocks:
startConsistentBlock and endConsistentBlock. Each
block, through the method startConsistentBlock, can be
parameterised with one of the two options:

1 IMMEDIATE, which enforces stronger consistency for
the whole block of operations within itself.

2 ANY, which replicates groups of updates as a whole
and as soon as the most stringent (smaller) QoD
vector-field bound, associated with an operation inside
the block, is reached.

4 Implementation details

To achieve the goals earlier described, we describe how to
modify HBase libraries (HTable in particular). Regarding
grouping of operations, that will be addressed from the

source location into HBase before replication actually
occurs, so apart from the multi-row atomically defined
model in HBase, a more versatile system can also
provide atomically replicated updates beyond row-level
(e.g., column families or combinations of the fields
in a row in HBase). This work is also an informal
contribution which authors will aim to translate into a
more formal addition to the ongoing efforts in HBase
community for changing the Consistency model, ‘pluggable
replication framework’ and branch hbase-10070 at
https://github.com/enis/hbase/tree/hbase-10070.

HBase replication mechanisms are based in a write
ahead log (WAL), which is enabled in order to replicate
information between distant data centers, and Zookeeper
to keep track of the process and its state. The process
of replication is currently carried out asynchronously, so
there is not latency penalty for clients reading data and
other processing can be in the meantime done at servers.
Although, and since this process is not strongly consistent,
in write heavy applications, a slave could still have stale
data in the order of more than just seconds, and just until
the last updates commit to local disk.

In our implementation, we overcome these pitfalls with
a QoD approach, where we use a vector-model in order to
handle updates selectively, depending of their classification
and threshold in the online vector field (e.g., a maxBound
for field σ in the three dimensional vector K). Therefore,
we enforce on-demand delivery of updates at the remote
cluster in all cases. For write intensive applications, that
can be both beneficial in terms of reducing the maximum
bandwidth peak-usage, while still delivering data according
to application needs, and with improved semantics that take
into account application logic processing.

The module in Figure 2 shows the implementation
details introduced with QoD for consistency. We observe
the module integrates into the core of the chosen cloud
data store (HBase), intercepting incoming updates, and
processing them into a priority queue, which is defined to
store those for later replication to a given slave cluster.

Changing the logic of the shipping of edits in the
write-ahead log, this process is therefore performed now
according to the data semantics we define. Several data
structures are required, some of them existing in HBase,
as the WALEdit. That is in order to access different
data containers, that we later query, to determine where
and how to apply a given QoD at the column level
(e.g., tablename:columnFamily). The data is replicated once
we check the conditions shown in Algorithm 1 are met, and
replication is triggered if there is a match with the threshold
value in one, several or a combination of the existing
and defined vector-constraints in each case (e.g., σ). As
a remark then, the use of a QoD is also applicable for a
selection of updates based into a combination of any of the
fields from the three-dimensional vector, not just σ.
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Figure 2 QoD for consistency (see online version for colours)
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5 Simulation and evaluation

5.1 Overview

There has been extensive research with Consistency
management on Cloud data stores for achieving the
desired level of data synchronisations among distant data
centers and similarly data replicas. Although, there is
yet a fundamental aspect to cover in that spectrum
regarding consistency and response times for SLA-based
applications relying on distributed cloud storage systems.
Big Data processing aims at establishing how to handle high
volumes of information at large scale while still providing
applications with a consistent and on-time data delivery.
For that, several algorithms have been proposed in the area
of Consistency in distributed systems, for instance Shapiro
et al. (2011), and Lloyd et al. (2011). Also, in much earlier
works such as Tarr and Clarke (1998), it is already proposed
how an approximation to the idea of providing a wide range
of data semantics is therefore desirable and necessary in
several ranges of applications. In this sense, a QoD model
is able to support these specific needs.

It has been already verified and presented in other
reports and projects in the area of Hadoop, that a statically
defined replication level is in itself insufficient, which
therefore must be addressed and more efficiently adjusted
in order to keep up with the scheduling of tasks (Lie
et al., 2013). That is also related to the work here covered
within HBase, as HDFS is its storage layer. A workaround
on static replication constraints in HDFS and HBase is

offering and enforcing on-demand replication with QoD for
consistency. During evaluation of the model, a test-bed of
several HBase clusters has been deployed, having some
of them using the QoD engine enabled for consistency
between remote replicas, and others running a regular
implementation of HBase 0.94.8. All tests were conducted
using six machines with an Intel Core i7-2600K CPU at
3.40 GHz, 11,926 MB of available RAM memory, and
HDD 7200RPM SATA 6 Gb/s 32 MB cache, connected by
1 Gigabit LAN.

5.2 CPU micro-benchmarking of performance

We care about performance in terms of throughput and for
that, we use a micro-benchmark based on built-in UNIX
tools that shows how a given QoD does not highly impact
performance. As observed in Figure 7, the throughput of the
system itself is maintained during benchmarking of HBase
with QoD enabled. A minimal difference in the expected
throughput is concluded to be irrelevant mostly due to the
obtention of similar results during several rounds of running
the same input workload on the data store.

Next we conducted as shown in Figure 8, and dstat
(Wieers, 2013) presents, an experiment to monitor the CPU
usage using QoD for consistency. CPU consumption and
performance remains roughly the same and therefore stable
in the cluster machines as can be appreciated.
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5.3 Analysis of workload QoD performance with YCSB

In order to realise the impact of the architecture
modifications within HBase using a QoD, we define a set
of workloads that are in relation to the percentage of reads
and writes to an application as simulated in Yahoo Cloud
Service Benchmark (YCSB).

We test that then with built-in workloads from YCSB
plus a custom workload to intensively stress the data
store with a high number of writes. This is the way
updates in social networks target cloud data stores and as
previously mentioned, most of them are mainly suffering
from synchronisation issues regarding consistency of data
during changes and new incoming updates. Measurements
in regards to the following workloads and obtained results
are outlined in Figures 6 to 12.

Figure 9 shows three different sets of QoD for the same
workload (A).

YCSB workload A (R/W – 50/50)

• No QoD-consistency enforced.

• QoD-consistency fulfillment of σ = 0.5% of total
updates to be replicated.

• QoD-consistency fulfillment of σ = 2% of total
updates to be replicated.

During the execution of workload A, in Figure 9, the
highest peaks in replication traffic are observed without any
type of QoD consistency level, i.e. just using a regular
HBase cluster. This is due to the nature of eventual
consistency itself and the existing buffering mechanisms of
HBase for replication.

With a QoD enabled as shown in the other two
graphs, we rather control traffic of updates from being
unbounded to a limited size, and accordingly saving
resources’ utilisation, while suiting applications that require
smaller amounts of updates as they are only propagated as
a group, when they are just needed.

We observe that a higher QoD implies replication traffic
less often, although interactions reach high values on Bytes
as they need to send more data. Smaller QoD optimises
the usage of resources while sending priority updates more
frequently (this could be the case of wall posts in a social
network).

YCSB workload A modified (R/W – 0/100)

• No QoD-consistency enforced.

• QoD-consistency fulfillment of σ = 0.5% of total
updates to be replicated.

• QoD-consistency fulfillment of σ = 2% of total
updates to be replicated.

In Figure 10 we can see how a write intensive workload
performs enabling QoD. As expected, results correlate the
intuition in Figure 9 (please note the scale of the Y axis is
modified in order to show the relevant difference in Bytes
more accurately).

For smaller QoD (0.5%), overall we see lower peaks
in bandwidth usage than with plain HBase, as well as in
the following measurement used for QoD 2.0% (having
that one higher maximum peak values than the previous
QoD). Finally, HBase with no modifications shows a
much larger number of Bytes when coming to maximum
bandwidth consumption. Note we are not measuring, or
find relevant, in any of these scenarios, to realise savings
on average or total bandwidth usage (that would imply
avoiding the propagation of earlier updates to containers,
overwritten by subsequent modifications, as in state-transfer
systems (Veiga et al., 2010)). The main goal of the system
implementation is to have a way of controlling the usage
of several resources in a data center, storage and bandwidth
allocation. Also, to be able to leverage, and make more
agile, the trading of strong for eventual consistency with
a more robust atomic grouping of operations using vector
bounded data semantics.

YCSB – Workload B

• Read/update ratio: 95/5.

• Default data size: 1 KB records (10 fields, 100 bytes
each, plus key).

• Request distribution: zipfian.

• No QoD-consistency enforced.

• QoD-consistency fulfillment: σ = 10% of total
updates to be replicated.

• QoD-consistency fulfillment: σ = 20% of total
updates to be replicated.

Figure 11 shows the overall replication overhead with and
without QoD enabled, for a Read intensive workload. The
graph is significantly different from previous workloads
here presented in terms of updates being replicated. That
is due to the small fraction of writes in the workload,
when compared to the percentage of QoD bounds for
replication applied. If the QoD σ value was too high,
then the activity on the network would decrease for longer
periods, replicating updates rather later but in larger and
higher bandwidth consuming batches than with a lower
QoD. Therefore, increasing the amount of updates will
result in more network utilisation, but for this particular
workload, only a very limited amount of writes are going
through the QoD for consistency module as required.
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YCSB – Workload F

• Read/update ratio: 50/50.

• Default data size: 1 KB records (10 fields, 100 bytes
each, plus key).

• Request distribution: zipfian.

• No QoD-consistency enforced.

• QoD-consistency fulfillment: σ = 20% of total
updates to be replicated.

• QoD-consistency fulfillment: σ = 40% of total
updates to be replicated.

• QoD-consistency fulfillment: σ = 60% of total
updates to be replicated.

In the case of Figure 12, lower QoD values for σ slightly
affect the height of the peaks of network communication
during replication. This is due to the same reason as noted
before: a bound on data staleness also puts a limit on the
number of updates sent at the same time over the wire.
In the case of σ = 60%, the replication overhead is kept
acceptable and constant in respect to the previous with
σ = 40%. This is as well due to the number of updates
being issued running the workload, meaning that there is an
upper ceiling with such access pattern. There is no need or
advantage in batching more updates per second, unless the
number of operations for this particular workload increased.
Later on, we see how the QoD of σ = 0% (no-QoD in other
words) has higher bandwidth consumption per second as
expected.

5.4 Assessing data freshness

In order to assess data freshness, as observed by clients, a
set of clients is set up so that a client is writing to a master
cluster, and another reading from the slave. The writing
client inserts 10 blocks of 100 updates interleaved between
critical and non-critical into two different data containers
with different QoD bounds. Therefore, it can be observed
when, and which type of update, arrives at the destination
by checking their delivery timestamp. That is also based on
the data semantics offered by QoD for consistency.

5.4.1 Data arrival measured on sets of updates received

In Figure 3, we show how the latency varies by referring to
the update timestamps. Higher QoDs approximate critical
updates (in red) more to the beginning of the Timeline,
while non-critical (green) keep being moved towards
the right (later reading). We have therefore a better data

freshness metric, in terms of critical updates, by prioritising
them through our QoD for consistency engine. Critical
updates move closer to the beginning of the time-line as σ
bound in K vector increases, so that they actually receive
higher priority during the replication process.

The results in Figure 3 are followed by Figure 4, the
latter explains and validates the goal of grouping of critical
versus non-critical operations. What we observe is, on a
per-update basis, how the critical updates are favoured and
tagged for replication first. This is inline with both, the
intended implementation details, and the goal of providing
certain data depending to which applications earlier at all
given times.

5.4.2 Data arrival measured in a per update basis

In this setup there is a client writing to a master
HBase server using QoD for consistency, which writes
1,000 updates randomly mixed between critical and
non-critical. We are introducing a delay of 40 ms in
the network in order to emulate wide are network
operation: the delay is set between master and slave cluster
communication. For best readability, we are just showing a
subset of the updates sent over time, from client 1 to the
master cluster, and later read by client 2 from the replica at
the slave cluster.

In Figure 5 it is represented the arrival of non-critical
updates with different QoD applied for two different data
containers. It is important to note there are two types of
updates here, so for each QoD, one needs to take into
account that not every remaining update not represented
in this graph will exhibit the same behaviour; but
approximately, all non-critical should arrive later on, or near
the baseline of No-QoD while critical ones are prioritised.
The horizontal lines denote the logic of shipment of updates
once the QoD deadline expires, together.

Regarding maximum delay given the type of update,
non-critical updates have higher time-stamps than the others
and therefore arrive later as verified in Figure 5. In the
case of being critical actually they do get read earlier in
comparison to the baseline No-QoD (Figure 6) in most of
the cases.

Figure 6 highlights how more critical updates arrive
earlier in a per update basis over time. The larger is the
QoD ‘of the non-critical data container’, the earlier critical
updates are received by a slave cluster/data centre. The
more latency or network overhead there is, the higher this
difference appears to be. One could therefore trade-off on
how much sooner critical updates arrive when the QoD of
non-critical updates is relaxed.
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Figure 3 Freshness of updates with several QoD-consistency bounds (see online version for colours)
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Figure 4 Resulting flow of updates in a multi-site environment with HBase (see online version for colours)
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Figure 5 Impact of QoD in arrival time of non-critical updates (see online version for colours)
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Figure 6 Impact of QoD in arrival time of critical updates (see online version for colours)
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Figure 7 Throughput for several QoD configurations (see online version for colours)
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Figure 8 CPU usage over time with QoD enabled (see online version for colours)
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Figure 9 Bandwidth usage for Workload A with zipfian distribution, using 5M records using QoD bounds of 0.5 and 2%
in the σ of K (see online version for colours)
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Figure 10 Bandwidth usage for custom Workload with uniform distribution, using 5M records and QoD bounds of 0.5 and 2%
in the σ of K (see online version for colours)
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Figure 11 Bandwidth usage for Workload B using 500K operations in a total of 500K records using different QoD bounds
for σ in K (see online version for colours)
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Figure 12 Bandwidth usage for Workload F using 500K operations in a total of 500K records using different QoD bounds
for σ in K (see online version for colours)
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6 Conclusions

Throughput performance with HBase improves as the
number of resources increases. This has been realised in
Carstoiu et al. (2010). Despite of the continuous drop in
market prices regarding commodity hardware, it might not
always be possible for existing data center facilities to
dynamically adapt to the need of a growing population
of machines. Following that trend, we continue seeing as
of 2013, how large Internet companies such as Facebook
keep investing in modern infrastructures that can collocate
a high amount of resources across not just one, but several
sites.

In this article we have introduced a consistency and
replication mode for HBase that uses QoD to envision
a very well-defined goal: adaptive consistency than one

can tune in order to provide applications with just the
required and on time information. All that, while saving
on replication traffic and pursuing further improvements
in regards to geo-replication techniques in Distributed
Systems. That is, by defining boundaries through data
semantics in a data store unit of storage, namely container
(e.g. TableId:ColumnId, table name plus column family
name), priority to each update can be assessed, established
accordingly and used for replication under timely and
on-demand application requirements.

With the consistency semantics presented, one can
choose to trade-off short-timed consistency for wide
area network bandwidth, which will translate into
better bandwidth utilisation during peak-loads. This will
significantly help to reduce replication overhead between
distant data centers, in conditions where bandwidth
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becomes an issue due to workload multi-tenancy and/or
excessive latency in the network infrastructure. We
evaluated our implementation on top of two HBase separate
clusters.

The initial implementation is for HBase but can be
extended for other platforms such as MongoDB (currently
using Eventual consistency). This article brings insights
about how data stores of this new Big Data era will handle
data according to its semantics, whereas ultimate decision
making for Consistency might be best integrated at the
core of the system itself, avoiding middleware performance
overheads (Das et al., 2010). In our case, experimental
results indicate that we are able to maintain acceptable
and enough client throughput, while reducing latency high
percentiles, as well as optimise bandwidth usage. In the
future, we aim to conduct more experiments using several
other infrastructures from partner-institutions and public
Cloud providers such as Amazon EC2 once resources
become available.

7 Future quality-of-service in Cloud computing

7.1 Timeline consistency

From the point of view of Consistency, we believe
that data-semantics based solutions, as here introduced,
can be further developed for the provision of enhanced
and adaptive replication paradigms. This will provide
applications with just the required and consistent data at
each point in time, despite of any faults, partitions or
congestion in the underlying network fabric. Administrators
and developers can easily tune any of the vector fields
in the framework to be used as bounds, in order to
perform selective replication in a more controlled and
timely-fashion than typical eventually consistent approaches
(e.g., that being the case of asynchronous replication in data
stores such as HBase). Further enhancements can include
innovative machine learning techniques that are able to
classify data on-the-fly according to data usage properties
and/or in accordance to defined application consistency
needs.

7.2 QoS for Big Data management

When talking about QoS for data consistency, one should
take into account the characteristics of the data being
served; therefore, sites containing information with stricter
SLO requirements on data delivery should provide not only
the illusion of, but actually an accurate, accountable service
to end-users. This is the case for many cloud-based storage
providers, which promise to shape the future of Big Data.
Therefore, with storage just becoming a commodity and
large amounts of information available, there will be further
efforts in the industry to provide efficient yet different
quality of services to different customers, whereas the
quality of the data being served in terms of semantics, will
matter more than ever before.
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