
FaaS-Utility
FaaS-Utility: Tackling FaaS Cold Starts with

User-preference and QoS-driven Pricing

Henrique Santos, José Simão, Luís Veiga

GECON 2024 - 20th International Conference on the Economics of Grids, Clouds, Systems, and Services

Rome, Italy, 2024/09/26

Cloud Services and FaaS

● Today’s Cloud -> Multiple Cloud Services

● FaaS:

- Stateless-functions

- (mostly) Short computation

2

FaaS Benefits and Use cases

● Benefits

- Suitable implementation for micro-distributed APIs

- Naturally highly available

- Automatically scalable

- Application scalability and availability not user’s concerns

- Serverless, backend servers hidden from FaaS function

● Use cases

- Edge computing

- Image and video processing

- Machine learning

- Scientific computing

- Event streaming

3

Current Shortcomings

Challenges

● Current FaaS related works

- Focus on optimization of system resources and performance

- Little attention to the individual desires of each customer

- Little focus on flexible pricing mechanisms

- mostly best-effort or vs. permanent dedicated instances

- Cold start delays in function invocation

- Focus on optimization of system resources and performance

4

Proposal

● Extension to FaaS scheduling mechanism in OpenWhisk

● Incorporate Utility-awareness in Faas scheduling/resource allocation

● Client-side:

- Takes into account customer differences in priority/urgency/QoS

- Utility expressed in priority/urgency parameter (α) like a slider

- Implemented via two core approaches

- more aggressive (extra) container pre-warming/allocation

- multiple functions invocations returning the fastest result

- (assumes function idempotence)

● Provider-Side:

- Enables QoS-differentiated service offerings (competitiveness)

- Allows higher profits adjusting price depending on priority desired by client

5

Apache OpenWhisk

Architecture Overview

● Action

● Trigger

● Rule

● NGINX (REST interface)

● Controller

● Kafka-based distributed

message broker

● CouchDB-based Database

6

Apache OpenWhisk

Built-in Scheduler

● An Action is given to the controller

● Controller oversees multiple Invokers.

● Home Invoker

● Each Invoker has a max capacity of

containers

● Each Invoker has 3 types of pools:

○ Busy Pool (Action deployment)

○ Free Pool (Action Specific Warm

Containers)

○ PreWarm Pool (PreWarm

Containers)
7

● An Invoker is at maximum capacity

● Warm Action Specific Container

available to receive the requested

action

● Attempting to use a PreWarm

Container to receive the requested

action

● Remove the Least Recent inactive

container

● Create a new Cold Action Specific

Container
8

Apache OpenWhisk

Built-in Scheduler

Apache OpenWhisk

Architecture Extension

● Controller Extension

- Direct modification to existing controller

- Incorporate Utility-aware policy

- Scheduler: “Action-Spreading” algorithm

- Message Collector: handle multiple replies

9

Scheduling Extension

(Action-Spreading)

● Over-provisioned system

● An action will “spread”

throughout the system

● Ignore Pre-warm container

when outside of Home

Invoker

● Continue searching for more

invokers

● Do not stop after finding a

viable container

10

Scheduling Extension

(Action-Spreading)

11

Scheduling Extension

(Action-Spreading)

12

Scheduling Extension

(Action-Spreading)

13

Cost Function

(Action-Spreading)

14

● α expresses the ratio of the cost remaining static

● c cost of deployment under default conditions

● C total cost of resources used

● Implications:

- Lower α implies higher eagerness, priority, potential cost

- If all allocated resources used, cost same as default

- If not all used, partial premium paid on unused resources

- Clients get better performance at marginal cost

- Providers able to charge for additional pre-warmed resources

Implementation Details

(Action-Spreading)

● Action invocation requests must start with “SPREAD_”

● Maximize Scala’s string management functionalities

● Reduces more overhead than adding a new HTTP parameter

● More localized modification to the code

● Updated Message collector

● Allow multiple requests with the same action_id

● Collection of requests asynchronously

15

Evaluation (Action-Spreading)

Workloads & Metrics

● Workloads

- Sleep functions (F1)

- File hashing (F2)

- Video Transformation (F3)

- Image classification (F4)

● Metrics

- Latency

- Scheduling delay

- Resource Usage

- Compared with the Apache OpenWhisk base scheduler

16

Evaluation (Action-Spreading)

Sample Testbed Environment

● 3 Invokers

● 1 Controller (enhanced version)

● 1 of each other component

● Two Sub-Environments

- W (Warm) and C (Cold)

● Two sets of Hardware

- A (weaker): i7 4-core, 8 threads

B (stronger): i7 8-core, 18 threads

17

● Jmeter-based measurements

● 100 user function invocations

● Test 1 (W-A)

- Scheduler overhead

● Test 2 (C-A) and Test 6 (C-B)

- Best use case

● Test 3 (W-A) and Test 5 (W-B)

- Worst use case

● Test 4 (W-A)

- Parallelism evaluation● Take-Away: Approach works better in

cold environments and with better hardware available

Test 1

(Warm-Hardware A)
● Assess worst case scheduler extension internal overhead

- Base: original OpenWhisk scheduling

- Default: scheduler extension without Action-Spreading

● Backwards compatibility desired

● Expected reduced overhead when not using functionality

- actual small increase

- highly latency-sensitive workload (only sleep F1 function used)

18

Test 2

(Cold-Hardware A)
● F1, F2, and F4 see improved total execution time

- at the expense of 8 to 9 extra invoker calls

● F1 improves has improvements in all metrics

- Simpler workload, highly latency sensitive

- Action-spreading avoids most cold starts

● F2 and F4 mask higher overall average latency

- collecting the fastest response with extra invoker calls

19

Test 6

(Cold- Hardware B)
● F1, F2, and F4 see improved total execution time

- at the expense of 9 to 10 extra invoker calls

● F1, F4 improves has improvements in all metrics

- F1: Simpler workload, highly latency sensitive

- F4: More resources available in hardware B benefit heavier workload

- Action-spreading avoids most cold starts

● F2 mask higher overall average latency collecting the fastest response

with extra invoker calls

Evalution:

Utility Function Management
● Seller’s modification of α

provides an opportunity to

mitigate a customer's misuse

of the functionality

● The worse the misuse the

more control the seller has

● Helps customers to estimate

additional cost

21

Related Work:

Scheduling and Pricing

● Scheduling in distributed systems, balancing requests and available resources

- Cloud, Clusters, Cloud-edge (Fog) [Madej et al, 2020]

- Load balancing, maximizing resource use, energy efficiency, minimizing

execution costs

- Scheduling system for FaaS that is QoS-Aware and implemented in

Apache OpenWhisk [Russo et al, 2022]

● Pricing strategy is crucial [Al-Roomi et al, 2013]

● Difficulties with pricing models in cloud computing [Sharma et al, 2021]:

- Jargon and Architectural Complexity

- Discrepancy between resource utilization and billing time

- Accuracy of information lost for quicker response times
22

Conclusions

● Utility-driven scheduling extension to OpenWhisk

- “Action-Spreading” approach

● Perfect backwards compatibility

● When used under a cold well provisioned system

- Latency decrease of up to 2.37 times

- Maximum of 36% additional cost

● Reduced benefits on already very warm environments

● Positive customer-seller interaction through a utility-inspired

function

- Transparent

- Single parameter to understand/discuss

- Provides extra choice to customers and revenue for providers
23

Future Work

● Further evaluation in grander Kubernetes environments

● Further incorporate priority awareness in invocation queues (Kafka)

● Further testing in other FaaS architectures

● Further study of function estimation cost functions

● Further exploration of parameter ranges competitiveness among

clients and providers

24

Thank you!

25

	Slide 1: FaaS-Utility
	Slide 2: Cloud Services and FaaS
	Slide 3: FaaS Benefits and Use cases
	Slide 4: Current Shortcomings Challenges
	Slide 5: Proposal
	Slide 6: Apache OpenWhisk Architecture Overview
	Slide 7: Apache OpenWhisk Built-in Scheduler
	Slide 8: Apache OpenWhisk Built-in Scheduler
	Slide 9: Apache OpenWhisk Architecture Extension
	Slide 10: Scheduling Extension (Action-Spreading)
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Implementation Details (Action-Spreading)
	Slide 16: Evaluation (Action-Spreading) Workloads & Metrics
	Slide 17: Evaluation (Action-Spreading) Sample Testbed Environment
	Slide 18: Test 1 (Warm-Hardware A)
	Slide 19: Test 2 (Cold-Hardware A)
	Slide 20: Test 6 (Cold- Hardware B)
	Slide 21: Evalution: Utility Function Management
	Slide 22: Related Work: Scheduling and Pricing
	Slide 23: Conclusions
	Slide 24: Future Work
	Slide 25: Thank you!

