
FaaS-Utility: Tackling FaaS Cold Starts with
User-preference and QoS-driven Pricing

Henrique Santos1, José Simão1,2, and Lúıs Veiga1⋆

1 INESC-ID, Instituto Superior Téncico, Universidade de Lisboa
2 Instituto Superior de Engenharia de Lisboa (ISEL / FIT)

Abstract. This study introduces FaaS-Utility, a novel approach aimed
at optimizing Function-as-a-Service (FaaS) systems by addressing the
critical issue of cold starts, which significantly impede system perfor-
mance. By introducing a utility function informed by customer prefer-
ences and pricing goals, our methodology prioritizes resource allocation
to enhance service quality effectively. We implement this strategy within
Apache OpenWhisk, demonstrating its integration into a real-world FaaS
platform. Our evaluation reveals that the proposed approach notably
improves system performance, particularly in over-provisioned states, by
reducing latency up to 2.37 times with a maximum additional cost of
only 30%. While our method performs best in cold environments, it also
maintains performance when applied in warm settings, offering a bal-
anced solution between client and provider through adaptive pricing.

Keywords: Serverless Computing, Resource Allocation, Performance
Optimization, Cold Start Mitigation

1 Introduction

Presently, more sophisticated, dynamic and elastic applications, with reduced la-
tency and better resource use, are made possible by serverless computing and the
Function-as-a-Service model (also know as FaaS) [15]. Current implementations
of the Function-as-a-Service architecture such as Amazon AWS Lambda and Mi-
crosoft Azure Functions focus deeply on the optimization of systems resources
and performance while paying little attention to the individual preferences of
each customer.

Current scheduling mechanisms [24, 8, 25, 12, 31] attempt to maximize avail-
able resources for the least cost, be that cost resource consumption or execution
time. Customers tend to wish for execution times to be as low as possible, how-
ever, this is in general terms, as not all customers are the same when it comes to
urgency. One customer might just be requesting a project to be done by the end
of the day and has little interest in when it is done in a few minutes or an hour,
while another customer might need a request to be done as soon as possible; this

⋆ Work partially developed while as a Visiting Researcher with the Hybrid Cloud
Computing Group at IBM Research Europe – Zurich.



2 H. Santos et al.

information can be leveraged by providers, by employing fewer resources when
they are scarce, while reducing the price charged to users [23].

We propose an extension to the scheduling mechanism in FaaS that takes
into account these customer differences in priority, as well as provide monetary
profits for the provider using our proposal by adjusting the price of the ser-
vice depending on the priority desired by the customer. This is embodied in a
scheduling optimization in the Function-as-a-Service model that receives input
from the customer to assist its execution for a more intelligent and focused qual-
ity of service. This entails that a customer using our system will be provided a
few additional options, depending on the server’s state, when attempting to issue
requests, such as monetary discounts for slower execution times or extra mon-
etary costs for her request to be completed promptly. The latter is presented
in case the system is saturated and unable to confidently complete customer
requests in the initially expected time frame.

The rest of the paper is structured as follows: Section 2 discuss some research
on serverless computing, specifically focusing on FaaS, its scalability issues, and
the cold start problem. Section 3 elaborates on the architecture of the FaaS-
Utility system, highlighting how it incorporates user preferences into resource
allocation, alongside the details of the implementation of FaaS-Utility within the
Apache OpenWhisk platform. Section 4 discusses the methodology and results of
the system evaluation, assessing the effectiveness of our approach in mitigating
cold starts and improving performance. Finally, Section 5 concludes the paper
with a summary of our findings and potential avenues for future research.

2 Related Work

Cloud computing is structured into various service layers, including traditional
models like Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS), as well as the more recent Backend-as-a-Service
(BaaS), and Function-as-a-Service (FaaS), with this work focusing on the lat-
ter. BaaS and FaaS are both considered serverless, and are frequently used in
conjunction because they share operational characteristics (such as no resource
management) [9, 17, 7].

FaaS allows developers to deploy code in the cloud without managing hard-
ware, offering greater abstraction compared to PaaS, where the provider manages
data and server state. FaaS provides transparent scalability, unlike PaaS, where
users must plan how to scale, focusing solely on deploying specific application
functions [2]. Low latency is crucial for real-time applications like emergency vi-
tal sign monitoring, where quick paramedic response is essential. User-wearable
sensors play a key role in health monitoring. Edge computing, driven by the
need for low latency, leverages serverless frameworks to manage server opera-
tions, network, load balancing, and scaling tasks [13, 14]. The cold start delay,
which is seen as a delay in setting up the environment in which functions are
executed, is one of the most significant FaaS performance issues [28, 29]. Popu-
lar systems most frequently use a pool of warm containers, reuse the containers,



FaaS-Utility 3

and regularly call routines to reduce cold start delay. However, these techniques
squander resources like memory, raise costs, and lack knowledge of function in-
vocation trends over time. In other words, while these solutions reduce cold start
delay through fixed processes, they are not appropriate for environments with
dynamic cloud architecture [27].

In the work in [27], the authors proposed an intelligent method that chooses
the optimum strategy for maintaining the containers running in accordance with
the function invocations over time in order to lessen cold start delay and to
consider resource usage. While in the work [3], the authors assume that the
FaaS platform is a ”black box” and use process knowledge to reduce the number
of cold starts from a developer perspective. They proposed three strategies to
reduce cold starts: the naive approach, the extended approach, and the global
approach. Additionally, they introduced a lightweight middleware designed to
work in tandem with the functions, aiding in the effective mitigation of cold
start occurrences.

While numerous studies focus on cloud computing optimization [18, 11, 12],
the potential revenue benefits from these optimizations are often overlooked [4].
We discuss both sides of the aspects. When it comes to scheduling, the provider
can use optimization techniques to improve the customer experience with little to
no thought to the financial implications. Pricing is one the most relevant issues in
cloud computing cost methodologies that aim to maximize revenue. Providers use
optimization techniques in scheduling to boost customer experience, sometimes
neglecting financial outcomes, while recent advancements in cloud computing
pricing strategies aim to optimize revenue.

In distributed systems, scheduling is frequently studied to establish a connec-
tion between requests and available resources. For clusters [19], clouds [10], and
cloud-edge (Fog) systems [22, 20, 16], numerous solutions have been put forth.

In the work presented in [18], the authors offer a cutting-edge scheduling
system for FaaS that is QoS-Aware and implemented in Apache OpenWhisk.
By adding a Scheduler component, which takes over from the Controller’s load
balancing function and allows more scheduling policies, they extended Apache
OpenWhisk. In this new design, incoming requests are routed through the Sched-
uler rather than the Controller in order to be immediately scheduled to the
Invokers.

Cloud ecosystems’ viability is based on effective service pricing [4] and an
energy-aware architecture with sensible resource pricing, although many studies
focus more on reducing energy consumption than on pricing and billing strate-
gies [21, 4]. Pricing strategy is pivotal in attracting clients who aim for the highest
service quality at minimal costs, while cloud service providers focus on boost-
ing income and cutting costs through advanced technologies [1]. The dynamic
nature of service demands and quality necessitates a flexible pricing approach
beyond fixed pricing, allowing consumers to pay for actual usage and enabling
providers to offer fair, competitive rates [4]. Our system offers improvements
over existing models by adopting flexible pricing and user-focused optimization,
aiming to better balance quality and cost in cloud computing services.



4 H. Santos et al.

Fig. 1. General architecture with newly added scheduler and Collector component

3 Architecture

In this section, we first present an overview of Apache OpenWhisk’s systems,
more specifically its scheduling methodology, followed by our proposed schedul-
ing extension which is subdivided into two components: i) during an under-
provisioned server state, and ii) an over-provisioned server state. Apache Open-
Whisk facilitates the creation, invocation, and outcome querying of functions
through a REST interface, using a Controller to assign tasks to a pool of In-
vokers based on a hashing method and Invoker status [31]. After receiving the
request, the Invoker uses a Docker container to carry out the function. Functions
are commonly referred to as actions within Apache OpenWhisk. The Invoker
sends the outcomes to a CouchDB-based Database after the function execution
is complete and notifies the Controller of its completion. The Controller then
returns to clients the outcomes of the function executions [31].

Scheduler extension. In our extended version of the Apache OpenWhisk ar-
chitecture, we add a newly updated scheduler with all of our requirements for
the pricing utility function, as well as an updated Collector to allow us to extend
the capabilities of warm container creation with no additional overhead. Both
of these extra components are shown in Figure 1 as the green and blue contain-
ers. Clients initiate requests via a REST interface, which are processed by the
Controller using information from CouchDB and a utility function to determine



FaaS-Utility 5

Algorithm 1: Over-provisioned scheduling algorithm

the appropriate Invoker. The Invoker executes the request, and upon comple-
tion, updates CouchDB and sends an acknowledgment back to the Controller
for future optimization. To accommodate varying system states, a number of
pricing options are offered, allowing clients to select from two initial choices in
over-provisioned states and three additional ones in under-provisioned states,
enabling a tailored service experience.

Pricing options for the client. Two initial pricing options are provided:
Basic Version which merely finishes the request with no additional benefits; or
Premium that completes the request with additional Invokers, but the additional
resources used for a faster execution of the request will come at a discounted
price. This second option is to use the request to create warm containers for this
particular client’s repeated uses, resulting in future quicker execution times.

When servers are under-provisioned, leading to potential request queues,
three additional pricing tiers are introduced: Standard priority maintains nor-
mal costs without altering request scheduling priority; Urgent priority increases
scheduling precedence at a higher cost for time-sensitive tasks; and Reduced pri-
ority lowers both cost and scheduling priority for users with flexible timelines.

These pricing options cater to different user needs, allowing them to choose
based on urgency and cost considerations, like a user needing immediate database
error correction versus a student with no immediate project deadlines.

Scheduling during an over-provisioned state. If no special pricing mecha-
nism is applied, scheduling functions normally, but with an added premium: the
scheduler will distribute actions across all Invokers to enhance efficiency. This
approach benefits clients by ensuring faster execution for repeated requests and
optimal Invoker selection for speed, regardless of the Invoker’s identity. Clients



6 H. Santos et al.

Fig. 2. Four seconds of execution of the priority queue scheme

can also customize their use of the pricing models, applying the Premium selec-
tively to specific actions or triggers to optimize cost and performance.

The enhanced scheduler algorithm, detailed in Algorithm 1, introduces a
nuanced queuing strategy, triggering action queuing when Invokers are semi-
saturated, a more flexible approach compared to the original algorithm’s condi-
tion of full saturation. This adjustment is particularly effective in over-provisioned
states, ensuring that the scheduler optimally utilizes available resources.

Key modifications, marked in the pseudo-code in blue and red, include by-
passing pre-warm containers for new container creation on alternative Invokers,
and a more exhaustive search for available Invokers rather than settling for the
first one found. These enhancements aim to improve resource allocation and
system responsiveness by dynamically adapting to the current load on Invokers.

All of the results of the multiple executions of the action are received by the
controller. The cost of the requested deployment by the client is calculated as
a ratio between the cost without the extra Invokers and the total cost of all
resources used. Consequently, the cost the client will be charged is given by:

final cost = α× c+ (1− α)× C (1)

where α is the ratio of the cost that remains static, c is the cost of the deployment
under default conditions, and C is the total cost of all resources used. This creates
a situation where if no additional actions were deployed on other Invokers, the
final costs are equal to the normal pricing model.

Scheduling during an under-provisioned state. The existing First-In-
First-Out (FIFO) priority method, used when server saturation leads to action
queuing, offers a low urgency solution for clients. We defend the need for a more
advanced priority-aware system that accelerates resolution for time-sensitive re-
quests at an additional cost, also providing options for clients seeking discounts
in less urgent situations. A possible scheme (left as future work) can utilize a
unique priority value, ”aPrio” (absolute priority), which can be adjusted based



FaaS-Utility 7

on the request’s urgency level, allowing distinction between requests with iden-
tical aPrio values using FIFO. This scheme is visualized in Figure 2, illustrating
how different priority levels (p1, p2, p3) could influence the queue management
over time. Yellow requests are in the queue while red requests are the selected
actions for when resources are freed. The pricing model utilized is similar to
what is offered during the over-provisioned state. The final cost is given by:

final cost = α× c+ (1− α)× c p

p1
(2)

where α is the percentage of cost that remains static, c is the cost of the specific
action, p represents the value of the priority system used for the action, and p1
is the value of the reduced priority system.

3.1 Implementation Details

The solution proposed for over-provisioned state has two main goals: (1) set
up containers for future workloads, and if possible (2) combine the work of all
Invokers for an even faster possible execution. Thus, we tackled both problems
separately, starting with the more architecturally demanding problem (1).

Invokers in Apache OpenWhisk operate independently without knowledge
of each other’s conditions, limiting the ability to dynamically create containers
based on system-wide states and preventing the generation of empty warm con-
tainers. The controller, with some awareness of the Invoker pool’s state, becomes
a focal point for managing container allocation, particularly in over-provisioned
scenarios where additional action invocations don’t strain existing resources due
to container isolation. Increased workload on the controller and Kafka during
over-provisioned states introduces minimal overhead, as Kafka is designed for
high throughput and low latency, capable of handling significant data volumes.
This system design ensures that resource augmentation in an over-provisioned
state does not compromise Invoker performance, though it warrants attention
during performance evaluation.

To enhance the algorithm in ‘ShardingContainerPoolBalancer.scala‘ within
Apache OpenWhisk, the proposed modification involves extending the search for
available Invokers beyond the first one found, aiming to engage multiple Invokers
to prepare or execute the action. This approach is designed to ensure the action
is spread across all potential Invokers, whether to prepare warm containers or
create cache data, addressing a key objective. By executing the action on all
available Invokers, the system capitalizes on the quickest response, as the fastest
Invoker will deliver the result back to the controller, optimizing performance. To
achieve this, the scheduling function must be adjusted so its completion criteria
are met only after all Invokers have been considered, ensuring comprehensive ac-
tion distribution. Additionally, the modification seeks to preserve the stability of
the home Invoker metric, allowing users to opt-out of this enhanced functionality
if desired.



8 H. Santos et al.

4 Evaluation

In this section, we will address the system performance and the assessed metrics.
We deploy the system with Apache OpenWhisk on a development environment
based on Docker. The base open source code of Apache OpenWhisk is extended
to the requirements presented by the architecture in Section 3. Data is assumed
to be stored locally, or on some cloud storage in the same location.

FaaS Benchmarks. Four FaaS workloads (F1-F4) are used in the evaluation of
our system those being: Sleep functions, File hashing, Video transformation, and
Image classification, taken from FaaS benchmarking found in the literature [6]:

– F1 - Sleep functions: a simple, low-overhead operation that can be used to
measure infrastructural overheads, in our case the scheduling infrastructure,
of a FaaS platform.

– F2 - File hashing: a relatively simple operation that can be used to test the
ability of the system to handle file inputs and outputs.

– F3 - Video Transformation: it exercises many of the key features of a FaaS
system, such as scalability, concurrency, and performance. Video transforma-
tion tasks, such as transcoding, are typically compute-intensive and require
parallel processing. This makes them well-suited to assess system ability to
handle high levels of concurrency and scale horizontally.

– F4 - Image classification: a complex operation that requires significant com-
putational resources and can be used to test the ability of the system to
handle more demanding workloads. Additionally, Image classification is a
common use case of real-world usage in FaaS [18], especially in machine
learning applications [30, 26].

Metrics. The performance of our system is evaluated using three key metrics:
Latency (time for request processing and response), Scheduling delay (time from
request readiness to execution, reflecting the scheduler’s efficiency), and Resource
usage (assessing how well the system utilizes memory and CPU). To understand
memory consumption and system overload, we analyze logs from OpenWhisk
components, specified in the docker-compose.yml file, which helps in identifying
performance bottlenecks and resource management. These metrics are measured
and compared with the Apache OpenWhisk default scheduler.

Evaluation Environment. The evaluation environment for the updated Apache
OpenWhisk scheduler involved a minimal cluster setup with one container per
OpenWhisk component and three invokers managed by a single Controller, de-
signed to stress-test the system. Testing variables included the types of actions,
the volume of requests, and the concurrency of users, with each test conducted in
either a ’cold’ or ’warm’ server state to simulate varying user demands and assess
the system’s responsiveness without needing repeated authentication. JMeter, an
open-source tool, was employed to assess the performance of web applications,



FaaS-Utility 9

APIs, and other services by simulating numerous user interactions to identify
potential bottlenecks under various load conditions.

The system’s evaluation involved actions F1, F2, F3, and F4 to examine
various operational aspects, from quick tasks and delay measurements to CPU-
intensive processes. Each action was tested in Default, Base, and Spread ver-
sions to compare, respectively: i) the original OpenWhisk system, ii) the modi-
fied version without enhancements, and iii) the version with new functionalities,
enabling a thorough analysis of the system’s adaptability and performance in
diverse computing environments. During testing, all actions are established in
the test setup phase, and the time spent on this initial creation is not included in
the test metrics since it does not impact the modified components of the updated
system. To evaluate the enhanced scheduler, two distinct sub-environments were
crafted, reflecting the system’s initial state before each specific test is conducted.

1. Cold Sub-environment ”C”: we sought to evaluate our system as
the worst case possible where all currently existing warm containers within the
invokers mismatch the invoked action. This allow us to evaluate our system when
handling cold invocations, and how well it successfully warms up the system to
generate the best user experience. This was achieved through the mass invocation
of a “hello world” action which simply returns “hello user” to the user. The mass
invocation comprises 100 parallel invocation calls using JMeter, by setting up a
thread group with 100 users and 1 call each. The execution of the tests ignores
this environment setup and is done after all containers within the invokers enter
the paused state.

2. Warm Sub-environment ”W”: a fully cold enviroment is not entirely
realistic, as prewarm and warm containers contribute heavily towards faster
request execution times, and are the backbone of FaaS systems. As such for
the same set of tests as the sub-environment 1, we evaluated our system under
a warm environment where only prewarm and warm containers of the action
to be invoked were present. In the same way as achieved in sub-environment
1, the warm environment was made with 100 concurrent calls for the specific
action related to the test. Once again this execution time was not taken into
consideration during the test. JMeter was set up with 100 users with one HTTP
request each.

Two different pieces of hardware were used for testing to accurately determine
potential system degradation caused by our scheduler.

– Hardware “A”: a machine representative of a typical low-mid cloud server
instance with an Intel® Core™ i7 CPU @ 2.60GHz processor with 4 physical
cores and 8 threads on UbuntuLTS 64-bit.

– Hardware “B”: a machine representative of a more capable cloud server
instance, but where resource usage optimization is still challenging, to assess
the extent of potential gains to be achieved at scale. This hardware B uses
a Intel(R) Core(TM) i7 CPU @ 3.20GHz, 6 Physical Core(s), 12 Logical
Processor(s).



10 H. Santos et al.

4.1 Performance evaluation

A total of 6 tests were made to evaluate our newly augmented scheduler. These
tests vary in both sub-environment and hardware. Each test is referred to by
the test number, which sub-environment it uses followed by which hardware it
utilizes, for example, ”Test 1 (W-A)” is test number 1 and uses both a Warm
sub-environment and hardware A. The full analysis is described in [5], with
detailed results for each action (F1-F4) used; we leave here the main findings.

Test 1 (W-A), focused just on preliminary determining if our Base scheduler
performed similarly to Deafult, employing solely F1 only for simplicity. Results
show our enhanced scheduler performed slightly better under the same circum-
stances, so we could use it for previous versions of workloads on OpenWhisk.

Test 2 (C-A) and Test 6 (C-B) both seek to evaluate the use case for our
functionality. This situation was a cold environment at first, followed by the use
of our new functionality to set up the warm container, and finalising with a
heavy amount of requests for the specific action. We were able to confirm that
our functionality was able to benefit the system in terms of reduced latency,
variance, and total execution time for faster execution actions, where the cold
start delay is previously more noticeable. We were able to conclude that hardware
can indeed affect the value provided by our functionality, as we were only able
to see significant improvements for F4 function in more powerful hardware B.

Test 3 (W-A), 4 (W-A), and Test 5 (W-B) check the performance of the
scheduler during less ideal circumstances, those being in the case where a warm
environment already exists for the requested action. We were able to conclude
the lack of parallelism potential from the hardware itself was the main bottle-
neck, as the new scheduler would overload the Invokers leading to performance
degradation. Test 4 (W-A) specifically focused on confirming this parallelism
roadblock by independently doing the same amount of requests as the Action-
Spread functionality would do but using the original version of the scheduler.
Thus, our proposed functionality needs not be used for already ideally warm en-
vironments, as it may lead to unnecessary additional overloading of the system.

4.2 Utility Function Evaluation

The enhanced scheduler’s performance analysis includes evaluating its impact
on client costs and provider resource consumption, focusing on critical metrics
like latency reduction, execution time, and the utility function’s alpha param-
eter. Table 4.2 offers a comparative overview, detailing the trade-offs between
performance improvements and resource usage, aiding stakeholders in assessing
the scheduler’s efficiency and cost-effectiveness in a concise manner.

The effectiveness of the enhanced scheduler varies with different scenarios,
particularly showing limited benefits in already warm environments like in Test
3, where additional invocations did not mitigate the risk of cold starts and led
to performance degradation. However, the introduction of a variable pricing
factor, α, influenced by the seller, can adjust the final cost, offering a mechanism
to counteract the performance drop or unnecessary resource usage, enabling a



FaaS-Utility 11

Test Latency Total time Extra α Cost
decrease decrease resources

0.8 1.06x
2 − F1 2.37x 1.44x 1.32x 0.6 1.13x

0.4 1.19x
0.8 1.07x

2 − F2 0.73x 1.03x 1.36x 0.6 1.14x
0.4 1.21x
0.8 1.07x

2 − F4 0.76x 0.92x 1.36x 0.6 1.14x
0.4 1.21x
0.8 1.4x

3 − F1 0.78x 0.80x 3x 0.6 1.8x
0.4 2.2x
0.8 1.4x

3 − F2 0.98x 0.98x 3x 0.6 1.8x
0.4 2.2x
0.8 1.06x

6 − F1 1.67x 1.12x 1.36x 0.6 1.14x
0.4 1.19x
0.8 1.08x

6 − F2 0.71x 1.05x 1.4x 0.6 1.16x
0.4 1.24x
0.8 1.08x

6 − F4 1.13x 1.03x 1.4x 0.6 1.16x
0.4 1.24x

Table 1. Utility evaluation

negotiation space between the client and the seller for better interaction and
agreement on the service value.

Hardware variations also impact the scheduler’s performance benefits, as ob-
served in tests 2 and 6, with different hardware setups. The scheduler’s perfor-
mance varied significantly between hardware types, with certain tests showing
better latency improvements on weaker hardware. The adjustment of the α value
by the seller can make the resource use more cost-effective for the client, espe-
cially if enhanced performance justifies additional resource consumption, high-
lighting a nuanced trade-off between resource use, performance gain, and cost.

Finally, Figure 3 studies how the system’s environmental awareness affects
the seller’s pricing leverage and the overall cost-effectiveness of the scheduler.
The functionality’s deployment in its intended cold environment versus an un-
necessary warm environment demonstrates the adaptive cost strategy’s role in
ensuring that the scheduler’s use aligns with its designed benefits, thereby opti-
mizing the balance between performance enhancement and resource expenditure.

5 Conclusion

We created a scheduler extension architecture that considers user preferences
when adjusting scheduling to provide a higher quality of service to the user.
Apache OpenWhisk was used to implement our solution. For over-provisioned
system conditions a new functionality that we named ”Action-Spreading” was
implemented to allow warm containers to be set up for a reduced cost in prepa-



12 H. Santos et al.

Fig. 3. Cost’s behaviour depending on α values

ration for an influx of requests. We evaluated our enhanced scheduler through a
series of tests.

We concluded that under over-provisioned system conditions, it provided a
substantial benefit for the client with a latency decrease of up to 2.37 times for
only a maximum of 30% additional cost. We also were able to conclude that
should the scheduler be used under unforeseen system conditions it allows for
a positive client-seller solution through the use of the proposed utility function
management.

As future work, we consider that the development of priority-based queueing
extensions for Kafka and other similar components (that do not have priority-
aware mechanics in mind), specifically for FaaS systems, would be a great av-
enue for future research in this field. This would enable enforcing our proposed
scheduling approach during an under-provisioned state, by being able to speed
up requests from higher priority users or functions, while without hurting the
scalability of the controller.

Acknowledgements: This work was supported by national funds through FCT, Fundação

para a Ciência e a Tecnologia, under project UIDB/50021/2020 (DOI:10.54499/UIDB/50021/2020).

This work was supported by: ”DL 60/2018, de 3-08 - Aquisição necessária para a atividade de I&D do

INESC-ID, no âmbito do projeto SmartRetail (C6632206063-00466847)”. This work was supported

by the CloudStars project, funded by the European Union’s Horizon research and innovation program

under grant agreement number 101086248.

References

1. M. Al-Roomi, S. Al-Ebrahim, S. Buqrais, and I. Ahmad. Cloud computing pric-
ing models: a survey. International Journal of Grid and Distributed Computing,
6(5):93–106, 2013.

2. I. Astrova, A. Koschel, M. Schaaf, S. Klassen, and K. Jdiya. Serverless, faas and
why organizations need them. Intelligent Decision Technologies, 15(4):825–838,
2021.



FaaS-Utility 13

3. D. Bermbach, A.-S. Karakaya, and S. Buchholz. Using application knowledge to
reduce cold starts in faas services. In Proceedings of the ACM Symposium on
Applied Computing, pages 134–143, New York, NY, United States, 2020. ACM.

4. S. R. Dibaj, L. Sharifi, A. Miri, J. Zhou, and A. Aram. Cloud computing energy
efficiency and fair pricing mechanisms for smart cities. In IEEE Electrical Power
and Energy Conference (EPEC), pages 1–6, New York, NY, United States, 2018.
IEEE.

5. H. d. C. R. dos Santos. Faas-utility. Master’s thesis, Instituto Superior Técnico,
U. Lisboa, 2023.

6. V. Dukic, R. Bruno, A. Singla, and G. Alonso. Photons: Lambdas on a diet. In
Proceedings of the 11th ACM Symposium on Cloud Computing, pages 45–59, New
York, NY, United States, 2020. ACM.

7. B. Janakiraman. Serverless, 2016.
8. Y. K. Kim, M. R. HoseinyFarahabady, Y. C. Lee, and A. Y. Zomaya. Automated

fine-grained cpu cap control in serverless computing platform. IEEE Transactions
on Parallel and Distributed Systems, 31(10):2289–2301, 2020.

9. S. Kounev, N. Herbst, C. L. Abad, A. Iosup, I. Foster, P. Shenoy, O. Rana, and
A. A. Chien. Serverless computing: What it is, and what it is not? Commun.
ACM, 66(9):80–92, aug 2023.

10. G. Lee, B. Chun, and H. Katz. Heterogeneity-aware resource allocation and
scheduling in the cloud. In Proceedings of the USENIX Workshop on Hot Top-
ics in Cloud Computing (HotCloud), pages 1–5, Portland, OR, 2011. USENIX
Association.

11. L. Lin, P. Li, J. Xiong, and M. Lin. Distributed and application-aware task schedul-
ing in edge-clouds. In Proceedings of the International Conference on Mobile Ad-
Hoc and Sensor Networks (MSN), pages 165–170, New York, NY, United States,
2018. IEEE.

12. A. Madej, N. Wang, N. Athanasopoulos, R. Ranjan, and B. Varghese. Priority-
based fair scheduling in edge computing. In Proceedings of the IEEE International
Conference on Fog and Edge Computing (ICFEC), pages 39–48, New York, NY,
United States, 2020. IEEE.

13. S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska, M. Kostoska,
B. Jakimovski, S. Ristov, and R. Prodan. A serverless real-time data analytics
platform for edge computing. IEEE Internet Computing, 21(4):64–71, 2017.

14. A. Palade, A. Kazmi, and S. Clarke. An evaluation of open source serverless
computing frameworks support at the edge. In Proceedings of the IEEE World
Congress on Services (SERVICES), volume 2642, pages 206–211, New York, NY,
United States, 2019. IEEE.

15. T. Pfandzelter and D. Bermbach. tinyfaas: A lightweight faas platform for edge
environments. In Proceedings of the IEEE International Conference on Fog Com-
puting (ICFC), pages 17–24, New York, NY, United States, 2020. IEEE.

16. A. Pires, J. Simão, and L. Veiga. Distributed and decentralized orchestration of
containers on edge clouds. J. Grid Comput., 19(3):36, 2021.

17. M. Roberts. Serverless architectures, Nov. 2018.
18. G. R. Russo, A. Milani, S. Iannucci, and V. Cardellini. Towards qos-aware function

composition scheduling in apache openwhisk. In Proceedings of the IEEE Interna-
tional Conference on Pervasive Computing and Communications Workshops and
other Affiliated Events (PerCom Workshops), pages 693–698, ieeead, 2022. IEEE.

19. M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes. Omega: flexible,
scalable schedulers for large compute clusters. In Proceedings of the ACM European



14 H. Santos et al.

Conference on Computer Systems, pages 351–364, New York, NY, United States,
2013. ACM.

20. V. Scoca, A. Aral, I. Brandic, R. De Nicola, and R. B. Uriarte. Scheduling latency-
sensitive applications in edge computing. In Proceedings of the International Con-
ference on Cloud Computing and Services Science (CLOSER), pages 158–168, New
York, NY, United States, 2018. Springer.

21. L. Sharifi, L. Cerdà-Alabern, F. Freitag, and L. Veiga. Energy efficient cloud service
provisioning: Keeping data center granularity in perspective. J. Grid Comput.,
14(2):299–325, 2016.

22. J. N. Silva, P. Ferreira, and L. Veiga. Service and resource discovery in cycle-sharing
environments with a utility algebra. In 2010 IEEE International Symposium on
Parallel Distributed Processing (IPDPS), pages 1–11, 2010.

23. J. Simão and L. Veiga. Partial utility-driven scheduling for flexible SLA and pricing
arbitration in clouds. IEEE Trans. Cloud Comput., 4(4):467–480, 2016.

24. A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upadhyay, and
A. Gandhi. Ensure: efficient scheduling and autonomous resource management in
serverless environments. In Proceedings of the IEEE International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS), pages 1–10, New
York, NY, United States, 2020. IEEE.

25. A. Suresh, G. Somashekar, A. Varadarajan, V. R. Kakarla, H. Upadhyay, and
A. Gandhi. Ensure: Efficient scheduling and autonomous resource management in
serverless environments. In Proceedings of the IEEE International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS), pages 1–10, 2020.

26. Z. Tu, M. Li, and J. Lin. Pay-per-request deployment of neural network mod-
els using serverless architectures. In Proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics: Demonstra-
tions, pages 6–10, PA, USA, 2018. Association for Computational Linguistics.

27. P. Vahidinia, B. Farahani, and F. S. Aliee. Mitigating cold start problem in server-
less computing: a reinforcement learning approach. IEEE Internet of Things Jour-
nal, 10(5):3917–3927, 2023.

28. E. van Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann. A spec rg
cloud group’s vision on the performance challenges of faas cloud architectures.
In Companion of the 2018 ACM/SPEC International Conference on Performance
Engineering, ICPE ’18, page 21–24, New York, NY, USA, 2018. Association for
Computing Machinery.

29. E. Van Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann. A spec rg
cloud group’s vision on the performance challenges of faas cloud architectures.
In Proceedings of the Companion of the ACM/SPEC International Conference on
Performance Engineering, pages 21–24, New York, NY, United States, 2018. ACM.

30. F. Xu, Y. Qin, L. Chen, Z. Zhou, and F. Liu. λdnn: Achieving predictable dis-
tributed dnn training with serverless architectures. IEEE Transactions on Com-
puters, 71(2):450–463, 2021.

31. H. Yu, A. A. Irissappane, H. Wang, and W. J. Lloyd. Faasrank: Learning to sched-
ule functions in serverless platforms. In Proceedings of the IEEE International Con-
ference on Autonomic Computing and Self-Organizing Systems (ACSOS), pages
31–40, New York, NY, United States, 2021. IEEE.


