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Abstract

As institutions scale in size and operational complexity, the need for responsive, targeted, and configurable
communication systems becomes increasingly critical. The CERN Notifications System was designed to ful-
fill this role across CERN'’s diverse and high-demand environment, enabling multichannel, user-customizable
notifications. However, performance limitations, particularly in scenarios involving large-scale message dis-
semination, threaten the system’s responsiveness and scalability. This dissertation addresses these limita-
tions through a focused performance analysis of the system’s routing component, the segment responsible for
message expansion, targeting logic, and delivery preparation.

To support this work, a detailed tracing-based performance analysis was conducted. Using OpenTelemetry
for instrumentation and Jaeger as a backend, the system was profiled under controlled workloads simulating
real-world notification patterns. This empirical evaluation provided insight into the system’s runtime behavior,
revealing areas of inefficiency and informing targeted optimization strategies.

Informed by the trace data, a set of prototype code-level optimization proposals was put forth. These
include the introduction of caching mechanisms, parallel execution via thread pools, and the adoption of
set data structures to replace list-based operations. Additionally, an outdated external API integration was
modernized and parallelized to further reduce latency during group resolution.

The combined improvements were discussed for their expected impact on system performance and
latency. This work strengthens the CERN Notifications System’s ability to meet future demand and offers
practical guidance on trace-driven optimization and instrumentation strategies in distributed, event-driven
architectures.
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1. Introduction

The CERN Notifications System originated within the
MALT project [3], an initiative aimed at replacing
proprietary software dependencies with open, main-
tainable, internally developed alternatives. Within
this strategic push for digital sovereignty, the need
emerged for a unified, programmable messag-
ing platform to coordinate communication across
CERN'’s sprawling and heterogeneous community.

Initially a component-level service, CERN Notifica-
tions evolved into a critical standalone system de-
signed to facilitate structured, scalable, and channel-
agnostic dissemination of information. It enables
services and user groups to programmatically tar-
get individuals or dynamically defined cohorts using
multiple delivery mechanisms such as email, SMS,
push, and chat services. The platform supports user
configurability for delivery preferences and integrates
with CERN’s identity infrastructure, offering a high
degree of control, flexibility, and interoperability.

With widespread adoption across operational and
user-facing domains, CERN Notifications [1] has be-
come the de facto communication backbone for sce-
narios ranging from user support to infrastructure
alerts. However, as reliance on the service grows,

so do the demands on its performance, particularly
in high-fan-out, time-sensitive use cases.

This work addresses the need for performance im-
provement by focusing on the routing component of
the system, the part responsible for resolving recip-
ients given a targeting rule or group specification.
Routing is a latency-critical phase in the message
delivery pipeline, especially when resolving large or
complex user groups. Through a data-driven per-
formance analysis effort, including distributed trac-
ing instrumentation and benchmark-based execut-
ing profiling, this work identifies core inefficiencies
and proposes targeted optimizations. These include
caching strategies, data structure revisions, and par-
allelization of sequential operations.

The overarching goal is not architectural overhaul,
but systematic enhancement of the router’s behav-
ior under load, guided by empirical evidence. By
doing so, this work contributes to ensuring the long-
term scalability and responsiveness of CERN Notifi-
cations, maintaining its ability to support communica-
tion at the speed and scale demanded by a modern
scientific institution.

The remainder of this document is structured as
follows: Section 2 reviews related work on notifica-



tion delivery architectures and performance analy-
sis techniques such as tracing and profiling. Sec-
tion 3 outlines the current CERN Notifications ar-
chitecture, emphasizing its components, data flow,
and performance-relevant design. Section 4 details
the experimental methodology, profiling results, and
proposed optimizations targeting the routing compo-
nent. Finally, Section 5 concludes with a summary of
contributions and directions for future improvement.

2. Related Work

The design and optimization of modern notification
systems draws upon decades of research and prac-
tical implementations in information distribution ar-
chitectures. This section examines the evolution of
these systems, from early web syndication proto-
cols to contemporary event-driven messaging frame-
works, and discusses the role of observability tools in
performance optimization.

RSS (Really Simple Syndication) was one of the
earliest technologies adopted for automated web
content distribution, offering a decentralized and
minimal-infrastructure approach to publishing up-
dates. At CERN, it gained traction due to its open
standards, cross-platform client support, and ease
of deployment, making it a suitable choice for ini-
tial efforts in disseminating institutional announce-
ments and alerts. The CERN Alerter system was
built around this model, using structured polling to
detect and notify users of new information.

Despite its early utility, RSS revealed several crit-
ical limitations as CERN’s communication needs
evolved. Its fundamental pull-based mechanism re-
quired clients to periodically poll servers for updates,
introducing inherent delays in message delivery and
consuming resources unnecessarily, even when no
new content was available. This made the system in-
efficient and unsuitable for time-sensitive use cases,
such as operational alerts or emergency notifica-
tions, where real-time responsiveness is essential.

Furthermore, RSS lacked support for user-specific
targeting, prioritization, or delivery customization. All
subscribers received the same content regardless of
relevance, urgency, or device constraints. In an or-
ganization as diverse and role-driven as CERN, this
broadcast model became increasingly inadequate.
The stateless nature of RSS, combined with its lim-
ited integration capabilities, particularly as computing
platforms diversified beyond Windows, further hin-
dered its scalability and maintainability.

These constraints highlighted the need for a more
modern and flexible communication infrastructure.
The shift from RSS-based polling to push-oriented,
event-driven architectures reflects this evolution, en-
abling systems that are more responsive, resource-
efficient, and capable of delivering personalized and
context-aware notifications at scale.

Publish-Subscribe Systems emerged as a more
scalable and flexible alternative for distributing in-
formation [6] as dynamic environments like CERN
outgrew the limitations of polling-based approaches.
Pub/sub architectures support push-based messag-
ing, where publishers emit messages that are imme-
diately propagated to interested subscribers. This
decoupling of producers and consumers of data is a
defining characteristic that makes pub/sub systems
inherently more scalable and responsive.

In the topic-based pub/sub model, which is the
most widely adopted variant, messages are catego-
rized under named topics. Subscribers express in-
terest in specific topics, and the system ensures that
only messages related to those topics are delivered
to them. This model is exemplified by systems such
as MQTT, Apache Kafka, and Google Cloud Pub/Sub
[2]. These systems are optimized for high-throughput
event streaming and offer features such as message
retention, delivery guarantees, and consumer group
coordination. While highly performant, topic-based
systems are limited in their expressiveness; they re-
quire the publisher and subscriber to have a prior
agreement on the topic structure, and cannot per-
form dynamic, context-aware filtering of content.

To address this, content-based pub/sub systems
were proposed [8]. In this model, subscribers spec-
ify conditions over message content itself, rather
than subscribing to predefined topics. The system
evaluates these conditions at runtime and delivers
only messages that satisfy them. Content-based
pub/sub introduces significantly more computational
overhead, particularly at the broker, which must eval-
uate each message against potentially complex sub-
scriber predicates. As a result, while more flexible,
content-based systems often suffer from reduced
throughput and increased latency, especially in high-
volume environments.

While pub/sub architectures form a conceptual
backbone for the notification delivery flow at CERN,
they are complemented by custom routing compo-
nents that interpret and act on message content,
user state, and delivery policies in ways that exceed
what is supported by traditional pub/sub infrastruc-
ture.

WebSub formerly known as PubSubHubbub, is a
standardized protocol developed by the W3C to en-
able real-time content delivery on the web using a
push-based model [18]. It was introduced as a more
modern alternative to RSS and Atom feeds, address-
ing the primary shortcomings of polling, namely la-
tency, server load, and inefficiency. Instead of rely-
ing on clients to repeatedly check for new content,
WebSub introduces a publish-subscribe mechanism
using webhooks to notify subscribers as soon as new
data is available.

The protocol operates with three core roles: the



publisher, who owns the content (e.g., a website or
service), the subscriber, who wants to be notified of
updates, and the hub, which acts as a mediator be-
tween the two. When content changes, the publisher
notifies the hub, which then sends HTTP POST re-
quests to all registered subscribers, delivering con-
tent directly to their endpoints. This architecture en-
sures timely delivery and significantly reduces redun-
dant polling traffic, making WebSub an efficient and
lightweight solution for real-time content syndication.

Despite its advantages, WebSub is not suitable
for the complex, institution-wide notification require-
ments at CERN. The CERN Notifications system
does more than simply push content, it routes mes-
sages based on a rich set of user-defined rules, de-
livery contexts, group memberships, and dynamic fil-
ters. WebSub lacks native support for such inter-
mediate decision-making, blindly forwarding updates
from publishers to all subscribers without regard for
relevance, delivery conditions, or user context. Fur-
thermore, its reliance on HTTP webhooks as the sole
delivery mechanism limits its applicability in environ-
ments like CERN, where notifications must be deliv-
ered via diverse channels such as SMS, email, push
services, and internal messaging platforms, each
with distinct protocols, failure modes, and delivery
guarantees. WebSub’s design offers no means to ac-
commodate this heterogeneity or support critical de-
livery features like prioritization or preference-aware
routing.

System Profiling and Performance Optimization
requires a structured approach:

» Performance characterization through instru-
mentation to identify critical paths

 Bottleneck analysis to distinguish essential op-
erations from incidental overhead

» Targeted intervention using appropriate opti-
mization techniques

Tracing is a widely adopted mechanism in mod-
ern systems for performance analysis. It enables de-
velopers to collect fine-grained temporal data about
system behavior across services. The feasibility and
benefits of distributed tracing in production environ-
ments have been recognized for some time, with
foundational systems like Google’s Dapper [17] lay-
ing the groundwork for modern tracing architectures.

Building upon this model, the OpenTelemetry
project has emerged as the de facto industry stan-
dard for observability instrumentation. It is an open-
source project under the Cloud Native Computing
Foundation (CNCF) and is actively maintained and
adopted by a broad range of organizations, including
Google, Microsoft, Amazon, and many others [15].
OpenTelemetry [14] provides vendor-agnostic APls
and SDKs for capturing metrics, logs, and traces,

enabling comprehensive insight into system perfor-
mance with minimal vendor lock-in.

Attention is focused on open-source distributed
tracing systems, which allow full control over deploy-
ment and integration. Numerous open-source op-
tions have been developed in recent years, varying
in architecture, features, and maturity. A recent com-
parative study [9] reviews over 30 such tools and
highlights the diversity in tracing capabilities and im-
plementations.

Jaeger , originally developed at Uber and now
maintained by the CNCF, is a production-grade dis-
tributed tracing platform designed for high-scale mi-
croservices and event-driven systems. It supports
trace ingestion, storage, querying, and visualization,
with features like service dependency graphs and la-
tency analysis. Jaeger’s modular architecture sup-
ports various backends and horizontal scaling. Its
native compatibility with OpenTelemetry ensures low
integration overhead and future-proof observability.
These qualities, combined with its maturity and align-
ment with CERN’s existing CNCF-based infrastruc-
ture, made it a natural choice for deployment.

Zipkin inspired by Google’s Dapper and developed
by Twitter, is a lightweight distributed tracing system
known for its simplicity and low overhead. While ef-
fective for basic latency tracing, it lacks advanced
features like high-cardinality tagging, dynamic sam-
pling, and full OpenTelemetry support. Its limited
scalability and slower development pace make it less
suitable for complex, high-scale environments like
CERN, though it remains useful in lightweight or de-
velopment settings.

SigNoz is a modern, open-source observability
platform built around OpenTelemetry, offering inte-
grated support for logs, metrics, and traces with
a developer-friendly Ul. It aims to be a full-stack
alternative to tools like Datadog, enabling unified
observability through a single dashboard. While
promising and feature-rich, its relative immaturity and
smaller community make it less suitable for CERN’s
production-grade requirements at this stage.

Among the evaluated solutions, Jaeger emerged
as a strong candidate for integration within CERN’s
monitoring infrastructure [12]. Its open-source
foundation, scalability, and native compatibility with
OpenTelemetry make it particularly well-suited to
the demands of large-scale, distributed environ-
ments. The combination of OpenTelemetry and
Jaeger aligns with CERN’s engineering principles,
favoring vendor-neutral, ecosystem-compatible tech-
nologies, which simplifies integration and promotes
maintainability. This strategy leverages existing fa-
miliarity and infrastructure support, reducing oper-
ational overhead and increasing adoption potential



across projects.

The integration of tracing as a core observability
mechanism further enhances the system’s maintain-
ability, debuggability, and scalability. Observability,
as emphasized by Majors et al. and the CNCF, is
not merely about monitoring but about enabling en-
gineers to infer internal system states from external
outputs [11, 4]. Recent research underscores the
value of tracing in operational intelligence. Shahedi
et al. [16] show how statistical models applied to
trace data can isolate performance regressions with-
out processing entire trace sets. Similarly, Ezzati-
Jivan et al. [7] use dependency graphs from soft-
ware traces to identify concurrency bottlenecks, and
Ibidunmoye et al. [10] apply NLP techniques to trace
logs for anomaly detection. Alizadeh et al. [5] de-
scribe critical path tracing as a method for revealing
latency-dominant execution paths, while Ostermann
et al. [19] show that performance tuning guided by
trace data can yield significant gains in stream pro-
cessing systems. Together, these studies validate
the central role of tracing in optimizing and under-
standing complex, distributed workflows.

3. Architecture

The CERN Notifications service is built as a modular
and decoupled platform for delivering targeted mes-
sages to users and systems. lts architecture aims
for flexibility, maintainability, and scalability. The sys-
tem is composed of several components that interact
over a message-oriented middleware infrastructure.
Figure 1 is an architecture overview.
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Web Interface is a web-based portal that serves
as the primary interface for interacting with the sys-
tem. Through it, users can configure channels, set
preferences, register devices, and issue notifications.
This interface communicates with the backend over
a REST API, providing a clean separation between
frontend interactions and server-side logic.
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Figure 1: Existing Architecture

Backend Server exposes a RESTful API con-
sumed by both users and system components. It per-
forms authentication and authorization checks, vali-

dates incoming requests, and coordinates operations
such as modifying channel configurations, updating
preferences, or initiating notifications. Upon receiv-
ing a valid notification request, it executes the neces-
sary processing, logs relevant audit information, and
publishes the message to the routing queue.

Router handles the most computation-heavy logic
in the pipeline. It processes messages from the
queue and applies multi-layered filtering and expan-
sion logic. This includes resolving group member-
ships, applying user-defined preferences, honoring
mutes, and generating individualized recipient lists.
A single incoming notification can result in thousands
of customized messages, each routed to its appropri-
ate delivery queue for downstream handling.

Consumers components exist for each delivery
mechanism, such as email, SMS, push, or chat plat-
forms. These consumers handle their queues, gen-
erate the appropriate payloads, and deliver mes-
sages to the final endpoints using channel-specific
protocols and error-handling routines.

Data Persistence is handled by a PostgreSQL
database, hosted by CERN’s infrastructure, to per-
sist all key data: user and channel definitions, pref-
erences, mute states, notification records, and sup-
porting metadata. Additionally, an etcd-based key-
value store is employed to support operation dedupli-
cation and to maintain an auditable log of state tran-
sitions, particularly valuable in failure recovery sce-
narios, and security reviews.

Identity Integration which encompasses user
identity and group memberships, are managed cen-
trally by CERN’s identity service. It provides author-
itative data on accounts and access rights. This ex-
ternal service is critical for enforcing access control
policies and resolving group-channel associations.
Backend and routing components interact with it via
a dedicated API to determine which users belong to
which groups and, consequently, who should receive
specific notifications.

Architecture considerations

Although the system’s architecture emphasizes mod-
ularity and scalability, each component introduces its
own set of performance considerations. The back-
end server, implemented in Node.js [13], leverages
its asynchronous, event-driven architecture to effi-
ciently manage high volumes of concurrent requests.
Thanks to the non-blocking I/O model, operations
such as database interactions or message queue in-
sertions are handled asynchronously and with min-
imal overhead, ensuring that the backend remains
responsive even under heavy load.



The consumer services, which are tasked with de-
livering notifications to their respective endpoints, are
built to scale horizontally. Each message retrieved
from their queues is processed independently, al-
lowing multiple instances of a consumer to run in
parallel without risk of conflict or shared state is-
sues. This design is particularly effective during peak
activity periods, as increasing the number of con-
sumer instances leads directly to higher process-
ing throughput, improving responsiveness without re-
quiring changes to system complexity.

The router component, however, poses more sig-
nificant performance challenges. While it too, oper-
ates on a message queue, its task is considerably
more compute-intensive. Routing involves resolving
dynamic group memberships, evaluating complex fil-
tering rules, and performing external lookups, all of
which can result in the fan-out of a single message
to thousands of individualized deliveries. These op-
erations are stateful, interdependent, and sensitive
to input scale and structure. In situations where
messages target large or deeply nested groups, ef-
fectively triggering mass delivery across the user
base, the router becomes the system’s limiting factor.
Routing logic requires specialized performance tun-
ing and analysis, the details of which are discussed
in the subsequent chapters.

To gain clearer insight into the system’s internal
behavior and the expansion process it performs, con-
sider the lifecycle of a notification directed at a group,
as illustrated in Figure 2. The process begins when
the backend server receives a request to dispatch a
notification. This request is first validated, authoriza-
tion is verified, and an audit entry is recorded. Any
necessary updates to the database are applied, after
which a single message representing the notification
is placed onto the router message queue.
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Figure 2: Notification Flow
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Once the router retrieves this message, it initiates
the expansion phase by resolving the target group
into its members. This step involves querying the
external identity service to retrieve up-to-date group
membership data and obtain the relevant user ac-
counts. For each resolved user, the system eval-
uates their delivery preferences and registered de-
vices. Depending on user configuration, multiple de-

livery channels—such as email, SMS, or other sup-
ported platforms—may be applicable. Consequently,
several discrete message objects may be generated
per user, each representing a unique delivery route.

These individualized messages are then dis-
tributed into the appropriate message queues, seg-
mented by delivery type. Each consumer compo-
nent subsequently retrieves and processes its corre-
sponding messages, executing delivery via its des-
ignated medium. This end-to-end workflow, starting
from a single group-targeted notification, results in
a significant amplification of delivery tasks, underlin-
ing the workload implications introduced by group ex-
pansion and per-user customization.

This architectural analysis reinforces the rationale
for focusing optimization efforts on the router com-
ponent, particularly in light of the broader goal of im-
proving the system’s responsiveness in critical com-
munication scenarios.

4. Assessment
4.1. Setup and Methodology

To ensure a stable and isolated environment for test-
ing, the system is deployed on a dedicated Ubuntu
machine. This minimizes interference from unre-
lated background processes and establishes a repro-
ducible foundation for performance measurements.
The router component, central to the performance
evaluation, is deployed paired with a local Jaeger
all-in-one instance, which provides distributed trac-
ing capabilities. Jaeger enables the collection of fine-
grained trace data, including span-level timing infor-
mation, offering detailed visibility into the internal be-
havior of the router.

To replicate a realistic operating environment and
preserve functional parity with production, essen-
tial supporting services such as the PostgreSQL
database and the etcd key-value store are also
hosted locally. This setup recreates the key architec-
tural dependencies relevant to the router’s behavior,
providing an accurate testbed for evaluating its per-
formance characteristics.

The testing approach centers on a series of con-
trolled workload scenarios designed to stress differ-
ent aspects of the router’s logic. Tests are triggered
either through the user-facing interface or by directly
submitting API requests to the backend, both result-
ing in the enqueuing of a routing message. Test pa-
rameters vary across key dimensions, including the
number of users and/or groups in a channel and the
characteristics used for filtering or matching recipi-
ents. These variables are selected to expose per-
formance limits under realistic and varied conditions.
Each scenario corresponds to a distinct combination
of these parameters. An overview of the test scenar-
ios is presented in Table 1.

4.2. Timing Results and Performance
To provide context for the performance of the current
system implementation, this subsection reports the



Test | Users | Groups Intersection
1 multiple 1 No
2 multiple | multiple No
3 multiple 0 Yes - large group
4 multiple 0 Yes - small group
5 0 1 -large | Yes - large group
6 multiple 0 Yes - large group

Table 1: Test cases

total execution time recorded for each of the defined
test scenarios. The measurement reflects the time
taken by the router from the moment a notification is
received until all intended recipients have been fully
processed for message delivery. The collected re-
sults are summarized in Table 2.

Table 2: Total execution time per test case
Test Case | Total Execution Time
1.89s
5.86s
4510 s
2.64s
207.00 s
206.00 s

OO | W N —

The execution times across test cases reveal key
performance drivers. Test cases 1 and 2, based on
direct user and group memberships, show low la-
tency, with test 2 taking slightly longer due to more
entities, indicating that cost scales with the number
of distinct members.

Test case 3, which introduces intersection target-
ing with a large group, results in a sharp performance
drop, suggesting that intersection logic over a large
user base is costly. Test case 4, using the same logic
but a smaller group, runs much faster, reinforcing that
group size is an important factor, not only the inter-
section mechanism itself.

Test cases 5 and 6 show the highest execution
times, both involving large group targets. Despite dif-
fering channel structures, one with a member-group,
the other with many member-users, their similar run-
times suggest that total group size, rather than com-
position, drives performance impact.

Test case 1 - multiple users

Trace analysis of this test reveals a clear candidate
for a performance bottleneck: the group fetching and
expansion phase, which dominates the total execu-
tion time in Figure 3.

Figure 3: Test case 1 - Getting group

Test case 2 - multiple users and groups
This test introduces multiple groups, causing the time
to grow linearly with the number of groups. Figure 4

illustrates the cumulative time caused by the group
resolution requests.

Figure 4: Test case 2 - Getting groups

In this test, another candidate bottleneck issue is
shown more clearly. The iteration of each of the
members that it has resolved to in the previous step
adds up to a non-insignificant amount of time. This
can be observed in Figure 5.
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> | routing_automatic has not logged_in -

Figure 5: Test case 2 - lterating Users

Test case 3 - multiple users intersect large group

This test case introduces intersection targeting and
further confirms that resolving group members via
CERN'’s authorization service remains the primary
performance bottleneck. As shown in Figure 6, the
system issues multiple consecutive HTTP GET re-
quests to the authorization API, each ranging from
600 ms to over 1100 ms. These paginated re-
sponses cumulatively introduce several seconds of
delay, particularly significant for large groups.
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| routing_automatic
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| routing_automatic HTTP GET -
| routing_automatic +17p o
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T
| routing_automatic +17e ceT -
| routing_automatic +17p ce1

T

| routing_automatic +17e o

| routing_automatic HTTP GET [ ]

Figure 6: Test case 3 - Paginated Group Return

As in previous tests, once group resolution com-
pletes, the system proceeds with a series of user-
level database lookups. While each individual query
remains fast (1-3 ms), the increased number of
users in this test amplifies the cumulative cost, re-
sulting in a notable 34 seconds of additional execu-
tion time.

Test case 4 - multiple users intersect small group
Test case 4 reduces the size of the intersecting
group compared to the previous test, resulting in a



noticeably shorter runtime. However, group reso-
lution still accounts for the dominant portion of to-
tal execution time, 1.42 seconds overall, with the
add_users_from_groups span alone consuming 947
ms (Figure 7). This reaffirms group membership ex-
pansion as a major latency source, regardless of in-
tersection.

| routing_automatic on_nesssc

| routi

| routing_automatic ;
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> | routing_automatic - '
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| routing tic calcuiate_sub

> | routing_automatic

Figure 7: Test case 4 - Starting Segment

Test case 5 - large group intersect large group
Test Case 5 is highly informative, it is the first of the
two high-latency benchmarks, designed to simulate
a stress scenario where both the channel and the in-
tersection target involve large user groups. This mir-
rors realistic high-volume notification cases, partic-
ularly when intersecting broad organizational units,
common when attempting to reach as much of the
user base as possible through overlapping groups.
The queried group’s large size leads to multiple
paginated responses from the CERN Authorization
Service. Each HTTP request adds several hundred
milliseconds of delay, and due to their strictly sequen-
tial execution, the cumulative latency reaches several
seconds (Figure 8). This reaffirms group resolution
as a fundamental bottleneck in the pipeline.

A I routing_automatic add_users_from_groups ]
4 | routing_automatic for_each_group ]
VI routing_automatic get_group_users D

v | routing_automatic get_group_u... S
> | routing_automatic oet _a... )
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> | routing_automatic et ... |
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> | routing_automatic cet q... |
> | routing_automatic get .. |
> | routing_automatic get .. |
> | routing_automatic get .. |
> | routing_automatic get g.. |
> | routing_automatic get o.. |
> | routing_automatic get q... |
> | routing_automatic et g... |

Figure 8: Test case 5 - Resolving Group Users

However, this is not the only issue. After resolving
memberships, the system computes the intersection
between two large and overlapping groups, produc-
ing a high-volume user set. This triggers a second
performance-intensive phase: per-user processing.
The trace illustrates a dense sequence of spans, one
for each user, involving object preparation, prefer-
ence, mute checks, and database lookups. Though
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Figure 9: Test 5 - Per user processing

individually fast, these operations accumulate sub-
stantial overhead when executed thousands of times,
significantly contributing to the overall runtime (Fig-
ure 9).

Test case 6 - multiple users intersect large group

This test case mirrors Test Case 5 in overall scale,
involving a high number of users both in the channel
and the target group. The key difference is structural:
the large member group is replaced with a large set
of direct member users, while still targeting a sizable
group. Despite this change, total execution time re-
mains comparable.

As before, group resolution via CERN’s Authoriza-
tion Service is the dominant performance bottleneck.
The trace also shows the familiar sequential per-user
processing pattern after resolution. Although the ab-
sence of a large group slightly reduces the load dur-
ing the initial expansion phase, the large volume of
targeted users and the cost of repeated per-user op-
erations keep the total runtime similar.

4.3. Performance Analysis and Solution Proposals
Inefficient Sequential Processing

A major factor behind poor performance in large-
scale tests (e.g., cases 3, 5, and 6) is the router’s
strictly linear execution model. This design forces
all user and group-level operations, such as group
expansion, user validation, preference checks, and
mute evaluations, to execute serially, even when
tasks are independent.

Listing 1: router.py - get_channel_subscribed_users

1+ function get_channel_subscribed_users(
channel_id):

2 channel = fetch_channel (channel_id)

3 unsubscribed_ids = []

4 for user in channel.unsubscribed:

5 unsubscribed_ids.append (user.id
)

6 subscribed_users = []

7 for member in channel.members:

8 if member.id not in

unsubscribed_ids:
9 user = build_user (member)



10 subscribed_users.append(
user)
11 return subscribed_users

While individual operations are lightweight, their z

cumulative cost becomes significant when repeated
thousands of times. This is especially evident in
functions like get_channel_subscribed_users and
get_group_users_api (Listings 1 and 2), where
users and groups are processed one at a time de-
spite being eligible for concurrent handling.

Listing 2: authorization.py - get_group_users_api

function get_group_users_api(group_id):

1

2 token = get_auth_token()

3 data = []

4

5 response = request_group_members (

group_id, token)

6 data.extend(response.members)

7

8 while response.has_next_page:

9 response =
request_group_members (
group_id, token, next_page=
response.next)

10 data.extend (response.members)

12 group_users = []

13 for member in data:

14 user = prepare_user (member)

15 if user:

16 group_users.append (user)

18 return group_users

Group targeting logic further illustrates the ineffi-
ciency, as both group and user expansions occur se-
quentially with no parallel APl calls. The lack of paral-
lelism leads to poor scalability. As notification targets
grow, routing time increases linearly, making the sys-
tem unsuitable for high-volume or latency-sensitive
environments.

Parallelization Proposal

To address this, critical sections of the routing logic
were refactored as part of the prototype solution pro-
posal, using Python’s ThreadPoolExecutor (Listing
3) to execute independent tasks concurrently. This
change was applied to operations such as group res-
olution (add_users_from_group) and per-user pro-
cessing, where each task can safely run in parallel
and benefits from overlapping I/O waits.

Listing 3: Parallelize Iterative Work - Pseudo-code

1 function add_users_from_groups():

2 // Fetch users from multiple groups

in parallel

with thread_pool:

4 futures = submit_all(
get_group_users (group_id)
for group_id in groups)

5 group_users = set ()

@

7 for future in completed(futures

)

result = future.result ()

usernames =
extract_usernames (result
)

10 group_users.update (

usernames)

12 // Filter unsubscribed users

13 unique_usernames.update (group_users
)

14 unique_usernames.remove_all(

unsubscribed_users)

16 // Fetch full user data in parallel
17 with thread_pool:
18 futures = submit_all(

get_system_user (username)
for username in
unique_usernames)

19 temp_users = []

20

21 for future in completed(futures
):

22 result = future.result ()

23 temp_users.append(result)

Conceptually, parallelization shifts the effective
wall-clock complexity from O(N - T') to approximately
O(max(T)), assuming ideal conditions and no bot-
tlenecks. While this is not a true complexity reduc-
tion, it offers practical performance gains in latency-
sensitive scenarios.

Membership Testing

A key inefficiency in current routing logic stems from
the overreliance on Python’s 1ist. This is especially
true for membership checks, where set would pro-
vide significantly better performance and scalability.
This choice negatively impacts runtime efficiency, es-
pecially under high user volumes or in multithreaded
scenarios.

Membership tests like x in list have linear
time complexity O(N). When used repeatedly
within loops or user resolution logic—as seen in
get_target_users (Listing 4), the cost becomes
quadratic with respect to the number of users. This
adds substantial latency when lists grow into the hun-
dreds or thousands of entries.

Listing 4: router.py - Membership testing example snippet-
Pseudo-code

1+ for user in target_users:

2 if user.username not in
unsubscribed_users:
3 subscribed_target_users.append(
user)

Additionally, lists are not thread-safe and require
explicit locking for safe concurrent access, compli-
cating any move toward parallelism. Sets, in con-
trast, support constant-time membership checks and



are better suited for concurrent workloads where fre-
quent lookups dominate.

Leveraging Sets Proposal

Replacing lists with set or frozenset improves both
efficiency and correctness. Sets offer average-
case constant-time membership checks (O(1)), a
significant improvement over the linear-time lookups
(O(NNV)) required by lists. This becomes critical in ar-
eas where membership checks are frequent, such as
filtering unsubscribed users or resolving group tar-
gets.

Routing data, e.g., user IDs, group names, is typ-
ically unique and hashable, making it well-suited for
set-based operations. Sets also inherently prevent
duplicates, simplifying logic and ensuring correct-
ness when merging user collections from multiple
groups.

In concurrency contexts, frozenset is preferred
due to its immutability. It avoids mutation-related race
conditions and can be safely passed across threads
or reused in caching.

Set operations also align well with routing logic.
Tasks like removing unsubscribed users from a tar-
get pool using difference_update are both faster
and more expressive. As shown in Listing 5, this
avoids redundant iteration and scales predictably
with input size.

Listing 5: Set and Difference Update prototype solution proposal

- Pseudo-code

1 function get_target_users(

notification_id, channel_id):

2 target_users = set(
get_target_users_from_db(
notification_id))

3 target_groups = set(
get_target_groups(
notification_id))

4
5 if not target_users and not
target_groups:

6 return empty_set
7
8 unsubscribed_users = set(

get_unsubscribed_users (
channel_id))

10 if target_groups:
11 add_users_from_groups (
notification_id, channel_id,
target_users, target_groups
, unsubscribed_users)

13 target_users.difference_update (
unsubscribed_users)
14 return target_users

Dominant Bottleneck - Group Resolution
As observed during testing (especially in test cases
3, 5, and 6), group membership resolution via the

CERN Authorization is a major bottleneck. It is done
through synchronous, paginated (for large groups)
HTTP requests, processed sequentially and block-
ing per group. This results in significant cumulative
latency.

As shown in Listing 1, each group is resolved one
at a time, with each page fully fetched and processed
before the next. No parallelism is used, and all API
interactions block execution.

This design tightly couples routing performance to
the responsiveness of an external service, creating
a critical scalability and latency issue, especially in
time-sensitive scenarios like alerting.

Caching and Concurrency Proposal

Full replication of the group database is infeasible,
but caching provides a practical compromise. By
memoizing previously fetched group memberships,
the system can avoid redundant API calls. Python’s
functools.lru_cache can be used for this purpose,
keyed by group ID. As shown in Listing 6, the en-
tire paginated result is assembled and cached as
a frozenset, ensuring immutability, hashability, and
thread safety.

Listing 6: Cached prototype solution proposal - Pseudo-code

t from functools import lru_cache

2

3 @lru_cache (maxsize=None)

4 function get_group_users_api(group_id):

5 token = get_access_token()

6 headers = {"Authorization": "Bearer

<token>"}

7

8 all_members = []

response = get_group_members (
group_id, headers)

10 all_members.extend (response.data)

11

12 while response.has_next_page:

13 response = get_group_members(
group_id, headers, page=
response.next)

14 all_members.extend (response.
data)

15

16 return frozenset (

17 prepare_user (member)

18 for member in all_members

19 if prepare_user (member) is not
null

)

The previous group resolution relied on the now-
deprecated endpoint, which was replaced with a new
fully supported endpoint. The updated API response
includes detailed pagination metadata, such as total,
offset, and limit, enabling clients to determine the to-
tal number of result pages and their boundaries. This
metadata is critical for implementing more advanced
retrieval strategies, such as non-sequential access
or parallel fetching of paginated results.



With pagination metadata available from the up-
dated endpoint, a solution proposal was designed
to parallelize intra-group resolution. After fetching
the first page and extracting pagination parameters,
the remaining pages are calculated and retrieved
concurrently using multiple threads or asynchronous
calls. Each page is processed independently, and
user objects are built in parallel using existing trans-
formation logic. This approach compresses wall-
clock latency from linear (O(P-T)) to a possibly near-
constant (O(T)), where P is the number of pages
and T is the time to retrieve one. This enhancement
is especially beneficial for large groups, where se-
quential page retrieval previously imposed a signifi-
cant delay.

5. Conclusions

This work aimed to uncover and design solution pro-
posals to address performance bottlenecks and ar-
chitectural limitations in a system designed to deliver
targeted notifications, especially in scenarios involv-
ing dynamic, group-based user resolution and the
need for timely dispatch. Through empirical analy-
sis and controlled experimentation, it achieved a de-
tailed understanding of system behavior under load,
leading to a set of focused prototype proposal en-
hancements across several technical layers.

One of the central findings was the identification of
group resolution, particularly the interaction with the
CERN Authorization Service, as a primary source of
latency. However, the performance issues extended
beyond this single factor, revealing a series of inter-
related inefficiencies, including linear, sequential pro-
cessing, redundant external lookups, and inefficient
data structures. These were addressed not through
isolated fixes, but by rethinking broader execution
patterns and data handling mechanisms.

Multithreading was introduced as a mechanism
to decouple slow I/O operations and take advan-
tage of available compute resources. While the
group expansion process can benefit most visibly
from this change, the adoption of concurrent execu-
tion paradigms means a broader shift toward a more
scalable and reactive system model. This was fur-
ther reinforced by the replacement of inefficient list-
based logic with set-based operations, simplifying fil-
tering and estimated to reduce processing overhead,
especially in high-volume scenarios.

Caching was also evaluated as a performance
strategy, focusing on reducing the cost of repeti-
tive operations such as group membership queries.
The analysis carefully considered trade-offs related
to cache freshness and invalidation, recognizing the
operational complexity that such mechanisms may
introduce.

The use of observability and distributed tracing
played a critical role in guiding the optimization pro-
cess. Detailed instrumentation within the routing
component allowed for precise and informed bottle-

neck identification. This underscored the value of
observability not just for debugging, but as a design
principle that supports ongoing system evolution.

For CERN’s Notification System, the adoption of
these changes can translate to faster, more reliable
message routing—crucial for time-sensitive commu-
nications ranging from routine updates to emergency
alerts—ultimately enhancing the organization’s oper-
ational responsiveness.
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