
Scalable Atomic Multicast

Lu��s Rodrigues
Rachid Guerraoui
Andr�e Schiper

DI{FCUL TR{98{2

January 1998

Departamento de Inform�atica
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1700 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/biblioteca/tech-reports.
The �les are stored in PDF, with the report number as �lename. Alternatively, reports
are available by post from the above address.

Scalable Atomic Multicast

Lu��s Rodrigues�

DI-FCUL

Lisboa, Portugal

Rachid Guerraoui

DI-EPFL

Lausanne, Switzerland

Andr�e Schiper

DI-EPFL

Lausanne, Switzerland

January 1998

Abstract

We present a new scalable fault-tolerant algorithm which ensures to-
tal order delivery of messages sent to multiple groups of processes. The
algorithm is scalable in the sense that: (1) any process can multicast a
message to one or more groups of processes without being forced to join
those groups; (2) inter-group total order is ensured system-wide but, for
each individual multicast, the number and size of messages exchanged de-
pends only on the number of addressees; (3) failure detection does not
need to be reliable.

Our algorithm also exhibits a modular design. It uses two companion
protocols, namely a reliable multicast protocol and a consensus proto-
col, and these protocols are not required to use the same communication
channels or to share common variables with the total order protocol. This
approach follows a design methodology based on the composition of (en-
capsulated) micro-protocols.

1 Introduction

Totally ordered multicast is a fundamental abstraction for building distributed
reliable applications. In this paper we propose a new algorithm to implement to-
tal order multicast, named SCALATOM (SCALable ATOmic Multicast), which
is particularly well suited for large scale applications.

1.1 Characteristics of SCALATOM

A total order broadcast primitive (sometimes called atomic broadcast) enables
to send messages to all the processes in a system, with the guarantee that all
processes agree both on either to deliver or to not deliver a message, and the
order according to which the messages are delivered. Contrary to a broadcast

�Copyright 1998 IEEE. Section of this report were Published in the Proceedings of IC3N'98,
12-15 October 1998 in Lafayette, Louisiana. Personal use of this material is permitted. How-
ever, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works, must be obtained from the IEEE.
Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane /
P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

1

that is targeted to the set of all the processes in a system, a multicast can
be targeted exclusively to a subset of the processes. Similarly to total order
broadcast, total order multicast ensures that the addressees of every message,
agree either to deliver or to not deliver the message, and no two processes deliver
any two messages in a di�erent order.

In this paper we assume a multicast model where processes are organized
into multicast groups. This model corresponds to the practical situations where
process groups are used to manage replicated objects (each group represents a
logical replica). A fundamental aspect of our approach is that it assumes an
open model, i.e., senders do not need to join groups they send messages to, and
can potentially send messages to any group in the system with global guarantees
of inter-group total order. This di�ers substantially from a model o�ering just
local total order [4, 16, 23]1.

To illustrate the interest of supporting an open model consider the follow-
ing example, ilustrated by Figure 1,where di�erent providers (clients) advertise
their products through many di�erent brokers (servers). Providers disseminate
updates about availability and prices of their products through multicasts sent
to the set of registered (interested) brokers. Di�erent brokers represent di�er-
ent sets of providers. For availability, brokers are replicated, and total order
is used to maintain replica consistency. Using an open model, updates can be
disseminated in a single totally ordered multicast. In contrast, if a closed model
o�ering local order was used, all brokers would need to belong to the same
group. An alternative approach would be to decouple each update in several
multicasts, one for each group, but in this case the \all-or-nothing" property
of a single multicast is lost: in the event of the sender's failure, some brokers
may receive an update and others may not, leading to undesirable inter-broker
inconsistencies.

The motivation of our work is to support an open model of multicast com-
munication in a scalable manner. Before presenting our algorithm, we start by
clarifying some issues related to scalability issues in total order algorithms.

1.2 On scalability issues for total order multicast

One might implement a total order multicast algorithm with a total order broad-
cast. Indeed, let
 denote the set of all the processes in the system, and let
Dst(m) �
 denote the subset of the processes to which the message m is mul-
ticast. (1) The pair (m;Dst(m)) is broadcast to all the processes in
, using
the total order broadcast primitive; (2) a process pi 2
 delivers m only if
pi 2 Dst(m). With this transformation and even if Dst(m) is a small subset
of
, a multicast is as costly as a broadcast, since all the processes in the sys-
tem are involved in the algorithm, even those that are not concerned with the
message m. Such a multicast algorithm is hence inherently non-scalable.

Guerraoui and Schiper introduced the notion of participant minimality to
characterize \genuine" multicast algorithms [14]. Roughly speaking, the partic-
ipant minimality property requires that the execution of the algorithm imple-
menting the total order multicast of a message m to a destination set Dst(m)
involves only the sender process, and the processes in Dst(m). The same authors

1Local total order does not prevent processes in intersecting destination sets to deliver
messages in di�erent orders.

2

Clients

Service Provider SPA Service Provider SPB

Broker B2
for SPA and SPB Broker B3

for SPB
Broker B1
for SPA

multicast (B1,B2) multicast (B2,B3)

Figure 1: Open multicast model

have proposed a total order algorithm that satis�es this property. However, the
algorithm relies on causal order delivery of messages, which implicitly means
that the size of the messages exchanged is a function of the total number of
processes in the system. We go a step further in this paper by introducing the
property of message size minimality, which requires that the size of the mes-
sages in the protocol implementing the total order multicast of a message m to
a destination set Dst(m), is a function of the number of processes in Dst(m)
(i.e., and not a function of the total number of processes in the system).

The SCALATOM algorithm presented in this paper is also scalable in other
dimensions. First, a process can multicast a message to one or more groups
in the system without being forced to join those groups; thus group size does
not grow with the number of clients. Second, SCALATOM relies on underlying
components that are also scalable, namely a reliable multicast and a consensus
protocol, and SCALATOM does not depend neither on speci�c implementations
of these components, nor on implicit inter-dependencies among them. Finally,
SCALATOM does not make strong assumptions on the underlying communi-
cation system, namely it does not assume neither reliable failure detection nor
causal (or even �fo) ordering of messages.

None of the total order multicast algorithms we know about reaches SCA-
LATOM's degree of full scalability. Previous total order multicast algorithms
either (i) implement just local total order, e.g., [4, 16, 23, 22], or (ii) do not
satisfy the participant minimality property, e.g., [1, 6, 5, 7, 9, 19], or (iii) do
not satisfy the message size minimality, e.g., [14], or (iv) require a group mem-
bership service that can exclude correct processes from the groups [3], or (v)
require a failure detector that never makes any false suspicion, which is known

3

to be unrealistic in large scale systems that can be subject to link failures,
e.g., [12, 18, 25].

In comparison with previous non-scalable total order multicast algorithms,
SCALATOM has a higher latency degree, and this points out an interesting
trade-o� between scalability and latency. For instance, SCALATOM requires
two more communication steps than an algorithm based on the broadcast algo-
rithm of [5], which does not satisfy neither participant minimality nor message
size minimality, and SCALATOM requires one more communication step than
the MTO algorithm of [14], which satis�es participant minimality but not mes-
sage size minimality.

1.3 Overview of the paper

The rest of the paper is structured as follows. We �rst present the design
and structure of SCALATOM in Section 2. Section 3 gives the system model
and recalls some de�nitions. Section 4 describes the SCALATOM algorithm.
Section 5 discusses related work, and compares the cost of SCALATOM with
that of previous total order multicast algorithms. Section 6 concludes the paper.
The correctness proofs of the SCALATOM algorithm are in the Appendix.

2 Achieving scalable atomic multicast

This section presents the design principles we have followed in the conception
of the SCALATOM algorithm. We start by introducing the intuition behind
our algorithm, making the bridge to previous algorithms that follow the same
principle. Then we discuss the structure of SCALATOM, giving emphasis to its
modular structure.

2.1 Principle of SCALATOM

SCALATOM is inspired by the Multicast Total Order Algorithm (MTO) of
Guerraoui and Schiper [14], which, in turn, was inspired by an algorithm of
Skeen [24]. Skeen's algorithm satis�es the participant minimality property, but
can only be correct under the assumption of a perfect failure detector. MTO
does not assume a perfect failure detector (nor a membership service), but
requires causally ordered messages. This assumption restricts the scalability
of MTO, as the size of causal information that needs to be piggybacked with
each protocol message can be of the order of n2, where n is the total number of
processes in the system (i.e., MTO does not satisfy the message size minimality
property)2.

The motivation of this paper was to design an algorithm which does not de-
pend on causal order but which still ensures the same useful properties as MTO.
Although our SCALATOM algorithm shares some similarities with Skeen's al-
gorithm and MTO, there are also signi�cant di�erences. Before clarifying these
di�erences, we �rst start by describing the basic structure, common to all pro-
tocols.

2The conservative implementation of causal order presented in [4] would not lead to violate
the message size minimality property, but requires a group membership service.

4

In all three algorithms, the main idea consists in de�ning a unique sequence
number for every message that is multicast, and delivering the messages ac-
cording to their sequence numbers. The three algorithms perform the following
steps.

1. Messages are reliably disseminated to all addressees.
2. Participant processes (sender and addressees of messages) receive multi-

cast messages, assign timestamps to these messages, and keep these messages
in a pending bu�er.

3. For each message m, participants agree on a unique Sequence Number,
noted SN(m), which is computed using, as input for the agreement, the times-
tamps assigned to m. Messages which have been assigned a SN are moved from
the pending queue to a delivery queue, where they are inserted in the order of
their sequence number.

4. For each message m, participants compute the set of messages that can
potentially be assigned a SN lower than SN(m). We name this set, the Potential
Predecessor Set of m, noted PPS(m).

5. Finally, messages are delivered in the order of their sequence number SN.
The message m at the head of the delivery queue is delivered, as soon as all
messages in PPS(m) have already been assigned a sequence number and inserted
in the delivery queue.

We now brie
y describe how each of the three algorithms (i.e., Skeen's algo-
rithm, MTO and SCALATOM) perform these steps. For clarity of presentation,
we consider a single group multicast.
Skeen's algorithm. Skeen's algorithm is simple, thanks to the very strong
assumptions on which it is based (the original version assumes a failure-free
system, and a fault-tolerant version requires a perfect failure detector). Accord-
ing to this algorithm, timestamps are incremented every time a message is sent
or received. For every message m, all correct addressees must participate in
the agreement on a sequence number SN (hence the need for a perfect failure
detector) and SN is the maximum timestamp of all timestamps assigned to m
by the correct addressees of m. The potential predecessor set (PPS) for a mes-
sage m is trivially computed when the decision on the sequence number SN (m)
is reached: PPS(m) is the set of messages in the pending queue with a lower
timestamp than SN(m).
MTO. In the MTO algorithm of Guerraoui and Schiper, timestamps must also
be updated by all messages, including the ones used to reach agreement. For
every message m, only a majority of correct addressees needs to compute the
sequence number SN(m), and the failure detector does not need to be perfect. A
consensus-like protocol is used to ensure that all participants agree on the same
sequence number. The potential predecessor set PPS(m) for a messagem is also
computed when the decision on SN(m) is reached: PPS(m) is the (complete)
set of messages in the pending queue (and not only those in the pending queue
with a lower timestamp than SN(m)). The MTO algorithm depends on causal
order to ensure that the pending queue contains PPS(m) when the decision is
reached.
SCALATOM. In our SCALATOM algorithm, timestamps are only incre-
mented when messages that are multicast are �rst received or when a new
sequence number is computed. The sequence numbers are computed exactly
as in MTO. However, the computation of PPS is quite di�erent. Since SCA-
LATOM does not depend on causal order, there is no guarantee that, for every

5

message m, the pending queue contains PPS(m) when SN(m) is decided. Thus,
SCALATOM requires an additional step to accurately compute PPS(m). The
computation of PPS(m) is performed locally inside a group, based only on gossip
information exchanged among processes belonging to the same group.

2.2 The structure of SCALATOM

Fault-tolerance is achieved in SCALATOM using several sub-protocols: (1) a
reliable multicast used to issue the message (R-multicast, see Fig. 2), (2) a
send primitive to disseminate timestamps and gossip information, (3) a uniform
consensus protocol noted Consensus, used to compute the sequence number
(Fig. 2), and (4) a local function to compute the potential predecessor set of
each message based on gossip information.

Dst(m)

TO−multicast(m,Dst(m)) TO−deliver(m)

pi

o
o
o

o

o
o

g1

g2

R−multicast(m)

decide(sn(m))

Disseminate
timestamps (m)

Compute PPS(m)Compute sn(m)
[Unif−cons.]

Figure 2: Principle of the SCALATOM algorithm

We believe the use of a modular approach in the implementation of a to-
tal order algorithm is also a key factor to achieve scalabity [17]. A modular
construction based on the composition of encapsulated components allows the
protocol to be optimized for di�erent environments, simply by adapting the
implementation of sub-protocols. SCALATOM uses a modular approach since
the correctness of the protocol does not depends on a speci�c implementation
of reliable multicast or uniform consensus. These sub-protocols do not need
neither to share any common variable. Figure 3 illustrates the composition of
modules required to implement SCALATOM.

3 System model and de�nitions

Before presenting the algorithm in details, we �rst describe the system model
and de�ne the companion services that are required to support SCALATOM.

3.1 Asynchronous system

We consider a distributed system composed of a �nite set of processes
 =
fp1; p2; : : : ; png completely connected through a set of channels. Communication
is by message passing, asynchronous and eventually reliable. Asynchrony means

6

Reliable Multicast

Unreliable send

Total order multicast

Unif−consensus

Failure Detector.

Figure 3: SCALATOM building blocks

that there is no bound on communication delays, nor on process relative speeds.
An eventual reliable channel ensures that a message sent by a process pi to a
process pj is eventually received by pj , if pi and pj are correct (i.e., do not
fail)3. An eventual reliable channel can be implemented by retransmitting lost
or corrupt messages. Processes fail by crashing (we do not consider Byzantine
failures). A correct process is a process that does not crash in an in�nite run.

A process pi 2
 may (1) send a message to another process (send event),
(2) receive a message sent by another process (receive event), (3) perform some
local computation, or (4) fail.

3.2 Failure detectors

Given the impossibility of reaching consensus in asynchronous systems [11], al-
ternative system models have been de�ned: partially synchronous [8], timed
asynchronous [10], and asynchronous augmented with failure detectors[5]. In
this paper we follow the later model. We consider failure detectors in class 3S
(Eventually Strong), the weakest class of failure detectors that allow to solve
consensus and atomic broadcast/multicast problems [5]. Failure detectors are
required to solve consensus but are not otherwise used in the SCALATOM al-
gorithm.

3.3 Total order multicast to multiple groups

We assume that the set
 of processes is partitioned into non-intersecting groups
gi, and messages are multicast to groups. Given a message m, we note Dst(m)
the set of process groups to which m is multicast. Total order multicast is
de�ned on the set
 by the primitives (1) TO-multicast(m;Dst(m)) which issues
m to Dst(m), and (2) TO-deliver(m) which is the corresponding delivery of m.
When a process pi executes TO-multicast(m;Dst(m)) (resp TO-deliver(m)), we
say that pi \TO-multicasts m" (resp \TO-delivers m"). The properties of the
primitive TO-multicast [16] are listed in Table 1.

3This does not exclude link failures, if we require that any link failure is eventually repaired.

7

TO1 - Uniform Agreement: Consider TO-multicast(m;Dst(m)). If a process in Dst(m) (cor-
rect or not) has TO-delivered(m), then every correct process in Dst(m) eventually TO-delivers(m).

TO2 - Termination: If a correct process TO-multicasts(m;Dst(m)), then every correct process
in Dst(m) eventually TO-delivers(m).

TO3 - Uniform Total order: Let m1 and m2 be two messages that are TO-multicast. We note
m1 < m2 if and only if a process (correct or not) TO-delivers m1 before m2. Total order ensures
that the relation < is acyclic.

Table 1: Total order properties

3.4 Reliable multicast.

We assume the existence of a reliable multicast primitive, denoted
R-multicast(m,Dst(m)), and the corresponding reliable delivery primitive, de-
noted R-deliver(m). The primitive R-multicast(m,Dst(m)) satis�es the following
two properties: (1) (agreement) if a process in Dst(m) (correct or not) has R-
delivered(m), then every correct process in Dst(m) eventually R-delivers(m);
(2) (validity) if a correct process R-multicasts(m,Dst(m)), then every correct
process in Dst(m) eventually R-delivers(m) [15]. An example of a simple imple-
mentation of reliable multicast is given in [5].

3.5 Quali�ed majority

Let fi be the maximum number of processes of group gi that can crash, and
assume fi < jgij=2 for every group gi (i.e., we assume a majority of correct
processes in each group). Given TO-multicast(m;Dst(m)), we de�ne a quali�ed
majority of Dst(m), noted QM(Dst(m)), as any subset of Dst(m) that contains
a majority of processes of every group gi in Dst(m). For example, if Dst(m) =
fg1; g2g, g1 = fp1; p2; p3g and g2 = fp4; p5; p6g, then fp1; p2; p4; p5g is a quali�ed
majority of Dst(m), whereas fp1; p2; p3; p4g is not.

3.6 Consensus

We �nally assume the existence of a consensus function, which solves the uniform
consensus problem [5]. The problem is is de�ned over of a set of processes �,
each proposes an initial value, and has to decide on a �nal value, such that (1)
agreement: no two processes decide di�erently, (2) termination: every correct
process eventually decide, and (3) non-triviality: the value decided is one of the
values proposed.

3.7 Summary of notations

To summarize, the following notations are introduced: (1) send(m) and the
corresponding receive(m), (2) R-multicast(m;Dst(m)) and the correspondingR-
deliver(m), (3) TO-multicast(m;Dst(m)) and the corresponding TO-deliver(m),
(4) Consensus and the corresponding decide.

8

4 The SCALATOM algorithm

This section describes SCALATOM. We start by describing the variables and
data structures used in the algorithm, and then we describe each step of the
algorithm. The lemmas and propositions that are used to state and prove the
correctness of the algorithm are given in Appendix.

4.1 Variables and data structures

In order to execute the algorithm, each process pj maintains the following vari-
ables and data structures.

� A logical clock is used to timestamp R-delivered messages. The clock is
incremented every time a message is R-delivered and every time a sequence
number is decided.

� Three bu�ers are used to store TO-multicast messages until they are TO-
delivered (see Figure 4). When a message m is R-delivered, it is �rst
inserted in a pending bu�er. A message m is kept in the pending bu�er
until its sequence number is computed. Then m is moved to a compute-
PPS bu�er. Finally, when PPSj(m) is computed, the messagem is moved
from the compute-PPS bu�er to a delivery queue, where m is inserted in
the order of its sequence number.

� The sequence of pairs (event, associated timestamp) of a process pi, is
named the process history, denoted history(pi). Only two type of events
need to be logged in the process history: R-deliver and decide events.
The SCALATOM algorithm requires each process to store a subset of its
own history as well as a subset of the delivery histories of other correct
processes in the same group. To achieve this, processes gossip histories
among each others (note that this information is local to each group).

message
reception TO−deliver

pending
 buffer

compute PPS
 buffer

 delivery
 queue

Figure 4: Bu�ers used in the SCALATOM algorithm

4.2 Protocol steps

The algorithm is illustrated in Figure 5. In the �rst step the message is reliably
disseminated to all destination processes; in the second step, the message is
timestamped and timestamps are exchanged among destination processes; in
the third step a consensus protocol is run to compute the message sequence
number (SN) using the timestamps; the fourth step consists in the computation
of the potential predecessor set (PPS) for the given message; �nally, in the
last step, the message are TO-delivered (i.e., delivered to the application). We
describe each of these steps with more detail below.

9

// tsj (timestamp, incremented on R-deliver and decide)
1. when [TO-multicast(m, Dst(m))]
R-multicast (m, Dst(m)) ;

2. when [R-deliverj(m)]
rec-tsj(m) tsj ; tsj tsj + 1;
send rec-tsj(m) to Dst(m) ;
add m to pending bu�er ;
add (R-deliverj(m); tsj) to history(pj) ;

3. when [received rec-tsk(m) from a quali�ed majority of Dst(m)]
propj(m) max of all rec-tsk(m) received ;
start consensus (propj (m), Dst(m)) ;

4. when [Consensus (propj(m), Dst(m)) terminates]
sn(m) consensus (propj (m), Dst(m)) ;
tsj max (tsj , sn(m)) +1 ;
add (decide(sn(m)); tsj) to history(pj) ;
move m from pending bu�er to compute-PPS bu�er ;
send history(pj) to local group ;

5. when [history(pk; sn(m)) received from a majority of local group]
PPS(m) compute-PPS(maj. history(pk; sn(m))) ;
move m from compute-PPS bu�er to delivery queue ;
deliver-in-order (sn(m), PPS(m)) ;

Figure 5: SCALATOM execution steps of process pj

1. Dissemination step This step is initiated when TO-multicast(m;Dst(m))
is executed by a process pi: the message m is R-multicast to Dst(m). Hence,
if the sender is correct, or if one addressee R-delivers the message, all correct
addressees of m also R-deliver the message. This also implies that the cor-
rect members of every group R-deliver the same set of messages, although not
necessarily in the same order.

2. Timestamp dissemination step When the multicast message is R-
delivered at some addressed process p, p performs the following actions: p assigns
a timestamp to the R-delivered message, updating the logical clock accordingly;
p sends the timestamp to all processes in Dst(m); then p stores the R-delivered
message in the pending bu�er.

3. Sequence number computation step The process p then waits until
it has collected the timestamps from a quali�ed majority of Dst(m) in order to
invoke the Consensus function to compute the sequence number sn(m). When
the consensus terminates, the sequence number SN(m) has been computed for
m. The local timestamp is updated accordingly, and the message m is removed
from the pending bu�er and inserted in the compute-PPS bu�er.

4. Potential predecessor set computation step The PPS(m) is com-
puted locally based on gossip information. Thus, an additional communication
step is performed among group members to exchange process histories. Note
that it is trivial to implement gossip in such a way that each gossip message
only carries new entries and not complete histories4.

4Additionally, groups with high throughput can piggyback gossip messages with other
gossip or data messages.

10

Let history(pi; n) denote the subset of process pi's history containing all
R-delivery events with a timestamp lower than n. The potential predecessor
set of message m is computed locally, as soon as the process has collected
history(pj ; sn(m)) from a majority of group members. The PPS(m) is simply
the set of all messages in history(pj ; sn(m)) from this majority. This ensures
that PPS(m) contains all messages which sequence numbers can be lower than
sn(m). It should be emphasized that messages that have been already TO-
delivered locally do not need to be inserted in PPS(m); any e�cient implemen-
tation of the protocol should exclude these messages from PPS computation to
avoid unnecessary tests. However, for simplicity of presentation, we omit this
optimization. When PPS(m) is computed, m is removed from compute-PPS
bu�er and inserted in the delivery queue, ordered according to sn(m).

5. Delivery step Finally, a message is TO-delivered when the following
condition is met: the message m is at the head of the delivery queue and all
messages in PPS(m) have been assigned a sequence number and either (i) these
sequence numbers are higher than sn(m) or (ii) these sequence numbers are
lower than sn(m) and the associated messages have been TO-delivered locally.

4.3 Scalability of SCALATOM

Consider a message m that is TO-multicast to Dst(m). The Implementa-
tion of R-multicast(m;Dst(m)) only involves the sender and the processes in
Dst(m) [5]. The only message that is R-multicast is m. Consensus is de�ned
only for processes in Dst(m) [5], thus it only involves processes in Dst(m), and
the size of the messages exchanged depend only on Dst(m). Finally, the last
communication step of the protocol does involve only processes of the same
group. Hence SCALATOM satis�es the participant minimality and the mes-
sage size minimality properties.

5 Related work

In this section, we �rst give an overview of total order algorithms, and then we
compare their scalability and performance characteristics with those of SCA-
LATOM.

5.1 Overview of total order algorithms

In Section 2 we have already surveyed Skeen's algorithm [25], (that inspired
the �rst Isis ABCAST algorithm [3]) and the algorithm from Guerraoui and
Schiper [14] (satisfying the participant minimality property but not the message
size minimality property). We mention here other total order algorithms for
asynchronous systems. Many of these algorithms are broadcast algorithms, e.g.
the Chandra-Toueg algorithm [5], the token based algorithms [6, 1], and the
sequencer based algorithm given in [19].

The current Isis system [4] implements only local total order. The algorithms
based on Lamport's total order algorithm [20], does not satisfy the participant
minimality property of a scalable multicast, because the messages are delivered
according to the order de�ned by the timestamps initially assigned to messages

11

at multicast time [7, 1, 9]. Hence, a process p can deliver a message m, times-
tamped ts(m), only once p knows that it will receive no further message m0

such that ts(m0) < ts(m). This might require p to interact with all the pro-
cesses that can send a message to p. In the case where p can receive a message
from any process in the system, p might need to interact with the whole system.
The algorithm presented by Garcia-Molina and Spauster [12], and its extension
described in [18], both satisfy the participant minimality property, but both
require reliable failure detectors.

5.2 Performance comparison

We compare the performance of SCALATOM with those of other total order
algorithms. Given the myriad of total order algorithms that can be found in
literature, this comparison must be necessarily selective. We have chosen three
approaches that can be considered archetypes of many popular total order pro-
tocols: the sequencer-site approach, the rotating token-approach, and the sym-
metric approach. Although these three classes of protocols are based on very
di�erent system assumptions (perfect failure detectors or the availability of a
membership protocol), they give an approximate idea of what type of costs can
be expected. We also compare SCALATOM with the Chandra-Toueg's algo-
rithm and with the MTO algorithm from Guerraoui and Schiper. These two
protocols enable a more accurate comparison given that both are based on un-
reliable failure detectors of class 3S [5], and none is based on a membership
service.

We analyze the cost of these algorithms in terms of number and size of
messages exchanged, and number of communication steps needed to TO-deliver
a message5. We consider in our analysis only the best case scenario, i.e. runs
with no failure and no failure suspicion. This is the most frequent case in
practice.

Sequencer-site algorithms. This class of total order algorithms is based
on the idea of having an elected process with the role of assigning a sequence
number to all messages. This algorithm requires a single communication step
in the optimal case where the sequencer is also the source of the message, and
two steps in all other cases. This algorithm is inherently non-scalable, even for
medium size system, due to the overload of the sequencer. For fault-tolerance,
the failure of the sequencer must be reliably detected. Additionaly, system
contamination may occur. Contamination can be prevented if sequence num-
bers are disseminated using reliable uniform multicasts but this obviously adds
additional communication steps to the algorithm.

Rotating-token algorithms. Algorithms in this class are similar to sequencer-
site algorithms, but rotate the role of sequencers among several processes. This
provides load balancing and avoids network contention when shared links are
used (for instance in LANs) [21]. Unfortunately, in worst case, a message may

5This measure is less ambiguous than the usual number of \phases". To give an example,
the classical two phase commit protocol (2PC) has 3 communication steps [2]: (1) vote re-
quest sent from the coordinator to the participants, (2) reply of the participants sent to the
coordinator, and (3) decision sent by the coordinator to the participants.

12

wait for complete rotation of the token before it gets assigned a sequence num-
ber. Of all the six algorithms discussed, this is the only one where the number
of communication steps is a function of the size of the system. This is clearly
not scalable.

Symmetric algorithms. These algorithms are based on Lamport's total or-
der algorithm [20], i.e., messages are delivered according to the order de�ned
by the timestamps assigned at multicast time. These algorithms also require
the computation of a potential predecessor set for each message before delivery.
In most cases, in order to compute PPS(m), a process p simply waits until a
message with equal or higher timestamp is received from every process that
can interact with p (FIFO channels are often assumed). An interesting variant
described in [7] requires a message to be received from just a majority of the in-
teracting processes but requires the construction of a (causal) message graph. In
any case, in order to be live, algorithms in this class require correct processes to
periodically multicast messages (or, alternatively, an additional communication
step must be forced). Total order can be established in a single communication
step when all processes broadcast simultaneously [22], and in two steps in all
other cases.

In what concerns the number of messages required, they can be in the order
of the group size if a closed model is assumed, i.e., if only members of a group can
multicast messages to the group [9]. An open model such as the one assumed in
SCALACOM is clearly more scalable since servers can have a very large number
of clients. In this model, a symmetric algorithm might force each process to
interact with all other processes in the system and thus, the number of messages
is a function of the system size.

Chandra and Toueg's algorithm. This algorithm consists of (1) reliably
broadcast of messagem, followed by (2) the execution of a consensus. Chandra-
Toueg's consensus algorithm based on 3S requires 3 communication steps thus,
in the best case, 4 communication steps are required to run the total order
broadcast algorithm. In terms of the number of messages, Chandra and Toueg's
algorithm requires (n� 1)2 for the reliable broadcast and 2(n� 1)+ (n� 1)2 to
run consensus, for a total of 2(n� 1)2 + 2(n� 1).

Guerraoui and Schiper's algorithm. The MTO algorithm consists of (1)
reliably multicast of message m to Dst(m), then (2) the exchange of timestamps
among Dst(m), and �nally (3) the consensus. Thus, with regard to Chandra
and Toueg's algorithm, MTO has an additional communication step (for a total
of 5) but generates less messages due to the participant minimality property.
Let d denote the number of addressees of a message; MTO generates d+(d�1)2

messages in the initial R-multicast, d(d � 1) messages to exchange timestamps
plus 2(d � 1) + (d � 1)2 in the consensus, for a total of 3(d � 1)2 + 4(d � 1)
messages. The size of messages is a function of the total number of processes in
the system due to the causal order requirement and is at least in the order of
n2.

SCALATOM algorithm. Our algorithm follows the same structure as the
MTO algorithm, the main di�erence being the technique used to compute the

13

potential predecessor set of a given message. Even though the computation of
PPS is performed locally, it is based on the construction of a view of the other
processes' histories. These views are constructed by the exchange of gossip
messages that can trivially be piggybacked with the messages sent to exchange
timestamps, so this mechanism is not a source of additional messages. Unfortu-
nately, like the symmetric algorithms mentioned above, without the additional
assumptions that messages are periodically sent to every group, liveness cannot
be ensured unless an additional communication step is performed. Thus, SCA-
LATOM requires 6 communication steps and 3(d � 1)2 + 4(d � 1) + (d � 1)2

messages. However, SCALATOM satis�es the message size minimality prop-
erty, which means that message size is a function of the number of participating
processes.

Com. Steps Nb. of Mesg. Mesg. Size
Sequencer-site (broadcast,PFD) 2 [1] 2(n � 1) const.
Rotating-token (broadcast,PFD) 1 to n-1 (n� 1) [+n] const.
Symmetric (broadcast,PFD) 2 [1] (n� 1) [+n(n� 1)] const.
Chandra-Toueg (broadcast,3S) 4 2(n� 1)2 + 2(n� 1) f(n)
MTO (multicast, causal,3S) 5 3(d � 1)2 + 4(d � 1) f(n2)
SCALATOM (multicast,3S) 6 [5] 3(d� 1)2 + 4(d� 1) [+(d� 1)2] f(d)

Table 2: Comparative analysis

Trade-o�. Table 2 summarizes the numbers given above, for the case of a
multicast sent to d processes in a system of n processes (d � n). All n processes
take part to the protocol in the case of a broadcast, whereas only d processes
take part to the protocol in the case of a multicast. The �gure illustrates the
interesting trade o�s (i) between broadcast with 4 communication steps (which
does not require causal order delivery), where all n processes take part to the
protocol, (ii) multicast with 5 communication steps, where only the d processes
in Dst(m) take part to the protocol (d � n), but with the cost of causal delivery
(larger messages), and (iii) multicast with 6 communication steps, where only
the d processes in Dst(m) take part to the protocol (d � n) and not requiring
causal delivery.

6 Concluding remarks

The paper has discussed the issue of designing a scalable total order multi-
cast algorithm, and de�ned desirable properties for a scalable algorithm, such
as participant minimality and message size minimality. We presented a new
fault-tolerant total order multicast algorithm, named SCALATOM, that satis-
�es these properties, and that does not depend on reliable failure detection. To
our knowledge, this is the �rst total order multicast to reach such a high degree
of scalability.

SCALATOM has a modular structure that promotes a design methodology
based on the composition of encapsulated micro-protocols. SCALATOM uses an
(unreliable) failure detector of the class 3S, a reliable multicast primitive and a
consensus protocol. Interestingly, and contrary to the intuition stated in [14], the

14

protocol does not require causal order delivery of messages. SCALATOM does
not require a membership service which might lead to incorrectly suspect correct
processes and cause them to crash. Notice that not relying on a membership
service does not preclude reintegrating crashed process after their recovery (see
[13]).

We have compared the performances of SCALATOM with those of (less
scalable) total order multicast algorithms. Not surprisingly, the price to pay for
scalability is re
ected in the high latency of SCALATOM, i.e., in the number
of communication steps needed to deliver a message to the application. For
instance, SCALATOM requires one more communication step than the MTO
algorithm of [14], which satis�es participant minimality but not message size
minimality. The latency of SCALATOM can be reduced (we can drop one
communication step) if we assume that new messages are always multicast, or
if we enable variable sharing between the sub-protocols used in SCALATOM.
We are currently working on alternative optimizations that would preserve the
scalable (and hence modular) nature of SCALATOM, and more generally on
better understanding the trade-o�s between scalability and latency.

References

[1] Y. Amir, L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, and P.Ciarfella.
The Totem Single-Ring Ordering and Membership Protocol. ACM Trans.
on Computer Systems, 13(4):311{342, November 1995.

[2] P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Distributed Database Systems. Addison-Welsey, 1987.

[3] K. Birman and T. Joseph. Reliable Communication in the Presence of
Failures. ACM Trans. on Computer Systems, 5(1):47{76, February 1987.

[4] K. Birman, A. Schiper, and P. Stephenson. Lightweight Causal and Atomic
GroupMulticast. ACM Trans. on Computer Systems, 9(3):272{314, August
1991.

[5] T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of ACM, 34(1):225{267, 1996. A preliminary
version appeared in the Proceedings of the Tenth ACM Symposium on Prin-
ciples of Distributed Computing, pages 325{340. ACM Press, August 1991.

[6] J. M. Chang and N. Maxemchuck. Reliable Broadcast Protocols. ACM
Trans. on Computer Systems, 2(3):251{273, August 1984.

[7] D. Dolev, S. Kramer, and D. Malki. Early Delivery Totally Ordered Broad-
cast in Asynchronous Environments. In IEEE 23rd Int Symp on Fault-
Tolerant Computing (FTCS-23), pages 544{553, June 1993.

[8] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of
partial synchrony. Journal of ACM, 35(2):288{323, April 1988.

[9] P. Ezhilchelvan, R. Macedo, and S. Shrivastava. Newtop: A Fault-Tolerant
Group Communication Protocol. In IEEE 15th Intl. Conf. Distributed
Computing Systems, pages 296{306, May 1995.

15

[10] C. Fetzer and F. Christian. On the possibility of consensus in asynchronous
systems. Paci�c Rim Int. Conference on Fault-Tolerant Systems, December
1995.

[11] M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Con-
sensus with One Faulty Process. Journal of ACM, 32:374{382, April 1985.

[12] H. Garcia-Molina and A. Spauster. Ordered and Reliable Multicast Com-
munication. ACM Trans. on Computer Systems, 9(3):242{271, August
1991.

[13] R. Guerraoui and A. Schiper. Fault-Tolerance by Replication in Distributed
Systems. In Proc Conference on Reliable Software Technologies (invited
paper), pages 38{57. Springer Verlag, LNCS 1088, June 1996.

[14] R. Guerraoui and A. Schiper. Total order multicast to multiple groups.
In IEEE 17th Intl. Conf. Distributed Computing Systems, pages 578{585,
May 1997.

[15] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Prob-
lems. In Sape Mullender, editor, Distributed Systems, pages 97{145. ACM
Press, 1993.

[16] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Prob-
lems. Technical Report 94-1425, Department of Computer Science, Cornell
University, May 1994.

[17] M. Hiltunen and R. Schlichting. An approach to constructing modular
fault-tolerant protocols. In Proceedings of the 12th Symposium on Reliable
Distributed Systems, pages 105{114, Princeton, New Jersey, October 1993.
IEEE.

[18] X. Jia. A Total Ordering Multicast Protocol Using Propagation Trees.
IEEE Trans. Parallel & Distributed Syst., 6(6):617{627, June 95.

[19] M. F. Kaashoek, A. S. Tanenbaum, S. F. Hummel, and H. E. Bal. An
E�cient Reliable Broadcast Protocol. Operating Systems Review, 23(4):5{
19, October 1989.

[20] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed
System. Comm. ACM, 21(7):558{565, July 78.

[21] L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal. Extended Virtual
Synchrony. In IEEE 14th Intl. Conf. Distributed Computing Systems, pages
56{67, June 1994.

[22] L. Rodrigues, H. Fonseca, and P. Ver��ssimo. Totally ordered multicast in
large-scale systems. In Proceedings of the 16th International Conference
on Distributed Computing Systems, pages 503{510, Hong Kong, May 1996.
IEEE.

[23] L. Rodrigues and P. Ver��ssimo. xAMp: a Multi-primitive Group Com-
munications Service. In Proceedings of the 11th Symposium on Reliable
Distributed Systems, pages 112{121, Houston, Texas, October 1992. IEEE.

16

[24] D. Skeen. Determining the Last Process to Fail. ACM Trans. on Computer
Systems, 3(1):15{30, 1985.

[25] D. Skeen. Unpublished communication. Feb 1985. Referenced in K. Birman
and T.Joseph. Reliable Communication in the Presence of Failures. ACM
Trans. on Computer Systems, 5(1):47-76, February 1987.

Appendix: Proofs

Lemma 1. Consider the execution of TO-multicast(m;Dst(m)). If a correct
process pj 2 Dst(m) R-delivers m, then every correct process in Dst(m) eventu-
ally decides sn(m).

Proof. By the agreement property of reliable multicast, every correct process
in Dst(m) eventually R-delivers m, and sends the timestamp (rec-tsj(m)) as-
sociated to this delivery event to Dst(m) (step 2 of Figure 5). As we assume,
among Dst(m), a quali�ed majority of correct processes, every correct process
in Dst(m) eventually gets the timestamp from a quali�ed majority of Dst(m).
Thus every correct process in Dst(m) eventually calls the consensus function
(step 3 of Figure 5). As we assume a quali�ed majority of correct processes and
a failure detector of class3S, the consensus algorithm eventually terminates [5],
and hence every correct process eventually decides sn(m). 2

Lemma 2. Consider the execution of TO-multicast(m;Dst(m)) and a cor-
rect process pi in Dst(m). If pi decides sn(m), then pi eventually computes
PPSi(m).

Proof. Consider a message m and assume a correct process pi decides sn(m).
By the termination property of consensus, every correct process pj eventually
decides sn(m) and sends its local set history(pj ; sn(m)) to all the processes in
its group (step 4 of Figure 5). As we assume that there is a majority of correct
processes in every group, pi eventually receives the set history(pj ; sn(m)) of a
majority of processes in its group and computes PPSi(m) (step 5 of Figure 5).
2

Lemma 3. Consider the execution of TO-multicast(m;Dst(m)), a correct
process pi in Dst(m) and the set of messages PPSi(m). For all messages
m0 2 PPSi(m), pi eventually decides sn(m0).

Proof. As every message m0 2 PPSi(m) is R-delivered by a majority of
processes in pi's group, then m0 is R-delivered by at least one correct process
in pi's group. By the agreement property of reliable multicast, pi eventually
R-delivers m0, and by Lemma 1, pi eventually decides sn(m'). 2

Lemma 4. Consider the execution of TO-multicast(m;Dst(m)) and a correct
process pi in Dst(m). If pi decides sn(m) then pi eventually TO-delivers m.

Proof. (By contradiction) Consider a message m and assume a correct pro-
cess pi decides sn(m) but never TO-delivers m. By Lemma 2, as pi decides
sn(m) then pi eventually computes PPSi(m). By Lemma 3, for all messages
m0 2 PPSi(m), pi eventually decides sn(m0). By the TO-delivery condition of
SCALATOM, if pi cannot TO-deliver m then there is a message m0 2 PPSi(m)

17

such that sn(m0) < sn(m). As PPSi(m) denotes the set of messages of which
at least one process assigned a timestamp lower than sn(m), and the set of these
timestamps is �nite, then there must be a message mx with the lowest sequence
number among the messages that pi cannot TO-deliver. As a consequence, pi
cannot TO-deliver PPSi(mx), and there is no message m0

x 2 PPSi(m
0

x) such
that pi does not TO-deliver m

0

x and sn(m0

x) < sn(mx): a contradiction. 2

Proposition TO1. MTO satis�es the Uniform Agreement property (TO1).

Proof. Consider TO-multicast(m;Dst(m)) and a process pk 2 Dst(m) that
has TO-delivered m. Thus pk has decided sn(m), which means that a quali�ed
majority of Dst(m) has sent the timestamp associated to the R-delivery of m
(step 2 of Figure 5): so a quali�ed majority of Dst(m) has R-delivered m. As
we assume, among Dst(m), a quali�ed majority of correct processes, at least
one correct process in Dst(m) has R-delivered m. By Lemma 1, every correct
process pj eventually decides sn(m), and by Lemma 4, every correct process pj
eventually TO-delivers m. 2

Proposition TO2. MTO satis�es the Termination property (TO2).

Proof. Consider the execution of TO-multicast(m;Dst(m)) by a correct process
pi. By the property of reliable multicast, every correct process R-delivers(m).
By Lemma 1 and Lemma 4, every correct process pj eventually TO-delivers m.
2

Lemma 5. Let m1 and m2 be two messages that are TO-multicast. For every
group of processes gi � Dst(m1)\Dst(m2), and for every correct process p 2 gi,
if sn(m1) < sn(m2) then m1 2 PPSp(m2).

Proof (by contradiction) Assume that there exists a group gi � Dst(m1)\
Dst(m2) and a process p 2 gi such that m1 62 PPSp(m2). Then, there is
a majority of processes M � gi such that, 8pj 2 M; R � deliver(m1) and
its associated delivery timestamp are in history(pj ; sn(m2)). Thus, when m1

is R-delivered to any pj 2 M , it will be assigned a timestamp greater than
sn(m2). At least one process fromM must participate in any quali�ed majority
of Dst(m1), and thus we will have sn(m1) > sn(m2). 2

Proposition TO3. MTO satis�es the Uniform Total Order property TO3.

Proof. We show that messages are TO-delivered in the order de�ned by their
sequence number. Consider TO-multicast(m1; Dst(m1)), TO-multicast(m2; Dst(m2)),
and sn(m1) < sn(m2). Assume that m2 is TO-delivered by a process pi.
As sn(m1) < sn(m2), then by Lemma 5, m1 is in PPS(m2). By the TO-
delivery condition of SCALATOM, if m1 is in PPS(m2), then m2 cannot be
TO-delivered until sn(m1) is known by pi, in which case (and since sn(m1) <
sn(m2)) pi could not TO-deliver m2 until pi has TO-delivered m1. 2

18

