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Abstract

The round-trip duration measurement technique is fundamental to
solve many problems in asynchronous distributed systems. In essence,
this technique provides the means for reading remote clocks with a
known and bounded error. Therefore, it is used as a fundamental build-
ing block in several clock synchronization algorithms. In general, the
technique can be used to implement duration measurement services,
such as the one of the Timely Computing Base model. In this paper we
propose a new technique to measure distributed durations that min-
imizes the measurement error and is able to keep this error almost
stable. The new technique can be used to improve the precision of
remote clock reading in certain situations. We provide a protocol that
implements this new technique and we present some evaluation results.
The results clearly show that our solution is indeed better than existing
ones.

1 Introduction

The problem of remote clock reading has always been one of the fundamental
problems in distributed computing, deriving from the need of synchronizing
the clocks of all the nodes in the system.
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COTS). Selected portions of this report were published in the Proceedings of the 22nd
IEEE Real-Time Systems Symposium (RTSS 2001), London, UK, December 3-6, 2001.



Most proposed clock synchronization protocols require the reading of
remote clocks. They are built on the principle that a node can synchronize
its clock with the clock of a remote node if it knows the value displayed
by the remote clock at a given instant. In practice, however, since remote
clocks cannot be read instantaneously, when the local clock is synchronized
to the remote one, they will already be apart. The difference corresponds
to the time elapsed between the two events of reading the remote clock, and
setting the local one. It is therefore necessary to take this time into account
when synchronizing the clocks, which requires the use of some measurement
technique.

We say that reading a remote clock is a distributed action, which takes
a certain amount of time, which we call a distributed duration. Generically,
a message exchanged between any two nodes in a distributed system can
be considered a distributed action, to which is associated a certain real
time duration that may be estimated with a bounded error. The ability
to measure distributed durations with bounded and small errors is crucial
not only for clock synchronization, but more generally in any distributed
environment with timeliness requirements.

In this paper we propose a new technique for measuring distributed du-
rations (or for reading remote clocks), that provides improved measurement
errors when compared with the other existing techniques. In particular, it is
able to provide better results than the original round-trip duration measure-
ment technique [?] and some of its successors [?, ?]. We refer to this new
technique as the Improved Round-Trip Technique (IMP) and propose
a protocol that implements it. This protocol (and implicitly the improved
technique) has been used, in particular, in the construction of the Duration
Measurement service of the Timely Computing Base (TCB) model [?]. The
TCB model provides a generic approach to the problem of partial synchrony,
and the Duration Measurement service is one of the basic services that it
provides in order to satisfy a wide range of applications with timeliness
requirements.

The experiments that we performed using implementations of both the
original and the improved round-trip techniques have clearly confirmed that
it is possible to obtain better results with the latter. We observed that
unlike the previous existing solutions, the proposed solution is able to deliver
almost stable measurement errors, which only increase due to the drift rate
of local clocks.

The rest of the paper is organized as follows. In the next section we refer
to related work in the area. The basic round-trip duration measurement
technique is briefly presented in Section 3, just before we explain how it can
be improved, in Section 4. The complete protocol is presented in Section 5
and the evaluation results appear in Section 6. Finally, Section 7 concludes
the paper.



2 Related Work

The measurement of distributed durations is a generic problem of asyn-
chronous distributed systems, which has been addressed in the context of
other more specific problems, such as achieving clock synchronization or
ensuring timely communication.

The variety of algorithms and solutions for clock synchronization that
have been proposed during more than a decade is considerable (see surveys
in [?] and [?]). Of all these algorithms, we are particularly interested in the
category of probabilistic algorithms, in which it is necessary to obtain esti-
mations of remote clock values, measuring the duration of reading actions.
The seminal paper of Cristian about probabilistic clock synchronization [?]
has first formally presented the round-trip duration measurement technique,
on which several other works have built thereafter [?, ?, ?]. Probabilistic
estimation methods have also been proposed in [?] and [?] and of particular
relevance is the Network Time Protocol (NTP), widely used in the internet,
that also uses a round-trip based method to obtain estimations of remote
clock values [?].

These clock synchronization algorithms exploit the fact that message
delivery delays in existing asynchronous networks, although exhibiting pos-
sibly very high delays, are typically around a small value, near the lower
bound. Provided that a sufficient number of messages is transmitted, it
is highly probable that some of those messages are fast messages, allowing
good estimates of remote clock values. But as we show in this paper, these
estimates can in certain situations be improved using the new technique we
propose. Therefore, our contribution can lead to better probabilistic clock
synchronization algorithms.

On the other hand, some services need to ensure the best possible estima-
tion for each message delivery delay, independently of typical probabilistic
distributions and observation intervals. This is the case of the Duration
Measurement service, specified in the context of the Timely Computing
Base (TCB) model [?]. We contribute with a new technique that is more
appropriate to implement this service than previously existing ones.

3 The Round-Trip Technique

The round-trip duration measurement technique proposed by Cristian [?],
used to read remote clock values, basically consists in the following. When a
process p wants to read the clock of some process q, it measures on its local
clock the round-trip delay elapsed between the sending of a request message
m1 to q, and the arrival of the reply m2 (see Figure 1). This delay provides
an upper bound for the time m2 took to travel from q to p and allows to
bound the reading error of q’s clock.

Assuming the minimum message transmission delay to be tmin, and the
maximum drift rate of local clocks to be ρ, the real time duration for the
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Figure 1: Round-Trip duration measurement using Cristian’s technique.

transmission delay of m2, t(m2), can be bounded as follows (the superscript
RT stands for the Round-Trip method):

tRT
max(m2) = (T2 − T0)(1 + ρ)− tmin (1)

tRT
min(m2) = tmin (2)

Therefore, the transmission delay of m2 can be estimated as the midpoint
of this interval, with an associated error equivalent to half of the interval.
The result is:

tRT(m2) =
(T2 − T0)(1 + ρ)

2
(3)

εRT(m2) =
(T2 − T0)(1 + ρ)

2
− tmin (4)

In the above equations, relative to the example of Figure 1, process
q sends m2 immediately when it receives m1. However, note that in real
settings one has to take into account the processing time spent by q to
generate the reply. Therefore, a more generic approach consists in assuming
that any request message mk sent from p to q can be used to estimate t(m2)
(see Figure 2). The estimation of t(m2) using any message pair 〈mk,m2〉,
requires that process p knows all send and receive timestamps for that pair,
that is, TS , TR, T1 and T2.

In the example illustrated in Figure 2 there is a message mk that is used
instead of m1 to estimate t(m2). Although the minimum possible value for
the transmission delay of m2 is always tmin, the equation for tRT

max(m2) can
now be written as follows:

tRT
max(m2) = (T2 − TS)(1 + ρ)− (T1 − TR)(1− ρ)− tmin (5)

This also affects the expressions that are used to estimate t(m2):

tRT(m2) =
(T2 − TS)(1 + ρ)− (T1 − TR)(1− ρ)

2
(6)
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Figure 2: Choosing the optimal message pair in the round-trip duration
measurement technique.

εRT(m2) =
(T2 − TS)(1 + ρ)− (T1 − TR)(1− ρ)

2
− tmin (7)

Now assume that there is another message mk−1 that has also been sent
by p to q before mk. The basic round-trip duration measurement technique
simply proposes to use the most recent message pair (in this case 〈mk, m2〉)
to estimate t(m2). However, it is possible to make an optimization which
consists in using the message pair (〈mk−1,m2〉 or 〈mk,m2〉) that provides
the best estimation.

This optimization has been presented in [?], as well as the criteria to
decide which message pair is the optimal one. A similar result has also
been presented in [?]. The criteria to decide which messages are “best” for
estimation purposes is applied whenever a new message is received. For
instance, when process q receives message mk it has to decide whether mk
is “better” than mk−1 for the purpose of estimating the transmission delay
of a subsequent message sent to p (m2 in this example). This is done by
comparing TS and TR with T ′S and T ′R. The condition for using mk instead
of mk−1 is the following:

update: (TS − T ′S)(1 + ρ) > (TR − T ′R)(1− ρ) (8)

4 Achieving a Stable Error

Given a message pair 〈m1,m2〉, we have seen that with the round-trip du-
ration measurement technique, tRT

min(m2) is always tmin. In fact, since no
assumption whatsoever is made about m1, no restriction is made for the
upper bound of t(m1) and therefore the lower bound for t(m2) can be the
lowest possible, that is, tmin. However, since a value for tRT

max(m1) has al-
ready been determined by process q when it sends m2 (see Figure 2), this
value could be sent to process p along with m2, making the latter able to
possibly restrict the upper bound for t(m1). In this manner, the lower bound
for t(m2) could eventually be set to a value higher than tmin and, in conse-
quence, the interval of variation of t(m2) would be reduced, yielding a more
accurate estimation of t(m2).



This simple reasoning is sufficient to provide the intuition for the pro-
posed improved technique. The basic idea is to estimate the transmission
delay of received messages using not only the send and receive timestamps
for the message pair, but also the estimated value for the delay of the first
message of the pair. As we will see, the only drawback of the proposed
improvement is that it requires more information to be transmitted between
processes than in previous round-trip based solutions. Figure 3 illustrates
the fundamental relations that are used in this improved duration measure-
ment technique.
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Figure 3: Round-Trip duration measurement using the improved technique.
To estimate the transmission delay of some message m2 sent from process

q to p, another message m1 must have been previously sent from p to q. The
round-trip delay of 〈m1,m2〉 can be used to determine the upper bound for
t(m2). It is also necessary to subtract the minimum (real) time spent by
q before sending m2 and the minimum possible delay of m1, yielding the
following equation:

tIMP
max(m2) = (T2 − TS)(1 + ρ)− (T1 − TR)(1− ρ)−

(t(m1)− ε(m1)) (9)

This equation is very similar to that of the original round-trip technique
(equation (5)). The difference is that now the last term depends on the
estimation of t(m1), with t(m1)−ε(m1) possibly higher than tmin. Note that
t(m1)−ε(m1) cannot be lower than tmin, which guarantees that tIMP

max(m2) is
not higher than tRT

max(m2). Although it may seem that tmax(m2) can now be
lower, we show that this is unfortunately not true (see Appendix A). The
upper bound of a measured duration is always the same no matter which
technique, the original or the improved one, is used. The lower bounds,
however, can be different.

The physical lower bound for t(m2) is obviously tmin. But it might
also be higher than that, depending on the estimation of t(m1). Taking the
lowest possible (real) time value for the round-trip duration, and subtracting



the maximum (real) time spent by q before sending m2 and the maximum
possible delay of m1, we obtain the following:

tIMP
min (m2) = MAX [tmin; (T2 − TS)(1− ρ)−

(T1 − TR)(1 + ρ)− (t(m1) + ε(m1)]
(10)

The expressions for the estimated transmission delay of m2 follow di-
rectly from (9) and (10), assuming that the lower bound for t(m2) is higher
than tmin:

tIMP(m2) =
tmax(m2) + tmin(m2)

2
= (T2 − TS)− (T1 − TR)− t(m1)

(11)

εIMP(m2) =
tmax(m2)− tmin(m2)

2
= ρ(T2 − TS) + ρ(T1 − TR) + ε(m1)

(12)

However, if we use the above equations when the lower bound of t(m2) is
tmin, the result is that tIMP(m2)− εIMP(m2) will be lower than tmin, which
is obviously impossible. If this happens, then we can obtain the correct
estimation for t(m2) making the following simple transformation:

t′IMP(m2) =
tmax(m2) + tmin(m2)

2

=
tIMP(m2) + εIMP(m2) + tmin

2
(13)

ε′IMP(m2) =
tmax(m2)− tmin(m2)

2

=
tIMP(m2) + εIMP(m2)− tmin

2
(14)

Note that we have done these transformations simply using the knowl-
edge that tmax(m2) = t(m2) + ε(m2) and that tmin(m2) = tmin. Note also



that in equation (12) it is quite evident how the estimation error is kept
almost constant. In fact, each time a new estimation is made, the error
just increases by an amount corresponding to the drift of local clocks during
the (typically small) intervals of the round-trip measurement. This means
that the error keeps increasing, after each consecutive measurement, until
a message is received for which the estimated lower bound is tmin. Then,
equations (13) and (14) will bring the error again to a lower value. In the
most extreme case, if we could assume a perfect clock with ρ = 0, the er-
ror would never increase and would just be reduced upon the reception of
“faster” messages.

The improved technique described so far requires more information to be
exchanged between processes than the original round-trip technique. Besides
the timestamps TS , TR and T1, the sender of m2 also has to provide t(m1)
and ε(m1). Furthermore, each process also has to keep more information
than before, namely t(m), ε(m), Tm

S and Tm
R for the “best” message m

received from each other process. These extra requirements are the trade-
off for achieving best estimations.
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Figure 4: Comparing messages m1 and m2.

Just like in the round-trip technique, every received message is a po-
tential “best” message. Hence, upon the reception of a new message it is
necessary to determine whether this message is “better” than the currently
“best” one. The criteria to consider a message better than another is strictly
related to its potential to propagate smaller estimation errors. An old mes-
sage with a very small associated error can be better than a new message
with a large error.

The exact expression that must be used to compare two received mes-
sages is presented below (see Figure 4 for reference). In Appendix A we
prove the correctness of this expression.

Update: ε(m2) < (C −A)ρ + (D −B)ρ + ε(m1) (15)

Example:

The impact of using the improved technique instead of the original one is
easily observed when the real transmission delay of a message is visibly



higher than that of previous messages.
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Figure 5: Example of improved transmission delay estimation.
For instance, in the example of Figure 5 there is a message, m4, that

is “slower” than the previous ones. When using the original round-trip
technique to estimate t(m4), the estimation error will be nearly half of the
round-trip delay of the pair 〈m3,m4〉. On the other hand, when using the
improved round-trip this error is “inherited” from the estimation error of
t(m3), which is at most half of the round-trip delay of the pair 〈m2,m3〉,
clearly smaller than that of pair 〈m3,m4〉. The occurrence of messages with
transmission delays higher than normal is thus completely irrelevant for the
estimation errors obtained with the improved technique. The error is kept
almost stable (see Figure 9).

The reader should note another interesting effect than can only be ob-
served when the improved technique is used. Since the technique allows
the best errors to be preserved from a message to the consecutive one, the
occurrence of a single message pair of two “fast” messages is sufficient to
establish a small error that will be used in all subsequent estimations. This
can be particularly interesting for systems where the resource utilization and
the delays can be kept constantly high during long periods of time.

5 The Protocol

In this section we describe a protocol that uses the improved round-trip
duration measurement technique. This protocol has been implemented as
part of the distributed duration measurement service of our TCB prototype,
developed for the Real-Time Linux operating system [?] (see Section 6).

The explanation is divided in three parts for simplicity. We first describe
the constants and global variables that are used in the protocol (Figure 6).
Then we describe the main loop of the protocol, presented in Figure 7 and
finally we explain the more functional operations executed by the protocol,
depicted in Figure 8.

Each process p runs an instantiation of this duration measurement ser-
vice. They all have a different myid value, but ρ and tmin are the same
in all instances. Since it is necessary to keep informations regarding the
best message received from every process, we use arrays ST , RT , DEL and
ERR to store this information. The size of these arrays is N , where N is
the number of processes in the system. Variables delm and errm keep the



// Constants
// myid Id of executing process
// ρ Maximum drift rate of local hardware clocks
// tmin Minimum message delay
// Global Variables
// ST , RT , DEL, ERR are arrays with entries for each process
// ST (p) Send Timestamp of “best” message received from p
// RT (p) Receive Timestamp of “best” message received from p
// DEL(p) Delay of “best” message received from p
// ERR(p) Error of “best” message received from p
// delm Estimated delay for received message m
// errm Error of estimation for received message m
// Global Function
// C(t) Current hardware clock value

Figure 6: Constants and global variables.

estimated delay and its associated error, that are returned to the user at the
end of the main loop (Figure 7). We assume that it is possible to read the
local clock value using function C(t), which returns positive timestamps.

The main body of the protocol has an initialization block, followed by
an execution loop. When the protocol starts, no messages have yet been
received from other processes. Hence, we assume to have received imag-
inary initialization messages at instant 0, with send timestamp −∞, and
with infinite delays and errors. In the main loop we define two possible
entry points, corresponding to application requests to send messages and to
messages received from the network. In this protocol the send timestamp
st is provided by the application since this is imposed by the interface of
the TCB duration measurement service (see [?] for a complete description of
this interface). The protocol presented here assumes that the value provided
for st is higher than any of the values in RT .

We use a broadcast service to avoid the need to specify a destination
process. Nevertheless, when a message is sent it is necessary to include the
four arrays and also the send timestamp. When no message is transmitted
during a long period, the estimation error of received messages tends to in-
crease due to the drift rate of local clocks. Therefore, in the implementation
of the duration measurement service we added an additional action to force
periodic (service specific) message transmissions. These periodic messages
can be viewed as synchronization messages that prevent the errors to in-
crease indefinitely. This action is not presented here since it is not strictly
required by the improved technique.

The second entry point corresponds to messages received from other pro-
cesses. Upon the reception of a message a receive timestamp is immediately
obtained. Then, the message is processed accordingly to its type. Messages



task Distributed Duration Measurement
for all p do

ST (p) ← −∞; RT (p) ← 0;
DEL(p) ← +∞; ERR(p) ← +∞;

end do
loop
when request to send 〈m〉 using st timestamp do

broadcast 〈m, st, ST, RT, DEL, ERR〉;
end do
when 〈m, stm, STp, RTp, DELp, ERRp〉 received from p do

rtm ← C(t);
if RTp(myid) = 0

first message (p,stm, rtm);
else if DELp(myid) = +∞

second message (p,stm, rtm, STp, RTp);
else

normal message (p,stm, rtm, STp, RTp, DELp, ERRp);
end if
deliver 〈m〉 with (delm, errm);

end do
end loop
end task

Figure 7: Pseudo code for the main loop.

can be of three logical types:

• First messages – When the service at p initiates, it will start receiving
messages from the other processes. These messages do not contain any
information about messages sent by p to the other processes. They
are simply first messages that will be used to estimate the delay of
subsequent messages. They are identified by having RTp(myid) =
0, which means that process p has never received a message from
processor myid.

• Second messages – After sending its first message m to all other pro-
cesses, process p will start receiving messages that have already been
sent after their senders have received m. It is thus possible to estimate
the delay for these second messages using the original round-trip tech-
nique. They can be identified because DELp(myid) = +∞, that is, p
has received a message from processor myid but has not been able to
estimate its delay.

• Normal messages – All other messages are received in a state that
allows the improved technique to be applied. Therefore we call them
normal messages.



It is possible to receive several messages of the same type, and each
message type is processed by a different function. However, all the pro-
cessing functions assign values to delm and errm, which are returned to the
application, along with the received message, in the end of the loop.

Each of the message processing functions does two things: a) it estimates
the transmission delay of messages; b) it updates, if necessary, the array
entry of the process from which the message has been received. Estimating
the message transmission delay of “first messages” is not possible, since
there is not way to establish an upper bound for this delay. Therefore,
the first message() function simply assigns the +∞ value to delm and
errm. To determine if a new first message is better than a previous one,
it is necessary to apply equation (8) of the original round-trip technique.
This is so because “first messages” will be paired with “second messages” to
estimate the delay of the latter, and the original round-trip technique will
be applied. The update info() function is simply used to store the new
information in the local arrays.

As just said, the transmission delay of “second messages” is estimated
with the original round-trip technique (equations (6) and (7)). However, the
update decision is now based on the improved technique rule (expression
(15).

Finally, the normal message() function processes every other message,
fully using the improved round-trip technique. delm and errm are obtained
using equations (11) and (12), and eventually equations (13) and (14), if
condition delm < errm + tmin evaluates to true. The update part is equal
to the one of function second message().

6 Evaluation Results

A distributed duration measurement service using the protocol just de-
scribed, has been implemented as part of our RT-Linux TCB prototype [?].
Therefore, we were able to evaluate the effectiveness of the proposed im-
proved round-trip technique when compared to its original version.

The tests were performed in our distributed systems laboratory, using
Pentium based PCs connected to a 10 Mbit Ethernet LAN. To enhance the
precision of our evaluation results, we have also used a special measurement
tool that we developed, the Event Timestamping Tool [?], to externally
measure the transmission delay of messages. Since our aim was to compare
both techniques, we simply needed to generate sequences of messages pairs,
for which only two machines were necessary.

Given that the TCB duration measurement service only implements the
improved technique, for the comparisons we had to extend the service with
an implementation of the original version of the round-trip technique, ex-
actly as described in [?]. Both implementations run in parallel, using exactly
the same input values, that is, the same send and receive timestamps. They
both output pairs of 〈delm, errm〉 values that are used for the comparison.



update info (p,delm, errm, stm, rtm)
begin

ST (p) ← stm; RT (p) ← rtm;
DEL(p) ← delm; ERR(p) ← errm;

end

first message (p,stm, rtm)
begin

delm ← +∞;
errm ← +∞;
if (stm − ST (p))(1 + ρ) > (rtm −RT (p))(1− ρ)

update info (p,delm, errm, stm, rtm);
end if

end

second message (p,stm, rtm, STp, RTp)
begin

delm ← ((rtm − STp(myid))(1 + ρ)−
(stm −RTp(myid))(1− ρ)− tmin)/2;

errm ← delm;
if errm < ERR(p) + ρ(stm − ST (p)) + ρ(rtm −RT (p))

update info (p,delm, errm, stm, rtm);
end if

end

normal message (p,stm, rtm, STp, RTp, DELp, ERRp)
begin

delm ← (rtm − STp(myid))− (stm −RTp(myid))−
DELp(myid);

errm ← ERRp(myid) + ρ(rtm − STp(myid))+
ρ(stm −RTp(myid));

if delm < errm + tmin

correct delm ← (delm + errm + tmin)/2;
correct errm ← (delm + errm − tmin)/2;
delm ← correct delm;
errm ← correct errm;

end if
if errm < ERR(p) + ρ(stm − ST (p)) + ρ(rtm −RT (p))

update info (p,delm, errm, stm, rtm);
end if

end

Figure 8: Message processing functions.

The experiment consisted in the execution of two applications, a client
and a server, respectively concerned with periodically sending a message,
and replying to every received message. We have configured the client to
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Figure 9: Measurement upper bounds and errors using the improved (IMP)
and the original round-trip (RT) techniques.
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Figure 10: Distribution of estimation errors.



send a message every 500ms. Therefore, in all the figures presented bellow
the samples depicted in the X axis correspond to consecutive measurements
obtained with intervals of about 500ms. Note that these intervals are af-
fected not only by the jitter of the scheduling delay (of the client’s sending
task), but also by the jitter of the overall round-trip delay. The specific
content of the messages is irrelevant for the experiment. Both applications
were implemented on top of the TCB duration measurement service. Their
only functionality, besides sending and receiving messages, was to store the
returned pair of measurement values in a local file.

We had to set the values of some constants used in the protocol. The drift
rate was set to ρ = 5×10−6 (typical values range from 10−4 to 10−6 [?]) and
we assumed the minimum message transmission delay to be zero (tmin = 0).
The size of the arrays was set to a value larger than two (the number of
used processors).

Relatively to the conditions of the environment during the experiment,
in particular the network and system loads, we have forced a scenario with
almost no activity (typically idle), interleaved with short periods of intensive
network utilization. This unstable behavior is perfectly visible in the figures
presented below and, as expected, allows to clearly observing the improve-
ments obtained with the proposed technique. To overload the network we
simply used the Unix ping command, with the flood option enabled.

The experiment was repeated several times, just to compare the results
and verify their coherence. However, for the purposes of this paper we have
just selected a representative set of results, one that exhibits some periods
of instability during which the differences between the two techniques can
be observed. Note that the impact of this improvement in real applications
will depend on the particular application and on the frequency and duration
of these unstable periods.

In Figure 9 we compare the error values achieved by both techniques
in a series of consecutive measurements. The upper bound values are also
represented to provide an idea of the system behavior during the experiment.
Higher upper bounds typically correspond to messages transmitted during
periods of more intensive traffic.

The most important result that may be observed in this figure is the
almost stable error achieved by the improved technique (IMP Error), in
contrast with the variable error achieved by the other technique (RT Error).
This result clearly confirms our expectations. Note that the RT Error line
closely follows the Upper bound line, as dictated by the original round-trip
technique (in this case, since tmin was set to zero, RT Error is always half
of the Upper bound). If non-zero values were assumed for tmin, this would
simply shift all the lines down.

To more clearly observe, and compare, the dispersion of the measurement
errors achieved with the two techniques, we analyzed the frequency of each
observed error value, and present the result in Figure 10. Error values with
no occurrences are obviously not depicted, which means that the X axis scale



is irregular. The higher estimation error observed with the IMP technique
was near 490µs, while with the RT technique we observed several error values
above 500µs. This result shows that the improved technique can possibly be
used to construct a distributed duration measurement service that ensures
a bounded measurement error. Such a service can be very useful in network
monitoring systems, as explained in [?], since it allows the establishment of
accuracy bounds for the observations.
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Figure 11: Estimated delays and real (measured) delay.

The accuracy of the estimations obtained with the improved technique
can be observed in Figure 11. In this figure we compare the real delay of
message transmissions, with the delays that were estimated using both tech-
niques. During the periods of “stability”, when the message transmission
delays are low, both techniques seem to provide accurate estimations. How-
ever, when a higher delay occurs, only the IMP technique is able to provide
accurate estimations.

A final note on the impact of increased message size incurred in the IMP
technique. It is true that instead of two, now four timestamps must be sent
for each process receiving some timed message. But the fundamental prob-
lem is scalability, and this one is common to both approaches. In practice,
if there is an upper bound, say N , for the number of processes allowed in a
system using the RT technique, this bound must be reduced to N/2 when
using the IMP technique.

7 Conclusions

We have presented a new technique to measure the duration of distributed
actions and to read remote clocks. With this technique it is possible to
achieve a lower reading error of remote clocks than with the well know round-
trip duration measurement technique proposed by Cristian. Therefore, we
have referred to it as the Improved Round-Trip Technique.

We described in detail the intuition that leads to this improved tech-
nique, and we provided the equations that should be used to obtain the



improved results. Besides reducing the error, and perhaps importantly, this
technique keeps the estimation errors almost constant, independently of the
real duration of the action that is being measured. This is an interesting
feature for any distributed duration measurement service.

We also presented and described a protocol that implements the im-
proved technique, which we have used in the implementation of the dis-
tributed duration measurement service of the Timely Computing Base
(TCB). We were able to conduct an experiment to evaluate the effectiveness
of the proposed technique. The results have shown a few interesting features
of the improved technique:

• it is indeed able to provide readings with almost stable errors;

• it prevents measurement errors from depending on the measured delay
(which might make them extremely high);

• its estimated delays are much closer to the real delays than the ones
obtained with the original round-trip technique.

These positive characteristics render the improved round-trip duration
measurement technique extremely effective and efficient, in short an excel-
lent candidate for an embedded runtime supported service for distributed
applications. This was the approach taken in our TCB prototype.

A Proofs

Theorem 1: Given any message m, the upper bound determined for the
message delivery delay of m using the improved technique is equal to the
determined upper bound using the round-trip technique, tIMP

max(m) = tRT
max(m).

Proof:
We use Figure 12 to visually guide this proof. Consider the depicted

sequence of messages. We will show that the theorem is valid for message
mk+1, and that it can be generalized to any other message.

We will start by showing that mk+1 can be the first message in some
sequence that might possibly have tIMP

max < tRT
max — all previous messages in

the sequence are guaranteed to have the same upper bound using any of the
techniques — and we will show that in spite of this possibility the upper
bounds are nevertheless equal. Since the same reasoning can recursively be
applied to the first subsequent message for which it might also be possible
to have tIMP

max < tRT
max, the theorem can be generalized for every subsequent

message.
Let us assume that the message pair 〈mk,mk+1〉 is the one used to deter-

mine the upper bounds (mk has been considered by p the “best” message so
far). The expressions that provide the upper bounds for mk+1 follow from
(5) and (9):

tRT
max(mk+1) = (F − C)(1 + ρ)− (E −D)(1− ρ)− tmin
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Figure 12: Upper bound preservation for mk+1.

tIMP
max(mk+1) = (F − C)(1 + ρ)− (E −D)(1− ρ)−

(t(mk)− ε(mk))

For t(mk) − ε(mk) = tmin it immediately follows that tIMP
max(mk+1) =

tRT
max(mk+1). We are left with the possibility that

t(mk)− ε(mk) > tmin (16)

In this case it is reasonable to believe that tIMP
max(mk+1) may be lower than

tRT
max(mk+1), which we will prove to be untrue.

Now observe that for inequality (16) to be possible, it is necessary to
consider the existence of a message pair preceding mk in the same sequence.
We assume this message pair to be 〈mk−1,mk−2〉, as depicted in Figure 12.
Furthermore, we assume these two messages to be the first ones in the
sequence, so that mk+1 is clearly the first message for which tIMP

max < tRT
max

may be possible. With these assumptions it is also clear that the theorem
holds for all messages preceding mk+1. Let us write the upper bound for
t(mk−1) (applying (5)):

tmax(mk−1) = (B − S)(1 + ρ)− (A−R)(1− ρ)− tmin (17)

Given that tIMP
min (mk) = t(mk)− ε(mk) > tmin, we can use (10) to write

the following:

tIMP
min (mk) > tmin ⇔
⇔ (D −A)(1− ρ)− (C −B)(1 + ρ)−

(t(mk−1) + ε(mk−1)) > tmin

⇔ (D −A)(1− ρ)− (C −B)(1 + ρ)−
tmax(mk−1) > tmin

⇔ (D −A)(1− ρ)− (C −B)(1 + ρ)−
(B − S)(1 + ρ) + (A−R)(1− ρ) + tmin > tmin

⇔ (D −R)(1− ρ)− (C − S)(1 + ρ) + tmin > tmin

⇔ (C − S)(1 + ρ) < (D −R)(1− ρ)

On the other hand, from (8) we know that mk is only considered a
“best” message than mk−2 if (C − S)(1 + ρ) > (D−R)(1− ρ). So we must



conclude that our initial assumption that the message pair 〈mk,mk+1〉 can
be used to determine the upper bound of mk+1 is in contradiction with the
fact expressed in (16). We must therefore prove that the theorem still holds
when the message pair 〈mk−2,mk+1〉 is used to obtain tRT

max(mk+1). In this
case we have:

tRT
max(mk+1) = (F − S)(1 + ρ)− (E −R)(1− ρ)− tmin

which we must compare with tIMP
max(mk+1):

tIMP
max(mk+1) =
= (F − C)(1 + ρ)− (E −D)(1− ρ)−

(t(mk)− ε(mk))
= (F − C)(1 + ρ)− (E −D)(1− ρ)−

((D −R)(1− ρ)− (C − S)(1 + ρ) + tmin)
= (F − S)(1 + ρ)− (E −R)(1− ρ)− tmin

It follows that tIMP
max(mk+1) = tRT

max(mk+1), which completes our proof.
2

Theorem 2: Given any two messages, m1 and m2, the former sent at A
and received at B with estimation error of εm1, and the latter sent at C and
received at D with estimation error of εm2, m2 is considered to be “best” for
the accuracy of the improved round-trip technique if εm2 < εm1 +ρ(C−A)+
ρ(D −B)
Proof:

To compare messages m1 and m2 we analyze their impact on the esti-
mation of t(mk) for a subsequent message mk (see Figure 4). The “best”
message is the one that allows t(mk) to be estimated with a smaller error
ε(mk).

Applying (12) to the round-trip pairs 〈m1,mk〉 and 〈m2,mk〉 we obtain
the following:

εm1(mk) = ε(m1) + ρ(F −A) + ρ(E −B)
= ε(m1) + ρ(F − C) + ρ(C −A) +

ρ(E −D) + ρ(D −B)

εm2(mk) = ε(m2) + ρ(F − C) + ρ(E −D)

Hence, m2 is better than m1 if:

εm2(mk) < εm1(mk) ⇒
⇒ ε(m2) + ρ(F − C) + ρ(E −D) <

ε(m1) + ρ(F − C) + ρ(C −A) +
ρ(E −D) + ρ(D −B)

⇔ ε(m2) < ε(m1) + ρ(C −A) + ρ(D −B)



2


