
Scalability issues in MOOs: the role of object migration and replication�

Luı́s Rodrigues
Universidade de Lisboa

ler@di.fc.ul.pt

Abstract

Typically Multi-User Object-Oriented Environments
(MOOs) are implemented using a client-server architecture,
where a centralized server maintains the MOO state. Such
architecture may limit the scalability of the MOO. This pa-
per discusses the role of object migration and replication in
the implementation of scalable MOOs.

1 Introduction

A Multi-User Object-Oriented Environment [5, 3]
(MOO) architecture that is based on a single central server
to manage all the MOO state is inherently non-scalable.
When many simultaneous sessions are maintained, the pro-
cessing power and the available network bandwidth of the
the central server may become a bottleneck. Additionally,
MOO users may be geographically dispersed and may ex-
perience quite different connectivity when connecting to a
single server.

A more scalable approach would be to implement the
MOO as a set of cooperating servers, and to use migration
and replication techniques to place the relevant data near to
its users. Having several servers can also be the basis to in-
crease the availability of the environment. In this paper we
discuss some of the challenges of building scalable MOOs
and suggest some basic architectures to address the prob-
lem.

2 Static partitioning

We now assume that we implement a MOO server has a
set of distributed cooperation servers. In this case, the ob-
jects managed by the MOO will be distributed among the
servers. We will start by discussing a simple static parti-
tioning scheme.

�Selected sections of this report will be published in the Workshop
Reader of the 13th European Conference on Object-Oriented Programming
Brussels, Lisbon, Portugal, 14-18 June 1999. Copyright Springer-Verlag.

In the following discussion, we also assume that the end
users interacts with the MOO using aclient program. To
support distribution, the client must be able to contact one
or more servers during a session. The client program may
also support the user interface, executing presentation tasks
in the client machine.

Form the point of view of distribution, migration and
replication, it is useful to cluster the objects managed the
MOO into several categories. In this paper we distinguish
two categories:

� objects associated with a given user;

� objects associated with a given “room”.

A simple way to scale the system is to distribute the
“rooms” among the servers. For the moment, we will as-
sume that the mapping between “rooms” and servers is de-
fined when a “room” is created and remains static for the
lifetime of the system. Such system needs to implement a
directory service to preserve these mappings. Before inter-
action with a room, the client needs to obtain the identifica-
tion of the server hosting that location.

In a similar way, the persistent information about users
can also be distributed among User Storage Servers. How-
ever, when the user interacts with a room, for performance
reasons, it is useful to locate the object associated with that
user in the server hosting the room. This means that the
system must be able to migrate user data among the room
servers. This architecture is illustrated in Figure 1.

3 Dynamic partitioning

The previous scheme does not optimizes load balancing,
since in run-time, the distribution of users among servers
is not necessarily even. For performance reasons, it make
sense to locate the user objects in the same server that main-
tains objects of the room being visited. Since the main load
comes from the user interaction with the system, one should
try to distribute the rooms among the servers.

In the following discussion, we will assume that a room
is inactivewhen no user is interacting with it andactiveoth-

1

User
Database
Server

User
Database
Server

UDS−1 UDS−2

Room
Server

RS−1

Room
Server

(users a−f) (users g−z)
(rooms
1−100)

RS−2

(rooms
101−200)

Client

User a
visiting
room
50

Objects associated with user a

Figure 1. Static partitioning

erwise. At this point, it is worth to distinguish Room Stor-
age Servers from Room Execution Servers, as illustrated in
Figure 2. Storage Servers keep the persistent state of rooms.
Execution Servers support the interaction of users with the
rooms and the interaction among users.

The simplest form of dynamic partition consists in es-
tablishing the mapping between the room and the Execution
Server at activation time. A load balancing algorithm would
evaluate the load of each Execution Server and decide the
best location for the room. In this approach, the location
of the room will remain unchanged until the room is deac-
tivated (i.e., until all users leave the room). This provides
a limited form of load balancing since it may be impossi-
ble to predict the number of users that will move to a given
room. Thus, a load balancing decision that is appropriate at
activation time may become sub-optimal with the passage
of time.

A more sophisticated form of dynamic partitioning is to
allow rooms to be relocated in run-time from one Execu-
tion Server to another server. This may be a complex task
since all objects associated with the room, including those
associated with users in that room have to be migrated.

Network latency, is another important factor that may be
desirable to take into consideration when defining a room
location policy. To minimize the latency experienced by
users it is desirable to place the rooms “close” (in term of
network delays) to their users. For instance, consider a dis-
tributed MOO with servers in Europe and North-America.
If a given room is being accessed exclusively from the USA,
the room should be located in a server on that continent.
Unfortunately, this type of policy may be very difficult to
apply. It requires the system to collect the delays experi-
enced by its users. Furthermore, it also requires the system
to estimate the delays that those users would experience if
the room would be migrated to another server.

4 Replication and performance

Data replication and data caching are well known tech-
niques to increase the performance of distributed systems
(by minimizing access times). Having different replicas of
the same object requires the system to preserve replica con-
sistency. Needless to say, the only case that is simple to
manage is the case where objects are immutable (i.e., they
support read only operations).

For scalability reasons, is fundamental that immutable
objects can be differentiated from those that can be updated.
Immutable objects can be easily cached in the client ma-
chines, alleviating the servers from unnecessary load.

Mutable objects can be replicated using a primary-
secondary scheme [1]. The execution server that hosts the
room (or the user) to which the object is associated plays
the primary role. Clients that interact with the object may
keep secondary copies. Read operation can always be per-
formed locally but updates would be executed in the server
and propagated to the clients. Note that this architecture
also simplifies the implementation of access control. The
server only propagates to a client copies of those objects that
can be read by that client. Additionally, the server can lo-
cally verify the permissions for update operations and does
not need to trust the client program.

5 Replication and availability

Another motivation for using replication is for fault-
tolerance. In its most demanding form, fault-tolerance
would provide complete fault-transparency, i.e., users will
continue to interact with the MOO even if one of the servers
would fail. Techniques to achieve this level of service, such
as active replication, are usually very costly. It is unlikely
that such techniques will be used in MOOs. For instance,
the state machine approach [9] requires the duplication of

2

User
Database
Server

User
Database
Server

UDS−1 UDS−2

(users a− f) (users g−z)(rooms
1−100)

(rooms
101−200)

Client

User a
visiting
room
50

Room
Storage
Server

RSS−1 RSS−2

Room
Storage
Server

a

Client

User z
visiting
room
149

z

Room
Execution
Server

(room 50,
 user a)

Room
Execution
Server

(room 149,
 user z)

Figure 2. Dynamic partitioning

all resources and the use of an atomic multicast protocol [8]
to interact with the replicated servers.

On the other hand, if fault-tolerance is not considered,
the crash of a server may leave the MOO unavailable for
a long period. This may discourage users or even defeat
the purpose of the MOO. The state-of-the-art in terms of
commercial solutions for high-availability servers is the use
of clusters [7]. From the users point of view, the cluster can
be seen as a single machine, that may crash but recovers
in a short period, thus being available most of the time. In
terms of architecture, the use of clusters does not change
our previous design. It just makes servers less prone to long
down-time periods.

6 Replication and network partitioning

Clusters make servers more available but do not solve the
problem of network partitioning, as illustrated in Figure 3.
A partition occurs when the system is split into groups of
isolated nodes. The nodes in each partition can communi-
cate with each other, but no node in one partition can com-
municate with any node in any other partition. Partitions are
not a rare event in the Internet.

In our architecture, in the presence of network partitions
each user would be limited in the number of rooms available
to visit. Replication can also help to alleviate this problem.
If the information is replicated among several physical lo-
cations, it is more likely that a copy is reachable from the
client machine.

Unfortunately, availability and consistency are conflict-
ing goals when partitions may occur. If users can perform
independent updates on each partition, the state of the repli-
cas may diverge to an inconsistent state. For instance, con-
sider a room that holds an object which is supposed to be
unique in the MOO. If this room and its objects are kept
available in two distinct partitions, different users can pick

the object, something that is inconsistent with the unique-
ness property.

A typical approach to prevent divergence in partitionable
environments is to allow updates on a single partition (usu-
ally called the primary partition). Translated to our architec-
ture, this means that a given room could be available in both
partitions but only users in the primary partition would be
allowed to change the state of the objects (in our example, to
pick the object). In this case, users in the non-primary par-
titions would nedd to be aware of network conditions [2].

Much better availability can be achieved if the seman-
tics of the object are taken into consideration [4]. For in-
stance, a bag of items could be filled concurrently in differ-
ent partitions. When the partition disappears, consistency is
re-established by merging both bags. MOOs are an excel-
lent environment to apply object-specific replication poli-
cies and much of the work that is being done in the area of
disconnected operation can certainly by applied here [6].

7 Fully distributed architecture

A step further in our design would be to incorporate an
execution server in every client program. In this approach,
rooms will be activated in the client of the user entering
the room. Additional users would be re-directed to contact
directly the client hosting the room. In this architecture,
Execution Servers would be unnecessary, as clients visit-
ing the same room would synchronize directly. Room Stor-
age Servers would still be required to preserve the persistent
state of inactive rooms and to maintain the location of each
room.

By eliminating the need for the Execution Servers, this
approach eliminates a potential bottleneck in the system.
Unfortunately, this architecture also permits an unreliable
or malicious client machine to jeopardize the operation of
the system. This can be achieved simply by disconnecting

3

(rooms
101−200)

RSS−2

Room
Storage
Server

Room
Execution
Server

(room 50,
 user a)

Client

User a
visiting
room
50

User
Database
Server

UDS−1

(users a− f)

RSS−2

a

Client

User z
visiting
room
149

z

RSS−1
(1−100)(101−200)

Room
Storage
Server
(Cluster)

Room
Execution
Server
(Cluster)

User
Database
Server

UDS−2

(users g−z)

UDS−2
(users g−z)

User
Database
Server
(Cluster)

RSS−1
(1−100)

Room
Storage
Server
(Replicated)

Room
Storage
Server
(Replicated)

(room 149,
 user z)

(room 50,
 user a)

Client

User x
visiting
room
50

x
(room 50,
 user x)

 Replica
Consistency

 Replica
Consistency

Room
Execution
Server
(Replicated)

Room
Execution
Server
(Replicated)

Figure 3. Replicated operation

the client, taking with it important system state. At this
point, it is not clear which types of MOO functionalities
would benefit from allowing clients to interact directly with
each other.

8 Conclusions

In a MOO, the use of a single server is an obstacle to
scalability. Implementing the MOO as a cooperating set of
servers provides the ground for implementing load balanc-
ing policies. Since the load distribution changes in time,
dynamic load balancing schemes are desirable. In turn,
these require the ability to migrate objects between servers.
Replication is a powerful tool to preserve the MOO avail-
ability in the presence of crashes or network partitions. The
use of semantic-aware replication policies is key to balance
availability and consistency.

References

[1] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg.
The primary-backup approach. In S. Mullender, editor,
Distributed Systems, 2nd Edition, ACM-Press, chapter 8.
Addison-Wesley, 1993.

[2] F. Cosquer, P. Antunes, and P. Ver´ıssimo. Enhancing de-
pendability of cooperative application in partitionable envi-
ronments. InProceedings of the 2nd European Dependable
Computing Conference, Taormina, Italy, Oct. 1996.

[3] A. Dı́az and R. Melster. Designing virtual WWW environ-
ments: Flexible design for supporting dynamic bahavior. In
First ICSE Workshop on Web Engineering, May 1999.

[4] A. Downing, I. Greenberg, and J. Peha. Oscar: A system for
weak-consistency replication. InProceedings of the Work-
shop on the Management of Replicate Data, pages 26–30,
Houston - USA, Nov. 1990. IEEE.

[5] S. Evans. Building blocks of text-based virtual environments.
Technical report, Computer Science Department, University
of Virginia, Apr. 1993.

[6] J. Heidemen, T. Page, R. Guy, and G. Popek. Primarily dis-
connected operation: Experiences with ficus. InProceedings
of the Second Workshop on the Management of Replicated
Data, pages 2–5, Monterey, California, Nov. 1992. IEEE.

[7] G. Pfister. In search of clusters. Second Edition. Prentice
Hall, 1998.

[8] L. Rodrigues, R. Guerraoui, and A. Schiper. Scalable
atomic multicast. InProceedings of the Seventh Interna-
tional Conference on Computer Communications and Net-
works (IC3N’98), Lafayette, Louisiana, USA, Oct. 1998.

[9] F. Schneider. Replication management using the state-
machine approach. In S. Mullender, editor,Distributed Sys-
tems, 2nd Edition, ACM-Press, chapter 7. Addison-Wesley,
1993.

4

