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João Gonçalves Paiva

5





To Maria, António, Fátima and Mariana,

my personal heroes





This work was partially supported by Fundação para a Ciência e Tecnologia (FCT) via

the individual Doctoral grant SFRH/BD/63387/2009, via project PEPITA (PTDC/EEIS-

CR/2776/2012), and via the INESC-ID multi-annual funding through the PIDDAC Program

fund grant, under project PEst-OE/EEI/LA0021/2013.





Resumo

O problema da colocação de dados corresponde a decidir como atribuir dados a nós num

sistema distribúıdo de forma a optimizar um ou mais critérios de desempenho, como a redução

da congestão da rede, melhorar o balanceamento da carga, entre outros.

Ao colocar os dados perto dos clientes, podemos reduzir o número de acessos remotos, reduzir

a latência das operações e evitar o congestionamento da rede. Considerando a capacidade dos

nós e a caracterização dos padrões de carga, podemos evitar a sobrecarga de alguns nós que

poderiam tornar-se um ponto de congestão do sistema. Se nos focarmos na probabilidade de

falha de nós individuais, podemos colocar os dados de forma a maximizar a sua disponibilidade,

enquanto reduzimos os custos extra da monitorização e dos múltiplos restauros de réplicas. A

maioria destes critérios impõem requisitos contraditórios e cada aplicação deve dar prioridade a

como optimizar a colocação dos dados. Este trabalho aborda estes e outros critérios, não só de

uma forma independente, mas também combinando-os.

No entanto, os benef́ıcios alcançados por uma boa poĺıtica de colocação de dados têm de ser

ponderados em função dos custos da pesquisa de dados. Na verdade, para suportar flexibilidade

total na colocação de dados temos de recorrer a uma forma de diretoria distribúıda, que guarda

o mapeamento entre dados e nós. Infelizmente, os custos de efetuar pesquisas na diretoria e de

manter a diretoria atualizada podem facilmente tornar-se num ponto de congestão do sistema.

Como consequência deste problema, muitos sistemas usam estratégias de colocação de dados

simples, como as funções de dispersão.

Esta tese propõe técnicas que oferecem diferentes compromissos entre esquemas simples de

funções de dispersão e sistemas de diretorias completas para diferentes escalas de sistemas. O

objectivo principal é fornecer melhores opções entre ter uma grande flexibilidade com escalabili-

dade limitada (tipicamente usado em sistemas de centros de dados) e ter uma boa escalabilidade

com flexibilidade limitada (a escolha principal para sistemas à escala da internet).





Abstract

Data placement refers to the problem of deciding how to assign data items to nodes in

a distributed system to optimize one or several of a number of performance criteria such as

reducing network congestion, improving load balancing, among others.

By placing data near the clients, one may reduce the number of remote accesses, significantly

reduce the latency of operations, and avoid network congestion. By taking into account the

capacity of nodes and the workload characterization, one may avoid the overload of a few nodes

that could otherwise become a bottleneck in the entire system. By minding the probability of

failure of individual nodes, one can place data in a way that maximizes its availability, while

reducing the overhead caused by monitoring and multiple replica restores. Most of these criteria

impose conflicting requirements and each application must prioritize how to optimize placement.

This work addresses these criteria among others, in an independent as well as in a combined

way.

However, the benefits achieved by a clever data placement must be weighted against the

costs of data lookup. In fact, to support total flexibility in the data placement, one needs to

resort to some form of distributed directory that stores the mapping between data items and

nodes. Unfortunately, the costs of performing directory lookups and the overhead of maintaining

the directory up-to-date can easily become the bottleneck. Due to this problem, many practical

systems use simple data placement strategies, such as consistent hashing.

This thesis proposes techniques that provide di↵erent tradeo↵s between plain consistent

hashing schemes and full directory systems for di↵erent sizes of system scales. The main goal

is to provide better options between having strong flexibility with limited scalability (typically

employed in datacenter systems), and having good scalability with limited flexibility (the main

choice for internet scale systems).
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15





Keywords

Distributed Systems

Data Placement

Key-Value Storage

Replication

Load Balancing

Scalability

Optimization

Autonomic Adaptation

Peer-To-Peer Systems

Distributed Data Management

17





Index

1 Introduction 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Structure of the Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Concerns in Data Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Data Placement Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Optimal Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Data Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Mapping Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1 Single-Valued functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.2 Set-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Abstracting Physical Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8.1 Availability-aware Replica Placement . . . . . . . . . . . . . . . . . . . . 17

2.8.2 DataDroplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8.3 Dynamo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

i



2.8.4 Scatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8.5 Spanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8.6 Ursa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8.7 Case Studies Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Internet Scale Data Placement 25

3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Data Replication on DHTs . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Load Balancing on DHTs . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Combining Structured and Unstructured Overlays . . . . . . . . . . . . . 28

3.2 Rollerchain Overview and Building Blocks . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Rollerchain Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Definitions and Basic Operation . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 The Unstructured Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 The Structured Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.4 Layer Interoperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.4.1 Virtual Link Creation . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.4.2 Virtual Node Maintenance . . . . . . . . . . . . . . . . . . . . . 34

3.3.4.3 Virtual Node Division . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.4.4 Virtual Node Merge . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.5 Key/Value Pairs Replication . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.6 DHT routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Topology Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Experimental Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ii



3.4.2 Fault-Tolerance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Replication Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Tradeo↵s in Data Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 A Catalog of Previous and New Policies . . . . . . . . . . . . . . . . . . . . . . . 44

3.7.1 Policy Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7.2 Previous Replication Policies . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7.2.1 Strategies based on consistent hashing . . . . . . . . . . . . . . . 46

3.7.2.2 Directory-based strategies . . . . . . . . . . . . . . . . . . . . . . 47

3.7.3 Novel Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7.3.1 Oblivious Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7.3.2 Informed Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7.4 Summary of All Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8 A Performance Model To Compare Policies . . . . . . . . . . . . . . . . . . . . . 50

3.8.1 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8.2 Baseline System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8.3 Actual System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8.4 Policy E�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9.1 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.9.3 Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Datacenter Scale Data Placement 61

4.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

iii



4.2 System Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 AutoPlacer Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1.1 Space-Saving Top-k algorithm . . . . . . . . . . . . . . . . . . . 69

4.3.1.2 Using Approximate Information . . . . . . . . . . . . . . . . . . 70

4.3.1.3 Accelerating the solution of the optimization problem . . . . . . 71

4.3.2 Probabilistic Associative Array: Abstract Data Type Specification . . . . 72

4.3.3 The AutoPlacer iterative algorithm . . . . . . . . . . . . . . . . . . . . 73

4.3.4 Handling dynamic workloads . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Probabilistic Associative Array Internals . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.2 FeatureExtractor Key Interface . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.3 PAA Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.4 Example use of PAAs in AutoPlacer . . . . . . . . . . . . . . . . . . . 84

4.5 Optimizer Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6.2 Probabilistic Associative Array . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6.3 Leveraging from Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6.4 Distributed Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6.5 Dynamic workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6.6 GeoGraph evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

iv



5 Final Remarks 103

5.1 Research Collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography 107

v



vi



List of Figures

2.1 Single-Valued functions. Nodes are represented by circles, data items by rectangles. 14

2.2 Set-valued functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Abstractions from physical nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Rollerchain’s Architecture: At the DHT level vnodes form a ring. Each vnode is

composed of several pnodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Management of virtual links among vnodes. . . . . . . . . . . . . . . . . . . . . . 34

3.3 Replication signalling costs per node, considering 128bit keys. . . . . . . . . . . . 39

3.4 Average number of nodes contacted by nodes running multi-publication, consid-

ering R = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Topology signalling costs per node. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Load balancing vs monitoring costs tradeo↵ . . . . . . . . . . . . . . . . . . . . . 43

3.7 Load balancing vs data transfer costs tradeo↵s . . . . . . . . . . . . . . . . . . . 43

3.8 Behaviour of policies over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Example use of PAAs in AutoPlacer . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 PAA Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 AutoPlacer performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Throughput of AutoPlacer, a directory-based and a consistent hashing-based

solution, after a complete optimization process. . . . . . . . . . . . . . . . . . . . 93

vii



4.5 Progression of the quality of the data placement optimization solutions of Auto-

Placer’s distributed optimization versus that of a centralized optimizer, relative

to unoptimized placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Total throughput of AutoPlacer over time for a dynamic workload with 90%

of locality. T1 and T2 mark the instants when changes in workload occurred. . . 97

4.7 Number of objects moved to a specific node per round over time. The figure

presents data for one of the nodes whose data is not a↵ected by the first workload

change (at T1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.8 Evolution of throughput over time, duration of read-only transactions, and num-

ber of remote get operations per read-only and update transactions – GeoGraph

benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

viii



List of Tables

2.1 Systems summary table. Case studies are highlighted in bold. . . . . . . . . . . 21

3.1 Percentage of objects reachable at the end of the simulations. . . . . . . . . . . . 38

3.2 Design Space of Replication Policies for P2P Systems . . . . . . . . . . . . . . . . 45

3.3 Policy Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Evaluation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Results for Evaluated Policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Parameters used in the ILP formulation. . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 PAA Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Re-located objects and size of di↵erent PAA implementations. . . . . . . . . . . . 90

ix



x



1Introduction
In this work we consider large-scale distributed systems, composed of several nodes that do

not share memory and communicate exclusively by message passing. Each node has an amount

of local storage, that can be used to store a given number of data items. Collectively, the system

has to store a large dataset, much larger than the amount of storage available in each individual

node. Thus, di↵erent data items may have to be stored on di↵erent nodes. Furthermore, for

fault-tolerance reasons, the same data items may be stored (replicated) in more than one node.

In this context, the data placement problem consists of selecting which nodes keep copies of

each data item.

Data placement has a significant impact on several performance criteria of a distributed

system, such as latency in data access, throughput, fault-tolerance, or e↵ective storage capacity.

As we will discuss, data placement decisions may a↵ect the above properties in conflicting ways.

We motivate this problem with a few simple examples:

• When a client is connected to a given node and requests data items that are stored ex-

clusively on that node, no communication with other (remote) nodes is required to fulfill

the requests. Conversely, every time the client needs to access a data item that is placed

in any other system node, communication is required. Thus, by placing data near the

clients, one may reduce the number of remote accesses, significantly reduce the latency of

operations, and avoid network congestion. It is then clear that data placement may have

impact on the performance of the applications that execute on the distributed system.

• If data is replicated, replicas need to be accessed in a way that they appear to be mutually

consistent. This requires non-trivial coordination among the nodes that store replicas of

a data item during write operations, read operations, or both. Thus the performance

of the system depends on the number of replicas, the replication protocol, and also on

the ratio between read and write operations. In any case, replication usually involves a
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tradeo↵ between the e�ciency of read operations (that in some cases can be local and

uncoordinated) and the cost of update operations (that require to update multiple nodes).

• In a large dynamic system, failures are unavoidable. To prevent data from being lost, the

system must react to failures by ensuring that all data items have an appropriate number of

replicas at all time. Yet, as shown by Blake and Rodrigues (Blake and Rodrigues, 2003),

this can be costly in terms of bandwidth. On the other hand, it is possible to predict

failures. By minding the probability of failure of individual nodes, one may place data in

the more resilient ones to maximize data availability, while reducing the overhead caused

by monitoring and multiple replica restores. In fact, this presents a tradeo↵ since it may

cause the more resilient nodes to become a bottleneck in the system, while other nodes

more prone to failure may remain unused.

Thus, choosing the right data placement strategy usually involves making tradeo↵s among

di↵erent performance criteria. Most of these criteria impose conflicting requirements and each

application must prioritize how to optimize placement. This work addresses the aforementioned

criteria, among others, in an independent and in a combined way.

Furthermore, when considering the data placement problem, one also has to consider the

costs of the mechanisms that collect the information required to make informed placement

decisions and the mechanisms required to keep track of the location of data (after placement

has been decided). This is illustrated by the following considerations:

• If data placement does not take into consideration how data items are accessed by the

applications, this may result in an uneven distribution of load among the nodes, because

some data items may be accessed much more frequently than others. On the other hand,

if access patterns are taken into account, one may be forced to collect and distribute mon-

itoring information to identify those patterns, a task that may consume a non-negligible

amount of existing resources.

• As it will be discussed, a problem that is tightly related to the data placement is the data

location problem. This problem consists of finding which nodes store a given data item,

once the placement has been defined. The most obvious way of solving the data location

problem consists of using a centralized directory, which keeps the mapping among data
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items and nodes. Unfortunately, such central directory can easily become a bottleneck in

the system.

The benefits achieved by clever data placement must be weighted against the costs of data

lookup. In fact, to support total flexibility in the data placement, one needs to resort to some

form of distributed directory, that stores the mapping between data items and nodes. Unfor-

tunately, the costs of performing lookups to the directory and the overhead of maintaining the

directory up-to-date can easily become the bottleneck. Due to this problem, many practical

systems use simple data placement strategies, such as consistent hashing (Karger et al., 1997).

Following the above observations, in this thesis, we identify the key issues in data placement

and make an overview on how these issues have been previously addressed in the literature. We

then propose new techniques that provide di↵erent tradeo↵s between plain consistent hashing

schemes and full directory systems for di↵erent sizes of system scales. We studied two scenarios

of system scales: the Internet scale and the Datacenter scale. For each scale, we propose

techniques that improve over the tradeo↵s provided by the state of the art, by providing greater

flexibility at cost of no scalability for internet-scale systems and by providing greater scalability

with good placement flexibility for datacenter-scale systems. One might think that there would

be a unifying data placement strategy for both scenarios. However, our experience appears to

indicate that such a goal cannot be achieved. We discuss these issues in Section 5.

1.1 Problem Statement

The problem of optimizing data placement in a distributed system is very complex. It

involves not only making tradeo↵s with regard to the properties directly influenced by the

location of the data (latency, throughput, among others), but also tradeo↵s with regard to the

amount of information that needs to be gathered and maintained to make informed placement

decisions and keep track of item locations. All these factors may impose limits on the scalability

of a given solution, whether in terms of the number of nodes that can be supported, or the

amount of data location data managed, or the granularity at which data placement decisions

take place.

The main goal of this thesis is to explore the tradeo↵s between scalability and full placement

flexibility, by proposing novel designs to balance these conflicting goals.
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1.2 Summary of Contributions

The contributions of this thesis are two techniques of data placement for internet-scale and

datacenter-scale systems:

• For internet-scale systems, the thesis proposes a network overlay composed of groups of

nodes. This overlay provides enough flexibility to support pluggable policies that optimize

a range of performance criteria including improving load balancing, bandwidth usage and

monitoring costs. Furthermore, this increased flexibility does not come at the cost of

limiting scalability and, in fact, our solution is more reliable under heavy network dynamics

than existing techniques.

• For datacenter-scale systems, this thesis proposes a hybrid approach which combines con-

sistent hashing for most items with an e�cient directory for hotspot items. This design is

more scalable than using a directory to define the placement of all items, but still provides

enough flexibility to exercise fine-grained control over data placement. This fine-grained

control was used to implement a distributed algorithm improving data access locality on

a key-value store.

1.3 Results

Considering the contributions listed above, the main results of this thesis are the following:

• Experimental prototype of a virtual-node distributed key-value store which addresses con-

cerns of node replacement, scalability and load balancing (dubbed Rollerchain).

• Design and implementation of a set of replication policies for internet-scale systems that

leverage the virtual-node design of Rollerchain.

• Extensive experimental evaluation of a prototype of Rollerchain as well as other related

state-of-the-art systems through simulation.

• Extensive experimental evaluation of a set of replication policies for virtual node-based

systems through simulation.
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• Experimental prototype of a distributed key-value store which addresses concerns of scal-

ability and data locality (dubbed AutoPlacer).

• Extensive experimental evaluation of AutoPlacer using real-word deployments on a

dedicated cluster.

1.4 Structure of the Document

The document is structured as follows. In Chapter 2, we identify the main concerns that

need to be taken into account when performing data placement and list the most relevant

placement strategies that have been proposed in the literature. In Chapter 3, we present our

contributions for internet-scale systems. Chapter 4 describes our solution for datacenter-scale

systems. Finally, we conclude the document and present lines of future work with Chapter 5.
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2Background
This chapter provides an overview of the main concepts, concerns and systems that served

as inspiration for the work presented in this thesis. We first introduce some basic notions in

data placement, then we address some key concerns and present the dynamics of data place-

ment. Next, we introduce the related data location problem and we discuss the topic of optimal

placement. Finally, we present the main techniques used to map data items to system nodes

and conclude by reviewing the most relevant related systems.

2.1 Basic Concepts

In this section, we introduce a number of concepts that are relevant to discuss the data

placement problem.

Data item We denote the atom of data storage a data item. In a concrete system, an item

may be materialized as a data object at a di↵erent level of abstraction: a block, a file, a

programming language object, a portion of a relational table, among others. In this thesis,

we abstract from such materialization. We assume that each data item has some unique

identifier that we will further refer to as the item’s unique key.

Data owner: We denote the node where a given data item i is placed as the i’s data owner.

Therefore, data placement can be informally described as the problem of deciding which

nodes own which data items.

Replication: When the same data item is stored in multiple nodes, we say that the data item

is replicated. The number of replicas stored of a given data item is named the item’s

replication degree. As we will discuss later in the text, in principle, nothing prevents

di↵erent items from the data set to be stored with di↵erent replication degrees. Still, in

many practical systems, the replication degree is a global constant that is applied to all
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data items. The particular case where all data items are replicated in all nodes is named

full replication.

Types of Data Access: We distinguish two main types of operation on data items: Read

operations, which do not change the value of the data item; and Write operations, also

named updates, which change the value of the item.

Replica Consistency: A replica consistency model defines which outcomes are legal for any

sequence of read and write operations. Ideally, a replicated system would behave like a

centralized system, i.e., it would provide one-copy equivalence, as this is an intuitive mem-

ory model for the programmer. A data consistency protocol is a protocol to be executed

during read and write operations to enforce a given data consistency model. To simplify

the exposition, in this document, we assume that when items are replicated, a read-one

write-all protocol is used to ensure replica consistency. However, most of the discussion

included in this thesis is still valid if other consistency models and/or consistency protocols

are used.

Cache: A cache copy of a data item is a transient replica whose existence is not required to

ensure data survivability and that can be created and discarded with minimal coordination.

We do not discuss caching techniques; they can be seen as complementary to the replication

and placement techniques studied in this thesis and we direct the interested reader to Liu

and Maguire, 1994.

2.2 Concerns in Data Placement

This section enumerates the key concerns that need to be addressed when performing data

placement.

Scalability: Any data placement scheme that does not rely on full replication has the potential

to increase the scalability of the system. In fact, since each node only stores a portion of

the data set, as more nodes are added to the system, the size of the data set that can be

stored in the entire system can also grow. Exclusively from the point of view of scalability,

the smaller the replication degree of an item, the better the scalability of the system, since

less space is occupied by each item.
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Load Balancing: By placing di↵erent data items in di↵erent nodes, it is possible to have

programs that access those data items to execute in parallel, thus distributing the load

among multiple servers.

Furthermore, replication also allows to distribute the load of read accesses to a single data

item by multiple replicas. This is typically an advantage, since most workloads are read-

intensive. However, write accesses require all replicas to be updated, and therefore do

not benefit from replication (actually, the cost of write operations may increase with the

number of replicas). Therefore, there is a tradeo↵ between the gains that can be achieved

during read operations and the overhead imposed during writes.

Ideally, instead of simply distributing the load among the available servers, one would like

to balance the load, i.e., to ensure an even load distribution among the servers. Given that,

in most cases, some data items are more accessed than others, load balancing requires

the relative rate of access to di↵erent items to be estimated and taken into account.

Furthermore, the access patterns may not be constant in time, which may require the data

placement to be recomputed from time to time.

Data Locality: As noted before, a program that executes at a given node may be required

to exchange messages with other nodes when accessing data items that are not available

locally. Typically, the smaller the number of nodes that need to be contacted for executing

a program, the better. Therefore, data placement should strive to put data items that are

often accessed together in the same node(s).

It is interesting to note that data locality may conflict with the load balancing concern

discussed above. In fact, if the data items that are accessed together by some programs are

also the data items that are accessed most frequently in the system, putting those items

in a small set of nodes may overload these nodes. However, it might still be beneficial to

place said data items in nodes closest to the ones running the programs that use them, in

terms of some network metric (e.g. latency).

Availability: There are two main reasons to use data replication in a system. One is to

distribute the load of read operations, as discussed before. The other is to ensure data

availability in case of node failures. In fact, if data is replicated in multiple nodes, data is

not lost when a node crashes.

If the probability of failure is uniform, and failures are not correlated, data placement has
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only to ensure that replicas of a given item are placed in di↵erent nodes. Otherwise, failure

probabilities and failure correlation should be taken into account. For instance, replicas

should be placed in nodes whose failure correlation is small (for example, in di↵erent

racks). Also, items that are stored in highly reliable nodes may have a smaller replication

degree than items that are stored in less reliable nodes.

Again, note that availability concerns may conflict with other goals. For instance, a higher

replication degree may increase data availability but may also increase the cost of write

operations. Also, if data placement is skewed to more reliable nodes, these nodes can easily

become overloaded.

Node Replacement: When a node fails, the replicas that it owned must be reconstructed,

either at other surviving nodes, or in a new node that is brought to life to replace the

failed one. The recovery procedure involves initiating the new replicas by copying their

state from other surviving replicas. This operation can take some time and consume a

non-negligible amount of system resources. Naturally, recovery time is a function of the

amount of data replicas that were stored on the failed node (and that have not been lost)

and must be re-replicated. As a result, a more predictable recovery time can be achieved

if the number of data items is distributed evenly among the existing nodes.

Node Population: When a node joins the system, it must be populated with replicas of data

items that should be copied from other nodes. The strategy used for data placement can

also a↵ect the amount of time needed to populate the new node. For instance, in systems

that exhibit an asymmetry between upload and download bandwidths, the population time

can be shortened if the new node can download di↵erent items in parallel from di↵erent

sources (this discourages a placement strategy that makes a new node a mirror of a single

existing node). Also, if network latencies are heterogeneous, the population time can be

shortened if the items placed in the new node come from low-latency neighbors.

2.3 Data Placement Dynamics

Another concern is how data placement must change over time. We consider two types of

mappings: static and dynamic.
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Static In a system using static data placement, the location of data items is defined a priori

and maintained through the lifetime of the system. If a node crashes, the system waits

until the node recovers or is replaced by a new node that will contain exactly the same

replicas as the failed one.

Dynamic In a system using dynamic data placement, data placement is redefined from time

to time. The three main causes for triggering a new data-placement are changes in:

• System membership: when nodes are removed or new nodes are added, for example

as part of elastic scaling. When the scale of the system changes, not only may data

items be replaced, but also the replication degree of items may be changed;

• Underlying network: When the network condition changes, data may be moved

to minimize the costs of updates;

• Workload: On workload-driven systems, a new data placement may be defined in

response to changes in the node’s data access patterns that may a↵ect locality of data

or the most accessed items.

2.4 Optimal Placement

As already hinted in the paragraphs above, several of the listed concerns point toward

conflicting goals. Thus, in a concrete system, the administrator must define the tradeo↵s that are

more relevant for the system operation, considering the concrete requirements of the applications

that are being executed.

Optimal placement could then be defined as a cost function, that would assign a weight to

each concern and a numeric value to each configuration for every relevant concern. Optimal

placement would be the one that would minimize the cost function. In general, this an NP-hard

problem (You et al., 2013).

It is worth noting that most systems do not attempt to achieve optimal placement, because

it can be too expensive and slow to derive or simply because, for that system, it may be di�cult

to express a meaningful cost function. For instance, if the data location cost dominates the cost

function, the placement may be simply guided by the choice of an e↵ective mapping function

(such as consistent hashing), discarding all other factors.
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2.5 Data Location

After the data has been placed, it is necessary to keep a record of the location of the replicas

of each data item, such that these replicas can be located when the data needs to be read or

updated.

Any arbitrary placement can be registered in a directory service. Logically, the directory

service keeps a table, indexed by the data item’s key, that stores, for each item, the number of

replicas and the nodes where these replicas are placed. A directory server can be implemented

in several ways, ranging from a single centralized node to a partially replicated distributed hash

table hosted on thousands of nodes. This solution allows for perfect placement for a scenario

where the system stores few items items on nodes with stable connections.

As the system grows in items, the directory service can easily become a bottleneck for

system operation. If we consider a system with a large number of data items, the directory can

easily become too large to be stored on a single node. Hence, if it is replicated at every node, it

may consume a significant amount of memory and the costs of updating an entry, particularly

when the placement is dynamic, may become prohibitive. On the other hand, if the directory is

maintained on dedicated nodes, as a distributed or centralized service, an additional roundtrip

is required to locate items, increasing network congestion and introducing latency in the critical

path to accessing data.

If we consider a system with a large and unstable membership, the directory must be updated

each time a node joins or leaves the system. This problem is complicated when one distributes

the directory by the nodes storing the data as then, not only the data, but also the directory,

must be replicated and kept consistent despite frequent node joins and leaves.

Since the solutions studied in this thesis are focused on internet-scale systems characterized

by highly dynamic memberships, as well as datacenter systems which store a large number of

items, using directories to define full data placement may be an unsuitable solution. Neverthe-

less, in the following chapters, we will also address more in depth how our techniques compare

with directory-based techniques.
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2.6 Mapping Functions

As discussed in the previous section, any arbitrary mapping among data items and nodes can

be captured by a directory. Unfortunately, directories are expensive to implement. Therefore,

many systems rely on alternative mapping functions, that can be implemented in a very e�cient

manner, such that data location can be performed with minimal overhead, even if the resulting

data placement is far from optimal.

We define data placement as the graph D in the relation (K,N,D) between the set of all

keys, K, and the set of nodes in the system, N . This relation is left-total, i.e., all keys have at

least one corresponding node in the system; as well as symmetric, i.e., if a key k corresponds to

a node n in the graph D, then the node n also corresponds to the key k in the graph D.

One can devise two mechanisms for defining the data placement graph using mapping func-

tions: (I) mapping each key to a node using a single-valued function; (II) mapping each key to

a sub-set of N by using set-valued functions;

2.6.1 Single-Valued functions

Single-Valued functions are deterministic functions that typically take as argument the key’s

identifier and/or attributes and return the node where the data item should be placed. Note

that, since a single value is returned, when a data item is replicated, each replica needs to have

its own unique identifier that can be fed to the mapping function to derive the location of that

replica.

In this section, we will study some of the most representative examples of these functions.

Sharding: Sharding (Agrawal et al., 2004; Curino et al., 2010) is the simplest technique to

perform data placement. All data replicas are sorted using one of the attributes (such as

the key) or a combination of attributes (such as the owner and the key). Then the ordered

set is divided into |N | chunks using cut points in the ordered set and each chunk is placed

on a di↵erent node (to simplify location, nodes are also typically sorted by their identifiers

and the first chunk goes to the first node, etc) (Figure 2.1 (a)).

Proximity Placement: As before, proximity placement (Harvey et al., 2003; Schutt et al.,

2006; Lakshman and Malik, 2010) starts by ordering all replicas using a combination of
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Figure 2.1: Single-Valued functions. Nodes are represented by circles, data items by rectangles.

attributes. The combination of attributes defines a placement identifier for each data

item. Furthermore, each node is given an identifier selected from the same identifier space

of the data items. Finally, instead of splitting the ordered set of items using cut points,

data items are placed in the nodes that have the closest identifier to that of the item

(Figure 2.1 (b)).

One problem with this approach is that, if the identifiers of the nodes are taken uniformly

at random from the identifier space but the distribution of the data item identifiers is not

uniform, this results in a very imbalanced item distribution. Thus, the placement can and

should be controlled by carefully selecting the node identifiers (Kenthapadi and Manku,

2005).

Consistent Hashing: Consistent hashing (Karger et al., 1997) consists of generating a data

item’s key by hashing its contents (using a cryptographic hash function) and a node’s

identifier by hashing one of its unique characteristics (e.g. its IP address) so that data

items can be placed deterministically in those nodes whose identifier is closest to the item’s

key (Figure 2.1 (c)). This way, when the membership changes, only nodes with identifiers
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closest to the identifiers of the removed or added nodes are a↵ected, since they become

responsible for more or less data, respectively.

Note that consistent hashing is very similar to proximity placement, except that the hash-

ing function can help in masking an uneven distribution of data identifiers in the identifier

space.

Space-Filling Curves: In order to support operations requiring ordering over several at-

tributes (e.g. the intersection of two requests which request data items whose attribute

values fall in specific ranges for two di↵erent attributes), some systems make use of Space-

Filling Curves (Moon et al., 2001). This technique maps a multidimensional identifier

space to a unidimensional one, where data items and nodes are placed similarly to what

happens in systems using order-preserving partitioning (Figure 2.1 (d)).

2.6.2 Set-Valued Functions

Set-valued functions are deterministic functions that, as before, take as argument the key’s

identifier and/or attributes and return a set of nodes where the data item should be placed.

The advantage of using set-valued functions is that replicas of a given item do not need to be

explicitly named: their location is provided directly by the mapping function. In this section,

we will study some of the most representative examples of these functions.

Neighbor Replication: Neighbor replication (also known as leaf set replication) assumes that

the nodes are organized in some overlay topology, such that it is possible to easily name

a set of k neighbors of a given node. For instance, if nodes are organized in a Chord

ring (Stoica et al., 2001), each node always stores the data from its k successors (Fig-

ure 2.2 (a)).

Under this assumption, neighbor replication consists of using one of the single-valued

functions described before, and returning that value plus r � 1 neighbors.

Multi-Publication: Multi-publication (Knežević et al., 2009; Ratnasamy et al., 2001; Waldvo-

gel et al., 2003) consists of deterministically deriving r di↵erent identifiers from the input

and then using one of the single-valued functions described before for each of these identi-

fiers (Figure 2.2 (b)). Typically, this is implemented by applying consistent hashing using
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Figure 2.2: Set-valued functions.

r di↵erent hash functions, or the same hash function with r di↵erent salt values appended

to the key.

Symmetric Replication: Symmetric replication (Ghodsi et al., 2007a; Schütt et al., 2008) is

a variant of multi-publication where the identifier space is divided into r slices, and the

replicas of each data item are placed one in each slice at slice size distance from the replica

in the previous slice (Figure 2.2 (c)). This causes each node’s data items to be replicated

in contiguous portions of identifier space, which increases the probability that they will be

stored by few di↵erent nodes.
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2.7 Abstracting Physical Nodes

In the text above, we have assumed that a mapping function maps a combination of keys

and attributes onto a physical node in the system. However, the same functions can be used

to map onto logical nodes, which in turn, are mapped onto physical nodes by some additional

mechanism. There are two main ways of implementing logical nodes: virtual nodes and virtual

servers, as described below.

(a) Virtual Nodes (b) Virtual Servers

Figure 2.3: Abstractions from physical nodes

Virtual Nodes: In architectures based on virtual nodes, each logical node is implemented by

a group of nodes (a virtual node) which acts as a single node in the system. In these

architectures, all nodes in each virtual node replicate the same data (Figure 2.3 (a)).

Virtual Servers: In architectures based on virtual servers, each physical node supports multi-

ple logical nodes (Figure 2.3 (b)). This allows to artificially augment the number of logical

targets for the mapping functions and obtain a better statistical distribution of items

among the physical nodes.

2.8 Case Studies

There is an extensive list of distributed replicated systems that make use of data place-

ment. Table 2.1 presents a summary of a number selected systems which employ the previously

described techniques. In the next sections, we briefly describe a representative subset of these

systems illustrating di↵erent approaches to the problem. The selected systems are presented in

alphabetical order.
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2.8.1 Availability-aware Replica Placement

The work by Mickens and Noble, 2006 proposes techniques for exploiting node availability

information on distributed systems. This work describes mechanisms to predict the availability

of nodes, and how such information can benefit several applications, including reducing object

copying operations in a replicated distributed system.

This work proposes placing more data in the nodes that are predicted to be most available,

such that, when nodes fail, the amount of data that must be re-replicated is reduced. Since data

placement cannot be defined using a deterministic function without global knowledge, this work

uses a distributed directory to map keys to nodes.

As shown in the work by Pace et al., 2011, such a mechanism leads to poor load balancing,

since nodes with higher predicted availability will own most of the data. To avoid this problem,

the latter work also makes use of a distributed directory to achieve a similar goal. However,

data items are placed in nodes with regular availability histories. RelaxDHT’s (Legtchenko et al.,

2009) design also aims at reducing object copying through the use of a distributed directory.

RelaxDHT achieves better load balancing than the former alternatives, since data is first placed

in the system through consistent hashing, and the distributed directory is used only to avoid

re-replicating data after membership changes.

2.8.2 DataDroplets

The work by Vilaça et al., 2011 consists of a distributed key-value store which incorporates

a locality-aware strategy for data placement. This system was designed mostly for applications

where data is arbitrarily related and requested through tags (such as Twitter).

The main technique behind DataDroplets is the use of a space-filling curves mapping func-

tion, which uses tags as dimensions in the multi-dimensional identifier space. This allows objects

with similar tags to be placed in logically close nodes, improving the locality of requests using

tags, especially when using multiple tags at once, since the system can determine exactly which

nodes are relevant for the request. Other systems, such as Andrzejak and Xu, 2002, Schmidt

and Parashar, 2004, also make use of the same technique to improve the performance of range

queries.
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2.8.3 Dynamo

Dynamo (DeCandia et al., 2007) is a highly available key-value store developed at Amazon.

Its main purpose is to store data for services which require high performance and only need the

simple interface of key-value stores (as opposed to requiring complex operations typically found

in SQL systems).

In Dynamo’s design, scalability and availability are paramount. The data is partitioned

using consistent hashing, and replicated through neighborhood replication. Consistent hash-

ing provides the system with incremental scalability, while neighborhood replication improves

availability since the node owning the data after a node’s failure will already be replicating all

the failed node’s data. Additionally, Dynamo also employs virtual servers to improve the load

balancing of the system.

Pastry (Rowstron and Druschel, 2001b), Chord (Stoica et al., 2001) and

CFS (Dabek et al., 2001) are examples of other systems also making use of consistent hashing

combined with neighborhood replication. Pastry also uses a small directory at each node to

provide low-latency neighbors to improve the latency when requesting data items from the

system.

2.8.4 Scatter

Scatter (Glendenning et al., 2011) is a highly consistent key-value store designed to be

used in internet-scale deployments. Scatter provides linearizable storage, through the use of

Paxos (Lamport, 1998).

This system is based on the virtual nodes technique: groups of nodes of variable size are

maintained by Paxos, and data items are attributed to them through consistent hashing. Virtual

nodes allow Scatter to vary the replication degree in response to changes in the membership

without altering the topology of the network. To improve load balancing, scatter also allows the

virtual nodes to change their identifiers to others closer or more distant from their neighbors,

so that consistent hashing will cause data to be moved to their neighbors.

Elastic Replication (Abu-Libdeh et al., 2011) also makes use of virtual nodes maintained by

a strong consistency protocol (in this case, chain replication (van Renesse and Schneider, 2004))

to achieve higher availability.
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2.8.5 Spanner

Spanner (Corbett et al., 2012) is a scalable replicated database published in 2012 by Google.

Its main goals are to provide strong consistency in datacenter-scale deployments, by leveraging

on an API that exposes clock uncertainty.

Spanner partitions data items into buckets (defined as intervals of the consistent hashing key

space), which are mapped to nodes through a distributed directory. This allows the system to

change the location of data items to improve load balancing, geographic distribution (to reduce

global placement time), or to improve data locality. PNUTS (Cooper et al., 2008), a system

with similar goals, also has a similar design, which allows it to also support ordered placement

of data by partitioning the ordered key space into intervals, each of which is mapped to a bucket

which is then mapped by the directory to nodes.

2.8.6 Ursa

Ursa (You et al., 2013) is a scalable data management middleware designed to perform

dynamic load reconfiguration of data storage systems. Its main goal is to determine the data

placement that achieves best load balancing, considering the observed data access patterns,

while minimizing the reconfiguration costs.

The main technique involved in this system is the use of a distributed directory to express

arbitrary key-node relations of dynamic nature. The system operates by calculating the best

data placement configuration using an optimization algorithm in a centralized location and then

pushing the resulting “move” operations to the nodes and updating the directory. All requests

are routed by first querying the directory. Should the requested objects be under the process of

being relocated, the requests are delayed until the operation is complete.

Other works designed to improve data locality and global placement time, such as (Le↵

et al., 1993; Li and Hudak, 1989; Carter et al., 1991; Lim et al., 1997; Herlihy and Sun, 2005;

Demmer and Herlihy, 1998), use similar techniques as Ursa, di↵ering mainly on the optimization

algorithm selection and implementation, which may also be of a distributed nature.
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2.8.7 Case Studies Comparison

Table 2.1 captures the key properties of the systems described above and of other similar

systems that we have opted to not describe in detail.

The solutions can be broadly classified into two categories, namely those making use of

directories and those making use of mapping functions. Systems making use of directories

typically target concerns which require more dynamic data placement, in particular those of

improving data locality. This fact is due to such designs allowing for better data placement

flexibility when compared with mapping functions. The exceptions to this are Pace et al., 2011,

Mickens and Noble, 2006, in which directories are used to avoid data movement as a reaction

to membership changes. This scenario requires more data placement flexibility than typical

mapping functions, which would cause data reshu✏e after membership changes.

Regarding the systems making use of mapping functions, we can identify three main cate-

gories, namely:

• systems that use Consistent Hashing (Hashing on the table) to achieve scalability with

good load balancing, typically combined with neighbor, multi-publication or symmetric

replication for availability. This design is most common in internet-scale systems, such

as Stoica et al., 2001, Rowstron and Druschel, 2001b, DeCandia et al., 2007, Ratnasamy

et al., 2001, mainly due to the advantages of low-cost incremental scalability of consistent

hashing.

• systems that make use of proximity placement and space filling curves with the objec-

tive of clustering related data in sets of nodes to improve data locality, such as Harvey

et al., 2003, Schutt et al., 2006, Lakshman and Malik, 2010, Schmidt and Parashar, 2004,

Andrzejak and Xu, 2002, Vilaça et al., 2011, Schütt et al., 2008. These systems are char-

acterized by better flexibility than those based on Consistent Hashing, and significantly

better scalability and running cost than those based on directories. However, their place-

ment flexibility is considerably lower than that of the directory-based systems similar to

Ursa (You et al., 2013), which can control data placement with data-item granularity.

• systems that employ virtual nodes (Glendenning et al., 2011; Abu-Libdeh et al., 2011) to

improve availability. Such architectures allow for a flexible replication degree, providing
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advantages for this concern, since the system may delay reactions to membership changes,

leading to more stable systems.

In fact, most systems target more than one concern by combining several techniques. While

the most common combination is to use some replication mechanism along with consistent

hashing or proximity placement, some such as Cooper et al., 2008, Le↵ et al., 1993 combine

consistent hashing with coarse-grained directories to obtain incremental scalability with some

degree of control over data locality and load balancing.

2.9 Summary

This chapter provided an overview of the main systems that served as inspiration for the

work presented in the thesis. It discussed the main techniques used to map data items to system

nodes and overviewed the most relevant systems that make use of them.
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3Internet Scale Data

Placement

The internet scale scenario is characterized as having millions of nodes with unstable con-

nections on an asymmetric, unpredictable and uncontrolled network. At this scale, building

distributed directories to support fine-grain placement or running optimization procedures that

require global knowledge is completely unfeasible. The most prevalent way of storing data at

this scale is to use a Distributed Hash Table.

Distributed Hash Tables (DHTs) (Stoica et al., 2001; Rowstron and Druschel, 2001b; May-

mounkov and Mazières, 2002; Gupta et al., 2003) are structured overlays, i.e., overlays in which

nodes organize themselves into a predefined topology that supports routing. As a result, DHTs

can e�ciently map a key to a peer active in the system (named the key owner). This func-

tionality allows to implement store/lookup operations of key/value data pairs in a distributed

and scalable manner. On top of this basic functionality, it is possible to build several types of

internet-scale distributed applications and services, such as resource-location (Alveirinho et al.,

2010), publish/subscribe (Castro et al., 2006), multicast (Zhuang et al., 2001), distributed stor-

age (Dabek et al., 2001), among others (Ratnasamy et al., 2001; Rowstron and Druschel, 2001a).

As in any other system, in DHTs nodes can voluntarily join, leave, or simply fail. Furthermore,

in open internet-scale systems, these membership changes can happen at a fast pace, a phe-

nomenon known as churn (Wu et al., 2006). In order to scale e�ciently when facing constant

membership changes, most DHTs use some form of consistent hashing (Karger et al., 1997).

Consistent hashing allows changes in membership of DHTs to be handled only by the neigh-

bors of the joining/failed node, reducing their impact on the overlay. However, the main draw-

back of consistent hashing is that it does not provide any kind of placement flexibility. Nodes

must join the network using identifiers created according to strict rules (typically using a deriva-

tion of their IP and port), and data items are mapped to the nodes with identifiers closest to

their own. This fact e↵ectively limits the actions that a system may take to react to changes in

load or to improve other criteria. This lack of flexibility motivates the need for internet-scale
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solutions with more flexible placement.

In this chapter we present Rollerchain, an overlay network designed to optimize data place-

ment at the Internet scale. Rollerchain uses a completely di↵erent strategy to improve the

flexibility of data placement for internet-scale systems: it relies on consistent hashing, using a

Distributed Hash Table (DHT), but makes each logical node of the DHT to be materialized by a

set of physical nodes. The main advantage of this approach is that it supports pluggable repli-

cation policies, as several of its components can be configured to improve di↵erent performance

criteria such as monitoring costs, load balancing or data transfer costs. Furthermore, these

flexibility gains are not achieved by sacrificing or trading o↵ fault-tolerance. On the contrary,

experimental results show that our architecture maintains the data items reachable even under

heavy churn, while previous approaches fail to preserve data availability in such conditions.

Rollerchain’s placement flexibility enables the design of di↵erent replication policies that

improve several distinct performance criteria. These policies can be selected depending on the

application and/or environment where the system is deployed. Consequently, our design can

address a larger range of challenges than other state-of-the art solutions.

The rest of this chapter is organized as follows. Section 3.1 puts the related work into

the context of Rollerchain. Section 3.2 provides a brief overview on the building blocks of our

solution. Section 3.3 describes the operation of Rollerchain. Section 3.4 contains results on how

the overlay compares with other state of the art solutions. Section 3.5 presents the main metrics

that can be improved by policies which exploit Rollerchain’s flexible topology. Section 3.6

describes the challenges involved in the design of such policies. Section 3.7 overviews existing,

as well as newly proposed replication policies. Section 3.8 presents a model for evaluating those

policies according to multiple criteria. Section 3.9 presents the comparison of policies according

to this model. Finally, Section 3.10 concludes the chapter.

3.1 Context

This section puts the related work into context, regarding Rollerchain. It focuses on how

the related work handles data replication and load balancing, and reviews other works which

mix unstructured with structured overlay networks.
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3.1.1 Data Replication on DHTs

The most common mechanism for replicating data in DHTs is Neighbor Replication. We

recall that this mechanism keeps copies of each key in the r neighbors of the key’s owner.

A significant advantage of Neighbor Replication is that, when its neighbors change, the key

owner may trigger the creation of new replicas. Since each node keeps a di↵erent set of replicas,

bookkeeping becomes costly if one attempts to use a flexible scheme where the number of replicas

fluctuates. Therefore, most schemes use some variant of eager replication, where replicas have to

be created when nodes, fail and moved when nodes join. This becomes very expensive in terms

of bandwidth as demonstrated in Blake and Rodrigues, 2003. Furthermore, depending on the

routing scheme used in the DHT, Neighbor Replication may not perform a fair load distribution,

as some replicas are more likely to be hit by queries.

Multi-Publication stores r replicas of each data item in di↵erent positions of the DHT. This

means that, in order to keep the data from being lost, some mutual monitoring scheme needs to

be implemented to detect the departure/failure of a node containing a replica, and subsequently

restore the replication degree. The main advantage of Multi-Publication is that it o↵ers very

good load balancing properties, as multiple queries may be diverted to di↵erent regions of the

DHT. On the other hand, monitoring becomes expensive, because it needs to use DHT routing

and a node may be forced to monitor a di↵erent set of nodes for each object that it stores.

Finally, a number of recently proposed overlays take a di↵erent approach to replica-

tion (Lynch et al., 2002; Glendenning et al., 2011; Abu-Libdeh et al., 2011; Shafaat et al.,

2012). These overlays create self-contained replication groups of nodes which act as single nodes

in the DHT. Routing is performed at the group level and not at the physical node level, allow-

ing the system to fine-tune the replication sets. So, even though they are based on consistent

hashing (and hence metadata-less approaches), these overlays allow decoupling the management

of replication from management of the overlay topology. In Group-based DHTs, each node is

a logical entity, materialized by a replica group of variable size. Contrary to classical DHTs,

where each node has a pre-determined location in the network (depending on its identifier), in

these approaches, nodes can join any existing replica group. All members of each group coor-

dinate to act as a single node in a higher layer, defining a DHT. Since replication is decoupled

from the DHT layer, the replication degree of individual groups can vary without a↵ecting the

DHT’s structure. As a result, consistent hashing is used to place data items into groups, and
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data is then replicated among all nodes that belong a group. Rollerchain provides an alternative

implementation of this approach.

3.1.2 Load Balancing on DHTs

Our work leverages on data replication to improve load balancing. One fundamental problem

in DHTs is that node identifiers or, most likely, keys, or the load that each of them represents,

may not be uniformly distributed in the address space. As a result, some nodes will be required to

maintain (and answer queries for) many items while others may be relatively o✏oaded. Virtual

servers (Dabek et al., 2001; Godfrey et al., 2004) are a common technique to circumvent this

problem. Since each physical node joins the DHT using multiple identities, nodes may disable

and enable their identities as needed to balance the load. On the other hand, having multiple

virtual identities requires each node to maintain more routing information and monitoring more

overlay neighbors, which may impose an excessive overhead. Also, this strategy amplifies the

e↵ect of churn, as the departure of a single physical node causes the simultaneous failure of

multiple virtual servers.

Other approaches rely on making a guided choice of node identifiers at join time, to select

positions in the identifier ring such that the load is evenly distributed among all nodes. In order

to achieve this, works such as Kenthapadi and Manku, 2005 and Ledlie and Seltzer, 2005 use

probes in the system to determine the best identifier to use. These schemes allow balancing

the load of object storage among all nodes in the system without requiring additional routing

information, by increasing the cost of join operations. However, they may create a non-uniform

distribution of nodes in the identifier space, which hinders the performance of some routing

algorithms.

3.1.3 Combining Structured and Unstructured Overlays

Our solution relies on the combination of structured and gossip-based overlay mechanisms.

Some previous systems have already explored this idea, although with di↵erent goals and, as a

result, with solutions that are structurally quite di↵erent from Rollerchain. The work by Ghodsi

et al., 2007b makes the case for combining gossip-based and structured networks, and discusses

several examples of successful synergies between both designs. This work claims that through
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this symbiosis, the current state-of-the-art on DHTs can be improved with new overlay designs

that o↵er better reliability, lower bandwidth costs, or better geometry. Inspired by the work

of Jelasity et al., 2004, Maniymaran et al., 2007 present an approach that follows this design

principle and combines two overlays, a DHT and a interest-based unstructured overlay, at a

cost similar to that of building a single one. Kelips (Gupta et al., 2003) is a DHT structured

using virtual nodes composed of several physical peers. Unlike Rollerchain, each of these nodes

know at least one contact in every other virtual node, creating a one-hop DHT. Kelips supports

e�cient lookups, but it does not present any solution for data replication and each node stores a

pointer to every object owned by its virtual node, a property that severely limits its scalability.

3.2 Rollerchain Overview and Building Blocks

Rollerchain dynamically manages the replication groups by combining features of unstruc-

tured and structured overlay networks in an integrated design. More specifically, Rollerchain

builds a DHT where each (virtual) node is materialized by a small group of peers, the size of

which depends on the replication degree, R. These groups are neither static nor defined a priori.

Instead, they are dynamically created and maintained by the unstructured component. Acting

collaboratively, peers on each virtual node share among themselves the information required

to maintain the DHT topology and the data stored by their virtual node. The unstructured

component of Rollerchain is responsible for creating and maintaining the virtual nodes. Some

of its mechanisms are inspired by Overnesia, an unstructured overlay that aggregates peers in

clusters (Leitão and Rodrigues, 2014). The structured component of Rollerchain runs the DHT

maintenance algorithms. For self-containment, before describing the operation of Rollerchain

in detail, we provide a brief overview of Overnesia and of the Chord DHT (Stoica et al., 2001),

whose architectures have inspired our design.

Overnesia Overnesia (Leitão and Rodrigues, 2014) is an unstructured overlay network, where

nodes self-organize into fully connected clusters which, in turn, are highly and randomly con-

nected among themselves. The target size of these clusters can be configured by the application

to a given targetClusterSize value. However, the cost of ensuring that every generated cluster

produced by the protocol has exactly the same size in highly dynamic and open environments

can be prohibitively high. To overcome this challenge, Overnesia instead ensures that the size
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of clusters is distributed between minClusterSize and maxClusterSize, with a predominance of

clusters with the targetClusterSize (evidently, minClusterSize < targetClusterSize < maxClus-

terSize). Each Overnesia cluster is assigned a random identifier that is known by all elements

of that cluster. A gossip-based anti-entropy mechanism, in which elements of each cluster peri-

odically and randomly exchange messages among themselves, is employed to ensure that cluster

members converge on a consistent view of the cluster membership, despite concurrent joins and

failures in the system. Furthermore, this process is used to provide a minimal amount of co-

ordination required to increase the diversity of external links maintained by di↵erent cluster

members. Note that Overnesia does not o↵er any DHT support. As a result, the way links

are established among clusters does not take into account routing requirements, other than

attempting to maximize the connectivity of the network.

Chord Chord (Stoica et al., 2001) is a widely known DHT that organizes nodes in a ring-

like topology. It places objects in specific nodes of the ring using consistent hashing. Chord’s

ring is created by sorting nodes by their identifier modulus the size of the identifier space. Its

maintenance is mostly proactive, such that each node keeps a predecessor and a successor node

through periodic maintenance routines. More specifically, each node N periodically queries its

successor S in order to obtain the predecessor P of S (naturally, in a stable scenario, we should

have P = N); should P 6= N be a node with an identifier in the interval ]N id;S id[, N will

then switch its successor pointer to node P . After this update, N informs P that it is now P ’s

predecessor. This simple routine allows the ring to converge and remain connected even when

facing concurrent entry and departure of nodes. Even though Chord’s ring would su�ce for

any node to reach any other node in the overlay, routing messages exclusively through this ring

would be very ine�cient. Thus, Chord’s protocol includes an e�cient routing mechanism: each

Chord node maintains a Finger Table, from which it selects the closest node on the ring to route

messages towards their destination. As the Finger Table contains pointers to nodes which are at

exponentially increasing distances from the node’s position in the ring, this mechanism allows

Chord to route messages in log(N) network hops, where N is the total number of nodes (since

the overlay’s distance to the destination can be halved with each hop).
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Figure 3.1: Rollerchain’s Architecture: At the DHT level vnodes form a ring. Each vnode is
composed of several pnodes.

3.3 Rollerchain Operation

3.3.1 Definitions and Basic Operation

We opted to preserve the nomenclature of the original Chord paper, where each peer is

denoted a node. Therefore, in Rollerchain, each peer is called a physical node, or pnode for

short. The unstructured component of Rollerchain aggregates pnodes in clusters. All pnodes

that belong to the same cluster cooperate to behave collectively as a logical virtual node, or

vnode. A vnode is a fully connected cluster of pnodes with a fluctuating size around R (the

replication factor) that act as a single node in the structured layer. To facilitate the coordination

among pnodes in the same vnode, an anti-entropy gossip-based protocol is executed among them.

This protocol allows pnodes to exchange information required for the operation of Rollerchain

(which we will incrementally describe), including the membership of the vnode and key/value

pairs maintained by its members. Also, to simplify coordination among vnode members in

several Rollerchain procedures, the member with the lowest node identifier in each vnode acts

as the vnode leader. Occasionally, it may happen that more than a single pnode sees itself as

the vnode leader. This does not a↵ect the correctness of Rollerchain, as the leader is only used

to reduce the signalling costs of the algorithms. Similarly, if no pnode sees itself as the leader,

this only delays the progress of the algorithms until the anti-entropy procedure enables one of

the members to see itself as the leader. Virtual nodes establish virtual links among themselves

to create a logical ring. A virtual link between vnode A and B is materialized by establishing

links among pairs of pnodes (ai, bj) where ai 2 A ^ bj 2 B. The algorithm for establishing and

maintaining virtual links is described later in the text. Figure 3.1 provides a visual representation

of Rollerchain’s architecture.
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3.3.2 The Unstructured Layer

The unstructured layer of Rollerchain is an overlay composed of virtual nodes, where each

vnode stores key/value pairs replicated by all of its members. This replication not only increases

the resilience of data, but also allows pnodes to share the load of answering queries for objects

stored in the associated vnode. When joining the unstructured layer, a pnode starts a random

walk in the network, which probes suitable vnode to join. There is no restriction as to what

criteria may be used to select the vnode to join. As an example, the new pnode may choose

the most heavily loaded virtual node found in the random walk to join the network, in order to

achieve good load balancing. If the load of a vnode is defined as the number of key/value pairs

it stores normalized to the number of pnodes it is composed of, this mechanism causes heavily

loaded virtual nodes to attract new members in order to share their load.

When a vnode leader detects that its vnode has become too large, it starts a division

procedure to halve the vnode into two others with half the size. This division serves not only

to reduce the costs of replicating data among its members, but also to reduce the number of

objects each member stores. When dividing, the position of the new vnode in the identifier ring

is critical for the good performance of the system. The new vnode may select a new identifier

at will. However, if it just selects a new random identifier as in Overnesia, it will discard all

of its data, rejoin the DHT and receive new data from its new successor. Thus, as a way to

improve the e�ciency of the structured layer, one of the newly generated vnodes may keep the

identifier of the original vnode (to avoid inducing artificial churn in the structured overlay) and

the other generates an identifier that allows it to become the owner of half of the original vnode’s

key/value pairs.

A vnode merge occurs when the vnode leader detects that its vnode’s size is close to the

minimum replication degree. The merge prevents objects from being lost, by integrating the

vnode with its successor. The vnode leader obtains its successor vnode’s membership and

broadcasts it to its neighbors, which then change their vnode identifier.

3.3.3 The Structured Layer

The structured layer of Rollerchain is a double-linked ring composed of virtual nodes pro-

vided by the unstructured layer. As described in the previous section, the vnode identifiers
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may be selected according to di↵erent policies. Therefore, the identifiers may not be uniformly

distributed in the identifier space. In typical DHTs (such as Chord (Stoica et al., 2001), Pas-

try (Rowstron and Druschel, 2001b), or Kademlia (Maymounkov and Mazières, 2002)), node

identifiers are assumed to be uniformly distributed in the identifier space. Thus, typical DHT

routing mechanisms cannot be applied to Rollerchain. To ensure e�cient routing in Roller-

chain’s identifier space under these conditions, each vnode in Rollerchain has a virtual link to its

immediate successors and one finger table with log(N) rows, containing virtual links to distant

vnodes in the ring. As in DHTs such as Chord (Stoica et al., 2001) or Viceroy (Malkhi et al.,

2002), each row in the routing table represents an exponentially larger jump than the previ-

ous row. However, whereas in these solutions the larger jumps refer to the identifier space, in

Rollerchain each row in the routing table represents an exponentially larger jump in the number

of virtual nodes on the ring. When vnodes are distributed uniformly in the ring, both schemes

generate similar routing tables. However, if some areas of the identifier space have more vnodes,

these will appear more frequently in Rollerchain’s routing tables, whereas in typical DHTs, they

would have the same probability, regardless of the density of those regions. It is important

to notice that, even though this routing scheme ensures that our system can route messages

logarithmically with the number of vnodes, other routing mechanisms, such as those based on

Skipnets (Harvey et al., 2003) or the work presented in (Klemm et al., 2007), could also be

employed.

3.3.4 Layer Interoperation

3.3.4.1 Virtual Link Creation

As described before, virtual nodes cooperate to create a ring-based DHT. To preserve the

logical ring, and to support e�cient routing, each virtual node maintains a virtual link to other

virtual nodes in the ring. More precisely, a virtual link needs to be maintained to each di↵erent

virtual node in the finger table (including the successor). Virtual links between two vnodes,

say VA and VB, need to be materialized by links between individual members of these vnodes

(Figure 3.2a). For fault-tolerance and load balancing, these links should be distributed evenly

among these members. For instance, consider a vnode VA that has n members and a vnode VB

also with n members. It would be highly undesirable to have a singe pnode ak from VA to have

n links to each member of VB (Figure 3.2b). It would be equally undesirable if all nodes in VA



34 CHAPTER 3. INTERNET SCALE DATA PLACEMENT

� �

(a) (b) (c) (d)

Figure 3.2: Management of virtual links among vnodes.

establish a link to the same pnode bk in VB (Figure 3.2c). The ideal solution would be to have

each pnode ai 2 VA to have a link to a di↵erent pnode bi 2 VB (Figure 3.2d). In this way, each

pnode would be required to maintain a single link and the virtual link would be materialized by

n independent physical links. Additionally, this ensures that n � 1 physical links between VA

and VB would still be alive after a single pnode failure/departure.

In order to quickly achieve an even distribution of links among members of a vnode, the

vnode leader (the pnode with the smallest identifier), say a0, coordinates a procedure of virtual

link creation. This procedure is used when a vnode leader updates the virtual links of its vnode,

particularly during vnode division and vnode finger update. We assume that, when the virtual

link creation procedure is invoked, a0 is aware of at least one member bk 2 VB. The leader a0

starts by requesting bk to return the current snapshot of VB’s membership; we recall that there

is an anti-entropy procedure running inside each vnode that keeps such information up-to-date.

Knowing the full membership of VA and VB, the leader a0 assigns links among VA and VB in a

round-robin manner, until all pnodes of VA and VB are connected to some pnode in the other

vnode (note that Figure 3.2 is an simplification of reality, as VA and VB generally do not have the

exact same number of pnodes). Finally, this mapping is propagated to all members of VA. Each

individual pnode ak then initiates the establishment of link(s) to its corresponding pnode(s) in

VB.

3.3.4.2 Virtual Node Maintenance

The membership of a vnode may change as pnodes join and leave the overlay. As it is

crucial for the connectivity of Rollerchain that its ring remains connected despite membership

dynamics, such changes require adjustments to the link assignments that materialize the virtual
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links maintained by each vnode to its successor and predecessor nodes. 1 Consider, first, the

result of a join operation on virtual node VA by pnode ak. The pnode may help in materializing

the virtual links maintained by the virtual node VA. To this end, and for each virtual link,

pnode ak will attempt to “alleviate” the load of some other members of VA, by serving as

endpoint of some of their links. This can be achieved as follows. The information exchanged

in the anti-entropy protocol includes the number of forward and backward links maintained by

each pnode for a given virtual link. Therefore, ak can select a pnode that has more forward or

backward links than the majority of the remaining pnodes and connects to one of their endpoints.

When the other pnode finds out about ak’s links, it closes the redundant link. On the other

hand, if ak finds that the number of links is perfectly balanced, the new pnode just creates a

redundant link at random. Consider now the case where a pnode leaves a vnode. The physical

links established by that pnode will break. This means that pnodes on the other endpoint of

those links will perform the link re-distribution described in the previous paragraph. Finally,

consider the case where multiple joins and departures occur in succession. If joins and leaves

are perfectly interleaved, a (physical) link is lost in each leave but a new link is created in each

join, and the number of links that materializes the virtual link between two vnodes remains

constant. However, if bursts of leaves or joins occur, the balance may no longer be preserved.

When, as a result of the anti-entropy procedure, the vnode leader detects heavy imbalance in

the link distribution for some virtual link, it triggers a re-balance procedure. This rebalance

procedure consists of sending a balanced mapping of physical links for the virtual link to the

pnodes causing the imbalance, so that they may adjust their links accordingly.

3.3.4.3 Virtual Node Division

Vnode division can be performed in such way that the two new resulting vnodes have

similar size and load. For this purpose, one of the vnodes preserves the identifier of the original

vnode and the other vnode becomes its predecessor, by assuming an identifier that causes it to

become the owner of half of the key/value pairs of the original vnode. This allows Rollerchain

to dynamically adapt to the distribution of keys in the identifier space. Independently of the

applied policy, virtual node division is controlled by the leader of the original vnode, that sends

a message to all members with the identifiers of the new vnode, the membership of each vnode,

1Note that there is no need to adjust the remaining virtual links in the finger table, as those are not essential
for maintain overlay connectivity.
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and a new assignment for the virtual links maintained between them. This particular division

procedure ensures that the new vnodes are neighbors in the DHT, contributing to savings in

the number of keys moved during this operation, as nodes will only have to locally discard

object/key pairs.

3.3.4.4 Virtual Node Merge

In a steady-state scenario, vnodes are stable, as new pnodes may replace failed/departed

pnodes. However, as a result of multiple departures and failures, the size of a vnode may become

below the desired replication level for the key/value pairs. When a vnode size becomes too small,

it is merged with its successor. This ensures that all nodes that are part of the two merging

vnodes retain their key/value pairs. The anti-entropy in the resulting vnode will ensure that

those keys will be later replicated by all remaining members. Similarly to other mechanisms, the

merge is started by the leader of the merging vnode. In highly dynamic environments, di↵erent

nodes may see themselves as the leaders of the same vnode, and send out conflicting orders

regarding vnode division or merge. However, the system is designed to tolerate these scenarios,

as a merge order always supersedes a division order. Thus, even though such orders may create

temporary inconsistencies (which are unavoidable in large asynchronous systems), the topology

will eventually converge to a correct configuration.

3.3.5 Key/Value Pairs Replication

The replication of key/value pairs among the members of a vnode is performed using a com-

bination of eager and lazy replication schemes. When a key/value pair is inserted in a vnode,

eager replication is used. The pnode that receives the request uses a best e↵ort application-level

multicast primitive to replicate the pair among the other members of its vnode. Subsequently,

replicas are maintained using a lazy replication scheme that leverages on the anti-entropy pro-

tocols executed among vnode members. Processes include a hash of the keys they own for their

current interval of responsibility in the anti-entropy messages. If (as a result of an anti-entropy

exchange) a pnode discovers that its hash di↵ers from that of a neighbor, they exchange their full

list of keys, so that both processes may request their missing key/value pairs from each other.

To maintain the correct keys at each vnode, each pnode periodically checks the keys it stores.

When a pnode detects it is storing objects for which the keys should be owned by its successor
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(the keys are between its vnode identifier and its successor vnode identifier) or its predecessor

(the keys are not between its identifier and its predecessor identifier), it transfers the content

to the correct vnode and deletes it locally. The data is sent to a pnode in the other vnode,

which in turn sends the hash of its keys to all the remaining elements of its vnode, so that they

may request their missing key/value pairs (if any). As with other replication mechanisms for

which there is no master copy of the data (e.g. Ghodsi et al., 2007a), this mechanism does not

provide strong consistency among the replicas. The anti-entropy mechanism running in each

vnode guarantees that eventually all nodes will locally store all the key/value pairs.

3.3.6 DHT routing

DHT routing in Rollerchain is similar to Chord routing with some twists. Logically, lookups

follow virtual nodes, using the virtual links maintained in the vnode’s finger table. In reality,

lookups are implemented by individual pnodes. When the lookup arrives at a pnode, it uses

its own finger table to select a pnode to be the next hop for the lookup. If the pnode cannot

contact the next hop, the lookup is re-routed to another pnode in its own vnode, which attempts

to forward the lookup using one of its own links. This is similar to the re-route mechanisms

used by DHTs that have routing tables with alternate paths (for instance, Pastry (Rowstron

and Druschel, 2001b)). Due to the redundancy in the virtual link maintenance, it becomes very

hard to undermine routing in Rollerchain. As in Chord, all lookups end in the predecessor of

the key, which return their successor as the owner of the key. In Rollerchain, when lookups

reach one pnode in the predecessor vnode of the target key, it returns a random successor

pnode (we recall that each pnode knows the composition of its successor vnode through the

anti-entropy protocol). This allows the query load to be equally distributed by all nodes despite

some (possibly temporary) imbalance in incoming links.

3.4 Topology Evaluation

Rollerchain allows improved data placement through the previously described mechanisms,

but, nonetheless, these gains are not achieved by sacrificing or trading o↵ fault-tolerance. To

study the fault-tolerance of Rollerchain, we have conducted experiments to compare it with other

state of the art replication mechanisms on a (highly) dynamic scenario. All results reported in
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Table 3.1: Percentage of objects reachable at the end of the simulations.

c = 1 c = 10 c = 100
Rollerchain 100.0% 100.0% 98.2%
Neighbor Replication 100.0% 94.1% 0.0%
Multi-Publication 100.0% 10.2% 0.0%

this section were obtained using the Peersim simulator (Montresor and Jelasity, 2009) event-

based engine. The system was populated with 50, 000 objects and is composed of 10, 000 nodes.

To extract comparative measures, we used Chord with the Neighbor Replication scheme and

Chord with Multi-Publication (as described earlier).

3.4.1 Experimental Parameters

All Chord configurations used a replication factor of 7 (in Neighbor Replication, each key

is replicated in the owner and in 6 of its successors). Rollerchain was configured with a min-

ClusterSize of 3 and a maxClusterSize of 8, which (we experimentally determined) results in

vnodes being composed, on average, by 7 pnodes. This means the average replication factor of

all replication techniques is the same. Furthermore, Rollerchain’s routing table size was set to

11, to ensure that both protocols have a similar number of (distinct) fingers, creating routes

with the same number of hops (15 on average). The anti-entropy mechanism of Rollerchain was

also executed as often as the replication maintenance routines of the other replication schemes.

The results presented are the average of, at least, 5 individual simulations for each scenario.

3.4.2 Fault-Tolerance Comparison

In order to evaluate the availability of the three solutions, we have conducted experiments

as follows. All overlays were initialized by having nodes join the system one at a time. After

a stabilization period, churn was induced for 10, 000 consecutive simulation steps (one step

corresponds to up to 5 Round Trip Times). In each step, c nodes were concurrently removed

and c new nodes were added (c is dubbed churn rate). We performed experiments with churn

rates of 1, 10, and 100. By using increasing churn rates, we can assess how each overlay and

each replication scheme responds to increasing dynamics in system membership.

Table 3.1 shows the percentage of data items reachable at the end of the simulations for the
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same churn rate. For the smallest churn rate, all solutions retain all items. However, for higher

churn rates, frequent changes in the network topology cause havoc in the replica maintenance

schemes of Neighbor Replication and Multi-Publication, due to the increasing number of routing

inconsistencies. Since Multi-Publication’s replica maintenance mechanisms highly depend on

being able to route requests on the overlay, this replication scheme loses a large percentage of

the data items even for the intermediate rate of churn (c = 10). As c is increased, Neighbor

Replication also fails more frequently and for the highest rate of churn all items are lost due to the

overlay becoming partitioned. Rollerchain shows a more robust behaviour, due to the fact that

for all rates of churn but the highest, the structured layer remains mostly unchanged. Under

heavy churn, we observe some minimal data loss, related with the unavoidable but sporadic

simultaneous failure of whole replication groups.

Overlay maintenance costs

Figures 3.3 and 3.5 show the bandwidth consumption resulting from the sources of overhead:

i) the signalling costs of the monitoring protocols that are required to preserve the replication

degree (Figure 3.3); and ii) the costs associated with maintaining the overlay topology (Fig-

ure 3.5).

370.00%

69.59%

8.47%

1.56% 1.68%

0.23%0.22% 0.23%
0.35%

0%

1%

10%

100%

1000%

C=1% C=10% C=100%

Re
pl
ic
a(

on
+S
ig
na

lin
g+
Co

st
+(i
n+
M
B)
+

Churn+Rate+

Rollerchain%

Neighbour%Repl.%

Mul?@Pub.%

Figure 3.3: Replication signalling costs per node, considering 128bit keys.

The costs of maintaining replication in Rollerchain are not significantly di↵erent from those

of Neighbor Replication. In both protocols, each node has to gossip with a limited number of

neighbors (one in the case of Rollerchain, as each pnode gossips with only one other neighbor

on each round, and R� 1 in the case of Neighbor Replication). Also, in both cases, the message

contains only a simple hash of the node’s data. On the other hand, Multi-Publication’s costs are

at least two orders of magnitude higher. This results from the periodic lookups that a node is
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Figure 3.4: Average number of nodes contacted by nodes running multi-publication, considering
R = 10.
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Figure 3.5: Topology signalling costs per node.

required to perform for every key it owns. These lookups are routed in the overlay and incur in

multiple message exchanges. In fact, when considering only the periodic replication mechanisms,

Multi-Publication requires a node to monitor R � 1 nodes in the overlay for each key it stores.

Since the replica nodes for each object are distributed in the overlay using consistent hashing,

the larger the system is, the less likely it is that di↵erent objects are replicated in the same node.

Thus, even in stable topologies (with no node joins or leaves), the number of neighbors each

node has to contact increases with the network size, the number of objects, and their replication

degree. This property severely limits the scalability of Multi-Publication (as Figure 3.4 shows).

When considering the topology maintenance overhead (Figure 3.5), it can be observed that

Rollerchain is more expensive than the other two techniques. Those results are not surprising,

as Rollerchain combines design elements of two types of overlays. Still, these costs are in the

same order of magnitude of competing approaches, and relatively small, when compared with

the costs of replicating the data itself. For example, considering a churn rate of c = 1, if
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objects have a size of 5MB (the typical size for music audio files), each node in Rollerchain will

require 190MB of bandwidth to move objects; whereas each node using Neighbor Replication

would consume approximately 385MB of bandwidth. In fact, for a system with the number of

objects and replication degree considered in this section (resp., 50, 000 and 7), the overall costs of

Rollerchain are below those of Neighbor Replication for object sizes greater than 6.7KB. Finally,

the increase in bandwidth consumption by Rollerchain under higher churn rates can be explained

by the occurrence of merge and division operations, which require additional coordination among

peers, but also make the operation of the overlay more robust as discussed earlier.

3.5 Replication Policies

In order to demonstrate Rollerchain’s improved flexibility, we propose several replication

policies that take advantage of this design to improve various parameters of the overlay, such as

monitoring costs, replication costs, and load imbalance costs. These policies use information on

node reliability, group size, and group load, in order to select which groups are most adequate

for each new node to join.

Given the relevance of implementing data replication in P2P systems, this topic has been

extensively studied in the literature. Surprisingly, despite all the results achieved so far, to

maintain replicated data in this setting in an e�cient manner still remains a significant challenge.

In fact, in a talk at Middleware 2011, Druschel and Rowstron have identified data replication

as one of the problems for which no satisfactory solution had been proposed yet.

What makes data replication particularly challenging is that maintaining the replication

degree incurs several costs, and the goal of reducing the costs in one dimension of the problem

typically conflicts with the goal of reducing the costs in the remaining dimensions. Namely, in

this work we concentrate on the following 3 di↵erent relevant costs metrics of a data replication

scheme:

- Monitoring costs: the costs associated with monitoring existing replicas to assess if they are

still live, such that new replicas are spawned timely to replace failed replicas. This is required

to preserve the desired replication degree and ensure that data is not lost.

- Data transfer costs: the costs associated with the creation of new replicas in the system. Blake

and Rodrigues, 2003 have shown that data transfer costs account for a significant part of the
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bandwidth consumption in the system supporting replication and that these costs e↵ectively

limit the amount of data that can be stored.

- Load imbalance costs: some replication policies may result in an imbalanced replica distribution

among existing nodes. Load imbalance has a detrimental e↵ect on the operation of the system,

since some nodes will be overloaded while the capacity of other nodes will be underused.

As hinted above, to optimize all these costs simultaneously may be impossible. For instance,

some replication policies favor the placement of replicas on nodes that are known to be more

reliable. This allows for saving in data transfer costs (since the creation of new replicas becomes

less frequent) at the cost of introducing load imbalance (the more reliable replicas become

overloaded). Furthermore, how these tradeo↵s are tackled by a specific algorithm is often hard

to infer, as proposers of a given replication scheme typically evaluate their solution using only

a subset, if not only one, of the metrics above, neglecting the impact of the proposed policy on

the other dimensions of the problem. Considering these observations, we:

i) provide a comparative study of the most relevant data replication policies that have been pro-

posed in the literature, highlighting the tradeo↵s they implement when considering the di↵erent

costs involved.

ii) propose a number of novel data replication policies based on virtual node architectures such

as that of Rollerchain, that have not been previously experimented in the literature.

iii) show that some of the novel policies outperform previous strategies. In particular, one of

these policies, when compared with other competing solutions, achieves large bandwidth savings,

o↵ers good load balancing, and has no negative impact on the monitoring costs. The best policy

is based on a strategy that may appear counter-intuitive at first sight: it uses the less reliable

nodes to store the most accessed data items. The rationale for the success of this strategy will

be clear later in the text.

3.6 Tradeo↵s in Data Replication

The reader may find it surprising that, given the huge body of research in data replication

in the context of P2P systems (Rowstron and Druschel, 2001b; Glendenning et al., 2011; Stoica

et al., 2001; Dabek et al., 2001), this is still an open topic. However, to the best of our knowledge,
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Figure 3.6: Load balancing vs monitoring costs tradeo↵

Figure 3.7: Load balancing vs data transfer costs tradeo↵s

no studies have been published addressing the costs of data replication on its multiple dimensions.

The work of Blake and Rodrigues, 2003 has focused on the data transfer costs and its impact on

the scalability of the system. The work by Pace et al., 2011 has addressed data transfer costs

and load imbalance, while the work of Ghodsi et al., 2007a focused mostly on monitoring costs.

As a result, it remains particularly di�cult to understand the tradeo↵s involved in the di↵erent

replication policies that have been proposed in the literature.

To motivate the need for new replication policies, we illustrate our point using 3 well-known

replication policies: Neighbor Replication (Stoica et al., 2001; Rowstron and Druschel, 2001b),

Neighbor replication with virtual servers (Dabek et al., 2001; Godfrey et al., 2004), and Most-

available node replication (Mickens and Noble, 2006), the previously presented policy which

places replicas in the nodes that are less likely to fail or to leave the overlay.

Figures 3.6 and 3.7 show the comparative performance of these policies according to di↵erent

metrics (we will postpone a detailed description of the experimental setting to Section 3.9, where
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we do a more detailed analysis of these and other replication policies). Figure 3.6 illustrates

the tradeo↵ between the load imbalance costs and the monitoring costs of the first two policies

above. The introduction of virtual servers augments the number of (virtual) nodes in the overlay

and, therefore, promotes a good load balancing among the replicas. These advantages are well

documented in the literature (Dabek et al., 2001; Godfrey et al., 2004). On the other hand, each

node has to keep track of a di↵erent set of neighbors for each of its identities. Therefore, the

improvements in load balancing come at the cost of a proportional increase in the monitoring

costs. Figure 3.7 illustrates the tradeo↵ between load unbalace costs and the data transfer costs,

when comparing Neighbor Replication vs Most-available node replication. By selecting the most

reliable nodes to store replicas, fewer items are a↵ected by failures and fewer replicas need to be

respawned. This introduces significant savings in the data transfer costs, as reported in Mickens

and Noble, 2006, Pace et al., 2011. Unfortunately, these gains come at the cost of unbalancing

the load in the system. In fact, we have observed that the load imbalance can be 2000 times

worse than other state-of-the-art solutions (see Section 3.9).

The examples presented before provide an insight on the problems addressed in the current

work. Namely, we address the following questions: Do other previously proposed policies imple-

ment similar tradeo↵s? Are there replication policies that can reduce the costs in a given metric

without significantly increasing the costs in another metric? Are there unexplored policies that

can implement more advantageous tradeo↵s? Is it possible to define a framework that helps in

comparing the performance of di↵erent policies?

To answer these questions, we will first classify the main replication policies that have been

proposed in the literature, then propose some novel policies, and finally provide a detailed

comparative analysis of the di↵erent alternatives.

3.7 A Catalog of Previous and New Policies

In this section, we start by introducing a classification that helps in comparing the policies

for data replication according to the their principles of operation. Subsequently, using this

classification, we list the most relevant approaches that have been proposed in the literature.

Finally, we propose some novel policies that, to the best of our knowledge, have not been

presented before.
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3.7.1 Policy Classification

We first distinguish oblivious from informed policies. Oblivious policies do not take into

consideration the properties or state of each peer and consider only topology properties of the

overlay. For instance, neighbor replication, introduced before, fits in this category. On the

contrary, informed policies collect information about each individual node, such as the expected

availability, or the current load, to make decisions about data placement. For instance, the

Most-available policy fits in this category.

Another important dimension that can be used to classify replication policies considers the

machinery required to locate replicas. Here, we distinguish two opposing strategies: consistent

hashing and directory-based lookups. When consistent hashing is used, replica location is derived

by the hashing function. As a result, the policy has little control over data placement but, on the

other hand, replicas can be located in a very e�cient manner. Directory-based approaches can

place replicas in arbitrary locations but require a directory lookup to find the replica’s location;

this may involve one or more round-trips in the network.

Finally, we can distinguish policies according to the requirements they impose on the un-

derlying overlays. This work considers exclusively replication policies for structured overlays

that implement some form of DHT. However, besides traditional DHTs such as Chord (Stoica

et al., 2001) or Pastry (Rowstron and Druschel, 2001b), we also consider overlays that use

virtual servers (Dabek et al., 2001) and logical groups. Virtual servers will be introduced in

Section 3.7.2. Logical groups refers to recently proposed overlays that take a di↵erent approach

to replication, by creating self-contained replication groups of nodes which act as single nodes

in the DHT. Rollerchain is an example of an implementation of such overlays.

In Table 3.2 we consolidate the di↵erent criteria together. In the next paragraphs we discuss

how they can be combined to build di↵erent strategies:

- Strategies based on consistent hashing: The strategies rely on node (or group) identifiers and

on randomization to place replicas. In this case, virtual servers only o↵er better randomization,

because the number of node identifiers is larger. If the DHT is not group-based, there are

little opportunities to improve the operation of the network, other than carefully selecting the

node identifiers, to compensate for load imbalance. In the case of group-based DHTs, it is also

possible to change the size of the groups, as nodes join and leave, or even by migrating nodes
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Table 3.2: Design Space of Replication Policies for P2P Systems

consistent hashing directory based
plain virtual

servers
groups plain virtual

servers
groups

oblivious baseline achieve bet-
ter random-
ization

manage
group size to
avoid churn
at the logical
level

avoid migrating
replicas

no advantage

informed change node ids to
distribute keys

change group
ids and place
nodes in the
right groups

place replicas in
better nodes

from one group to another.

- Directory-based strategies: Oblivious strategies use directories to place replicas randomly but

can maintain the replicas in the same nodes, regardless of their position in the DHT, to avoid

moving replicas. Informed strategies can do better, by placing replicas taking into consideration

the properties of nodes. However, directories bring no advantages when group-based DHTs are

used, because groups have no intrinsic characteristics: the characteristics of each group can be

tuned at will by the policy, as described before.

3.7.2 Previous Replication Policies

We now identify and describe the most relevant policies that have been previously proposed

in the literature.

3.7.2.1 Strategies based on consistent hashing

Oblivious Strategies

We consider the following three oblivious strategies that rely on consistent hashing: neighbor

replication, multi-publication, and neighbor replication with virtual servers.

Neighbor Replication (NR): As previously described, Neighbor replication (Stoica et al.,

2001; Rowstron and Druschel, 2001b) keeps copies of each key-value pair in the r neighbors of
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the node responsible for the key. This policy keeps a tight control on replication degree, which, as

demonstrated in Blake and Rodrigues, 2003, has a high replica maintenance cost, since replicas

must be created and destroyed with every change in the network. However, given the fact that

each node replicates in a fixed set of neighbors, which is independent of how many data items

are stored in the system, this solution has low monitoring costs.

Multi-Publication (MP): Multi-Publication (Ratnasamy et al., 2001; Knezevic et al., 2005)

stores r replicas of each data item in di↵erent and deterministically correlated positions of the

DHT. Multi-Publication o↵ers very good load balancing properties, but can have expensive

monitoring, since it uses DHT routing to keep replication of each item it stores. As previously

shown, in the worst case, a node that is the owner of M objects, each replicated in r other

locations, has to periodically monitor M ⇥ r di↵erent nodes.

Neighbor Replication with Virtual Servers (NR+VS): Virtual servers (Dabek et al.,

2001; Godfrey et al., 2004) are a common technique to circumvent the load imbalance problem.

However, the e�ciency of this mechanism depends on how many virtual servers each node can

handle, but having a larger number of virtual servers increases the monitoring costs.

Informed Strategies

To the best of our knowledge, the only informed strategy that does not require the use of a

directory has been proposed in the context of group-based DHTs in Glendenning et al., 2011

(the name has been given by us, as the original Scatter paper provides no names to the proposed

policy).

Resilient Load-Balancing (R-LB): This policy uses the underlying overlay mechanisms to

address resiliency and load-balancing. Resiliency is tackled by having nodes join the groups

with fewest members and by merging a small group with its successor. Furthermore, the policy

attempts to balance the load of each individual node, by making sure that when a group is split

into two, each new group will process a load proportional to its size. To implement this policy,

the overlay mechanisms are configured as follows: new nodes join the group with the highest

per-node load; group identifiers (and, therefore, key assignment) remain unchanged until a group

needs to be split or merged; when the group splits, keys are divided such that the per-node load

of each resulting group is balanced (i.e, the identifier of the new group is chosen so that it owns

a portion of the load proportional to its number of members).
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3.7.2.2 Directory-based strategies

Oblivious Strategies

We consider the following oblivious strategy that requires the use of a directory.

RelaxDHT: This policy, presented in Legtchenko et al., 2009, is a natural extension of neighbor

replication. Initially, replicas are created in the r closest neighbor of the item owner. However,

unlike neighbor replication, as new nodes join the neighbor set of the item owner, the constraint

that replicas should be the closest nodes to the item owner is relaxed. Hence, replicas are not

moved as new nodes join, and may drift away from the item owner. To lower the monitoring

costs, the work in Legtchenko et al., 2009 imposes a limit on how farther away from the item

owner replicas may drift. The main intuition behind this work is that by relaxing the topological

constraints, one can achieve lower replica maintenance costs. However, the fact that nodes which

are “older” in the system tend to store more replicas, leads to an imbalance in load.

Informed Strategies

We consider the following informed strategies: most-available and regularity-based.

Most-available: The work in Mickens and Noble, 2006 presents a policy which places data in

the nodes predicted to be most available in the future. Similarly to the RelaxDHT policy, data

is never relocated from a node as long as it is available. Hence, even though this technique can

achieve particularly low replication maintenance costs, it leads to high monitoring costs.

Regularity-based: This policy, introduced in Pace et al., 2011, takes advantage of the fact

that nodes may exhibit connection regularity. This means nodes connect to the system on

regular patterns. Hence, the system can form groups of nodes which with a given probability

will always be online to replicate the data. Unlike other works, this policy assumes nodes

can keep persistent state between joining and leaving the system. The regularity-based policy

biases replication towards a set of nodes (the most regular ones), which impacts negatively load

balancing in the system.

3.7.3 Novel Policies

As mentioned in the previous section, Group-based DHTs open very interesting avenues

to design novel policies for data replication in P2P systems and the work of Scatter has only
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explored the surface of these possibilities (in fact, in their paper, Glendenning et al., 2011

recognize the development of such policies as an intriguing direction for future work). In this

work we follow that path by proposing a number of viable alternatives to the R-LB policy

introduced in Glendenning et al., 2011.

3.7.3.1 Oblivious Strategies

We consider the following three oblivious strategies for group-based DHTs:

Random: This policy achieves load balancing through randomization. It works by letting nodes

generate a random identifier and join the group responsible for that identifier. Similarly, when

a group becomes too large, it divides, creating a new group with a random identifier which joins

at a random location. When a node becomes too small, it disbands and all its members join in

random locations. The goal of this policy is to serve as a baseline that can be used to assess the

relative merit of other strategies for group-based topologies.

Supersize-me: This policy consists of tuning the overlay management mechanisms to keep

groups much larger than the average replication degree which the policy is configured with. In

this way, the amount of redundancy is increased but the likelihood that a group collapses due

to the lack of replicas becomes very small. This may avoid some unnecessary data transfers in

the system.

Avoid Surplus: This policy consists of the opposite of the “Supersize-me” policy above. The

goal is to keep each group as close as possible to minimum replication degree, by having nodes

join the largest groups such that those divide more frequently. This reduces the amount of

redundancy in the system but creates the potential for better load balancing (more groups will

exist in the overlay) and for reducing the monitoring costs (which is directly related to the group

size).

3.7.3.2 Informed Strategies

We consider the following two oblivious strategies for group-based DHTs:

Preemptive Replacement:. The rationale for this policy is to adapt ideas that have been

proposed for classical DHTs, such as the “Most-available” policy introduced in Section 3.7.2 to
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Table 3.3: Policy Map

Primary performance target
none monitoring load balancing bandwidth

Oblivious
Plain Neighbor Replica-

tion (NR)
Multi-Publication RelaxDHT

VServers Neighbor Repli-
cation + Virtual
Servers (NR+VS)

Groups Supersize-me

Informed
Plain Most-available,

Regularity-based

Groups Random
Avoid-Surplus R-LB Preemptive re-

placement
Hotter-On-Ephemeral

group-based DHTs. The key idea is to rely on estimates of node-reliability to make new nodes

join groups where existing nodes are most likely to fail, as a preemptive measure to avoid the

group becoming too small and forced to execute a merge.

Hotter-On-Ephemeral (HonE): This policy aims to place the most used items (i.e., those

which represent the highest load) on less reliable nodes. The key observation behind this policy is

that the per-group distribution of keys of R-LB reduces load imbalance but ignores which nodes

compose which groups. This insight, combined with the fact that the groups which store the

top most-used keys will store fewer keys to achieve a balanced load, drives the design of Hotter-

On-Ephemeral. Thus, Hotter-On-Ephemeral places the less reliable nodes in the groups which

in R-LB store fewer keys, i.e., the groups that store the most-accessed keys in order to maintain

the good control over load imbalance and the good monitoring costs of R-LB, while considerably

reducing its bandwidth usage, since most joins will be performed in groups with fewer keys. In

order to make sure that the groups remain stable, this policy also allows groups composed of

mostly unreliable nodes to grow larger than the remaining ones, similarly to “Supersize-Me”.

3.7.4 Summary of All Policies

Table 3.3 provides a summary of all policies described in this section. Lines represent

di↵erent techniques and columns the main performance criteria that is aimed by the policy.
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Note that Hotter-On-Ephemeral aims at addressing the three performance criteria in a holistic

manner.

3.8 A Performance Model To Compare Policies

We now introduce two metrics that can be used to compare the performance of di↵erent

policies: the message overhead and the imbalance ratio. These two metrics are defined as a ratio

between the performance of an actual system using a given policy against the performance of

an abstract idealized system (referred to as the baseline system).

3.8.1 System Parameters

Our metrics rely on the following system parameters: Number of Nodes (N), the average

number of nodes in the system; Number of Keys (K), the total number of keys stored in the

system; Replication Degree (R), the desired replication degree (each key should have R replicas);

Key Size (d), the amount of stored data associated with each key; Churn Frequency (c), the

number of joins and leaves per unit of time; Monitoring Period (m), the number of units of

time between two consecutive monitoring procedures; Unit Monitoring Cost (UCm), the cost

of checking if another node is alive (typically, at least one “I’m alive” exchange); Unit Transfer

Cost, (UCt(d)): the cost of transferring one key from one node to another (depends on the data

size d); Load (L), the total number of requests the system has to satisfy per unit of time.

3.8.2 Baseline System

Using the above parameters, we define the following performance metric for an abstract

idealized baseline system. The idealized system is completely homogeneous: the load is uniformly

distributed among keys, such that if all nodes store exactly the same number of keys, then all

nodes are subject to the same load. Furthermore, the probability of a node leaving the system

is the same for every node and, when a node fails, its load and objects are scattered uniformly

across all other nodes, such that these values are preserved. Also, in this system, nodes monitor

the bare minimum number of neighbors for maintaining the target replication degree (R).
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Baseline Average Number of Keys per Node (BKavg ): The average number of keys per

node is BKavg = K ·R/N .

Baseline Monitoring Cost (BCm ): We consider that a node should be responsible for at

least one key, and therefore has to monitor at least R other nodes. Therefore BCm = R ·UCm.

Baseline Join/Leave Cost (BCjoin leave (d)): We denote the baseline join/leave cost as the

cost of transferring BKavg keys to a node, i.e., BCjoin leave = BKavg · UCt(d).

Baseline Load Balancing (BLB): In the idealized system, all nodes have the same load. We

define the baseline load balancing as the fraction of system nodes that, together, satisfy half of

the system load in this setting, which, by definition, is 0.5 (i.e., half of the nodes are required

to serve half of the system load).

3.8.3 Actual System

The same metrics can be defined for a concrete system, using a particular policy. Namely:

Actual Average Number of Keys per Node (AKavg ): The actual average number of keys

per node that results from applying a given policy.

Actual Monitoring Cost (ACm ): The actual (average) monitoring cost that results from

applying a given policy. This depends on how many nodes each peer must keep monitoring.

Actual Join/Leave Cost (ACjoin leave (d)) : The actual (average) join/leave cost that results

from applying a given policy. This depends on how many data items need to be transferred upon

each join and upon each leave.

Actual Load Balancing (ALB): The fraction of system nodes that, together, satisfy half of

the system load. Let Li be the number of requests per unit of time served by node i. Let H ⇢ N
be the smallest subset of system nodes such that

P
i2H Li = L/2. Then, ALB = |H|

N .

3.8.4 Policy E�ciency

Finally, using the metrics above, we define the two criteria to measure the e�ciency of a

given policy. These metrics are defined as ratios between the performance of the actual system
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and the performance of the idealized system. Namely:

Message Overhead (Omessage (d)): We define the message overhead of a given policy as the

ratio between the actual and baseline values for the sum of the monitoring and join costs during

a monitoring period:

Omessage (d) =
N ·ACm + c ·m ·ACjoin leave (d)

N ·BCm + c ·m ·BCjoin leave (d)

Imbalance Ratio (IR): We define the imbalance ratio of a given policy as the ratio between

the baseline load balancing and the actual load balancing:

IR =
BLB

ALB

In the next section, we will evaluate the di↵erent policies using the two metrics above. Note

that, for both policy e�ciency metrics, the higher the value, the less e�cient is the policy with

regard to the idealized baseline system.

3.9 Evaluation

In this section, we present experimental results that compare the performance of the repli-

cation policies presented in the previous section. To evaluate the policies, we have performed

extensive simulations using the Peersim simulator (Montresor and Jelasity, 2009) cycle-based

engine, running the di↵erent policies against similar workloads in internet-scale settings, as

described below.

3.9.1 Simulation Settings

In order to simulate the real working conditions of an internet-scale deployment of a key-

value store, we have used a real-world trace of connections and disconnections in a peer-to-peer

network (Blond et al., 2009). The trace represents the activity of over 14 million unique users,

of which we considered 1 million random users. We used one second of the trace as unit of time.
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Table 3.4: Evaluation Parameters

N 15434
K 100000
R 6
c 3.3838
m 60
UCm 84B
UCt(d) 84B +d

L 1931660

We populated the system with 100.000 key-value pairs with a load following a Zipf distribu-

tion with ↵ = 2.5. For all group-based DHTs, we have configured the DHT with min group size

and max group size 4 and 8, respectively. We experimentally determined this configuration to

yield an average virtual node size of 6 for policies (except for Supersize-me and Avoid Surplus),

which according to Glendenning et al., 2011 and Paiva et al., 2013 is enough to prevent data

loss in most scenarios. For fairness, we also configured the remaining policies with replica-

tion degree 6. For the policies that allow the group size to surpass max group size, we used

max group size = 16. The virtual servers’ configuration used 100 virtual identities. Table 3.4

presents the remaining values for all parameters of the evaluation.

3.9.2 Results

The results from our experiments, namely the values for the message overhead (as a function

of di↵erent item sizes) and the imbalance ratio, as defined in the previous section, are presented

in Table 3.5. The table presents the values that have been experimentally measured using the

simulation for all the policies. We remind the reader that, the higher the value, the poorer the

policy’s performance.

We start by discussing the results concerning the message overhead of the di↵erent policies.

These results are summarized in the following list of observations:

- As expected, Neighbor Replication (NR) has 1.0 for the bandwidth, since it has the exact same

behaviour of the idealized baseline system.

- Virtual Servers (VS) and Multi-Publication (MP) have a high impact on bandwidth, especially

when d is small, since the monitoring messages represent an important part of the cost. When

using VS, each node monitors on average 587 neighbors, while when using MP, each node
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Table 3.5: Results for Evaluated Policies.
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Neighbor (NR) 1.00 1.00 1.00 1774.1
NR+VS 46.73 1.27 1.18 114.5
Multi-Publication (MP) 17.09 1.21 1.18 1.5
RelaxDHT 0.11 0.21 0.21 2365.5
Most-available 0.07 0.13 0.13 2365.5

R-LB 0.71 0.52 0.52 1.1
Random 0.71 0.60 0.60 19.5
Avoid Surplus 0.76 0.41 0.41 308.5
Supersize-me 1.07 0.79 0.79 1.1
Preemptive 0.50 0.30 0.30 25.7
HonE 0.61 0.28 0.28 1.1

monitors on average 209 neighbors. In fact, however, should we consider a larger set of keys,

MP would achieve an even worse result, since for each key a node owns, it potentially monitors

R di↵erent neighbors.

- RelaxDHT and Most-available achieve the lowest bandwidth usage of all. This is expected,

given that these strategies make sure that the nodes that fail the most do now own many keys.

Interestingly, due to the fact that many nodes do not store any keys, these nodes are not required

to monitor other neighbors, and for small values of d, these three strategies in fact achieve better

MessageOverhead results.

- Most of the group-based policies result in a bandwidth improvement, especially when d is

larger. For small values of d, group-based policies have a similar degree of replication as the

baseline, and thus achieve a similar monitoring cost. For large values of d, group-based policies

benefit from the fact that they support variable replication degree. Thus, while the baseline

solution (and NR) must move BCjoin leave (d) objects for each join and leave, group-based

policies can allow the replication degree to decrease after a node leaves, and hence avoid moving

BCjoin leave (d) objects for about half of c. This fact is clearly observable for R-LB, which

achieves 50% less message overhead for the larger values of d.

- The group-based solution that obtains the best bandwidth usage is HonE, which, despite
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creating groups slightly larger than preemptive (noticeable by the higher message overhead for

low d), can improve over the latter solution for larger key sizes. This is due to HonE actively

forcing nodes to fail on groups with a smaller number of keys, while preemptive is only making

sure that groups remain stable and failed nodes are most of the time replaced with new nodes.

- From the group-based policies, the Supersize-me policy achieves the worse results. Even though

it does lead to a considerably smaller number of merges, in fact it forces nodes to transfer more

data with each node join, since the groups being larger also causes each individual group to

store more keys on average. On the other end, HonE benefits from the best bandwidth usage,

due to avoiding group merges and directing ephemeral nodes to groups with fewer keys. In fact,

for larger values of d, HonE can achieve a result comparable to that of the best overall solution

(Most-available), with a message overhead little than 2⇥ worse.

We now analyze the results when considering the load imbalance that is caused by each

policy. Again, we summarize our findings in a list of observations:

- All policies which are not designed to explicitly handle load present results considerably worse

than those of the baseline. The most flagrant cases are for the RelaxDHT and Most-available

policies, which are not only oblivious of the load each key represents, but also allow a large

percentage of nodes to store 0 keys (up to 10% for Most-available).

- Virtual servers (VS) and Multi-Publication (MP) can obtain a low load imbalance ratio (despite

the very negative e↵ect on bandwidth/monitoring). MP achieves the best results, since it makes

sure that the probability that two nodes store the same keys is low, while when using VS, it is

common for two virtual servers to own the same data. Hence, should one VS have a load above

or bellow average, this e↵ect is amplified due to R other VS replicating its data.

- The Avoid Surplus policy results in a poor load imbalance ratio, as groups have no extra

capacity to absorb failures, forcing merges that di�cult the task of balancing the load.

- The Supersize-me policy is able to achieve a low load imbalance ratio. This is due to, in

practice, its join and division operations being similar to those of R-LB, except for the fact that

the size of the groups is allowed to fluctuate up to larger values. As a result, only the message

overhead costs are negatively impacted.

- As expected, Preemptive and Random achieve poor results for load imbalance due to the lack

of load balancing concerns. On the other hand, R-LB and HonE achieve similar results, both
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very close to the baseline, due to being designed with load balancing in mind.

3.9.3 Detail

Figure 3.8 presents detailed views of how many keys are moved in the system as result of

joins and merges, as well as the network size, as time progresses in the simulation. For clarity,

we present only 0.1% randomly sampled points for join operations. The remaining points (for

the network size and merges) are presented unsampled. We present detailed views only for the

most interesting policies, HonE, R-LB, and Supersize-me. We highlight the following aspects of

these solutions:

- Globally, it is clear that all group-based approaches have the common trend of creating merges

when the network size decreases. In fact, the size of the network follows a diurnal-nocturnal

pattern (there are more active nodes during the day), and during the transition to the night,

the network shrinks and more merges are created. This is particularly clear around the 300, 000

seconds mark, where a strong descent on the number of nodes causes, not only an increase in

the number of merges, but also on the number of keys moved by each merge.

- Regarding network joins, HonE shows consistently lower values for the number of keys moved

than R-LB and Supersize-me, which means that, more frequently, when nodes join, they actually

receive very few keys. Furthermore, since HonE makes an active e↵ort to maintain the network

relatively stable, it is also able to achieve fewer merges than R-LB (about 30% less on average),

and most merges end up moving as many keys as in R-LB.

- Supersize-me leads to considerably fewer merges. In fact, except for situations when the

network size drops abruptly, Supersize-me is able to mostly avoid them. However, it is also

observable that the increased size of the groups has a negative e↵ect on the number of keys

moved as a consequence of joins.
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a) Network size over time.

b) Behaviour of HonE over time.

c) Behaviour of R-LB over time.

d) Behaviour of Supersize-me over time.

Figure 3.8: Behaviour of policies over time
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3.10 Summary

This chapter proposed a novel combination of gossip-based mechanisms and structured over-

lays to generate a DHT of virtual nodes, where each virtual node is materialized by a set of

physical nodes. The resulting system can achieve greater placement flexibility than previous

solutions, not at the expense at fault-tolerance. Our solution, named Rollerchain, was experi-

mentally proved to be more robust than competing approaches.

Using this new architecture, we studied di↵erent replication policies and provided interesting

insights on the tradeo↵s involved. Based on these insights, we were able to propose a novel policy,

named “Hotter-On-Ephemeral”, which significantly outperforms previous work.

Notes

The results for Rollerchain presented in this chapter were accomplished in cooperation with

João Leitão. The preliminary design of the overlay was first presented as a poster, with the title

“Rollerchain: a DHT for High Availability”, in the 11th ACM/IFIP/Usenix Middleware Confer-

ence, Lisbon, Portugal, December 2010. The final protocol and its evaluation was proposed in

the paper “Rollerchain: a DHT for E�cient Replication”, Proceedings of the 12th IEEE Inter-

national Symposium on Network Computing and Applications, Cambridge, MA USA, August

2013.

The results for the replication policies presented in this chapter were and proposed in the

paper “Policies for E�cient Data Replication in P2P Systems”, Proceedings of the 19th IEEE

International Conference on Parallel and Distributed Systems, Seoul, Korea, December 2013.
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4Datacenter Scale Data

Placement

The datacenter scale scenario is characterized by having thousands of nodes connected by

stable links on controlled network infrastructures. In this context, distributed NoSQL key-value

stores (DeCandia et al., 2007; Lakshman and Malik, 2010; Cooper et al., 2008; Marchioni and

Surtani, 2012) have emerged as the reference architecture for data management in the cloud.

A data placement algorithm for such systems must simultaneously address two main, typically

opposing, concerns: i) maximizing locality by replicating data at the nodes that access them

more frequently, while enforcing constraints on the object replication degree and on the capacity

of nodes; ii) maximizing lookup speed, by ensuring that a copy of an object can be located as

quickly as possible.

The data placement problem has been investigated in a number of alternative variants,

e.g. Dowdy and Foster, 1982, Krishnan et al., 2000. Classic approaches formulate the data

placement problem as a constraint optimization problem, and use Integer Linear Programming

techniques to identify the optimal placement strategy with the granularity of single data items.

Even though the datacenter scale scenario allows for solutions with more placement flexibility

than the internet scale, these approaches su↵er from several practical limitations. In the first

place, finding the optimal placement is a NP-hard problem, hence any approach that attempts

to optimize the placement of each and every item is inherently non-scalable. Further, even if

the optimal placement could be computed, it is challenging to e�ciently maintain a (potentially

very large) directory to store the mapping between items and storage nodes.

Directories are indeed used by several systems such as PNUTS (Cooper et al., 2008) or

BigTable (Chang et al., 2008). To minimize the costs associated with directory maintenance,

these systems trade-o↵ placement flexibility and support placement at a very coarse level, i.e.,

large data partitions rather than on a per-instance basis. However, even if coarse granularity

is used, the use of a directory service introduces additional round-trip delays along the critical

execution path of data access operations, which can considerably hinder performance.
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To avoid the above issues, many popular key-value stores, such as Cassandra (Lakshman

and Malik, 2010), Dynamo (DeCandia et al., 2007), Infinispan (Marchioni and Surtani, 2012),

use random placement based on consistent hashing. By relying on random hash functions to

determine the location of data across nodes, these solutions allow lookups to be performed

locally, in a very e�cient manner (DeCandia et al., 2007). However, due to the random nature

of data placement (oblivious to the access frequencies of nodes to data), solutions based on

consistent hashing may result in highly sub-optimal data placements.

This chapter presents AutoPlacer, a system aimed at self-tuning data placement in a

distributed key-value store, which introduces a set of novel techniques to address the trade-

o↵s described in the previous paragraphs. AutoPlacer employs a lightweight distributed

optimization algorithm. The algorithm operates in rounds, and, in each round, it optimizes, in

a decentralized fashion, the placement of the top-k “hotspots”, i.e., the objects generating most

remote requests, for each node of the system. In order to be able to identify the “hotspots”

of each node with low processing cost, AutoPlacer adopts a state-of-the-art stream analysis

algorithm (Metwally et al., 2005) that permits to track the top-k most frequent items of a stream

in an approximate, but e�cient manner. The information provided by the Space-Saving Top-k

algorithm is then used to instantiate the data placement optimization problem.

Unlike solutions that rely on directory services, AutoPlacer guarantees 1-hop routing la-

tency. To this end, AutoPlacer combines the usage of consistent hashing, which is used as the

default placement strategy for less popular items, with a highly e�cient, probabilistic mapping

strategy that operates at the granularity of the single data item, achieving high flexibility in the

relocation of (a possibly very large number of) hotspot items.

The key innovative solution introduced to pursue this goal is a novel data structure, which

we named Probabilistic Associative Array (PAA). The goal of the PAA is to minimize the cost

of maintaining a mapping associating keys with nodes in the system. PAAs expose the same

interface of conventional associative arrays, but, in order to achieve space e�ciency, they trade-

o↵ accuracy and rely on probabilistic techniques which can lead to inaccurate results with a

user-tunable probability (these inaccuracies do not a↵ect the accuracy of the key lookups in

AutoPlacer: in the worst case they may only degrade the system’s performance).
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In summary, AutoPlacer provides two key features:

• It introduces a novel iterative, decentralized, self-tuning data placement optimization

scheme;

• It preserves e�cient lookups, while achieving high flexibility in determining an optimized

data placement, through the use of a new probabilistic data structure designed specifically

for this purpose.

AutoPlacer has been integrated in a popular, open-source key-value store, namely Infin-

ispan: RedHat Infinispan is the reference NoSQL platform and clustering technology for JBoss

AS, a mainstream open source J2EE application server. The choice of Infinispan is motivated

by insights we got from use cases, internals, and limitations of this system as a result of a joint

project with RedHat (Romano et al., 2014). We conducted experiments on both public and pri-

vate cloud infrastructures, using a porting of the well-known TPC-C benchmark for key-value

stores (Leutenegger and Dias, 1993), and GeoGraph (Ziparo et al., 2013), a complex benchmark

representative of Geo-social network applications. The results of our experimental study high-

light the e↵ectiveness of AutoPlacer, which can achieve up to 6x, speed-ups with respect to

a baseline system using consistent hashing.

The rest of the chapter is structured as follows. We start by placing the related work into

context with AutoPlacer in Section 4.1. Our target system is characterized in Section 4.2.

Section 4.3 provides a global overview of AutoPlacer. Then, its components are described

in more detail in the next two sections: the PAA internals are described in 4.4; a theoretical

analysis of the optimizer’s accuracy is provided in 4.5. Section 4.6 reports the results of the

experimental evaluation of the system. Finally, Section 4.7 concludes the chapter.

4.1 Context

This section puts the related work into context in relation to AutoPlacer. It focuses on

how the state-of-the-art systems support dynamic changes in data placement and how these are

used to improve the locality of data access.

As previously mentioned, a common approach to implementing data placement mechanisms

in datacenter-scale systems is to rely on coarse-grained, user-defined data partitions/buckets,
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also called directories (Corbett et al., 2012) or tablets (Cooper et al., 2008; Chang et al., 2008).

This mechanism is mostly used to balance the load on hotspot nodes through centralized control.

While coarse partitioning allows for somewhat manageable directories, its coarse granularity can

reduce the e↵ectiveness of the load balancing mechanisms. In order to improve data locality,

these systems also make use of sorted keys: the programmer is responsible for assigning similar

keys to related data in order for it to be placed in the same server (or in the same group of

servers) (Corbett et al., 2012; Cooper et al., 2008; Lakshman and Malik, 2010). The proposed

system does not require the programmer to manually define data partitions. While Auto-

Placer exploits information encoded in the key structure, the programmer is not required to

define partitioning rules. Conversely, these are automatically inferred using machine learning

techniques based on the data access patterns exhibited by the various nodes in the system (more

details can be found on Section 4.4.2). Also, by inferring data partitioning rules using an online

decision tree algorithm, our system can establish a fine grained placement for the most accessed

items in a space-e�cient way.

There is extensive work on defining optimal data placement strategies in multiple contexts.

A naive design that achieves an optimal object-to-node mapping is to rely on a centralized

component. In such a scheme, nodes send their object request to a single node, which runs an

optimization algorithm based on some variant of the File Allocation Problem (FAP) (Chandy

and Hewes, 1976; Le↵ et al., 1993; Zaman and Grosu, 2011; Laoutaris et al., 2006), and then the

new mappings are propagated to a router component which creates lookup tables (Tatarowicz

et al., 2012) and routes requests to system nodes. However, not only does this solution involve an

extra network hop for each request, but also FAP is an NP-complete problem (hence, inherently

non-scalable in terms of the number of objects) and this design would cause nodes to send

information on every single object they store to a centralized location. Finally, Le↵ et al., 1993

show that such an algorithm can react slowly to changes in workloads since the decisions are not

local to the nodes. Despite these drawbacks, several state-of-the art works follow approaches

inspired on this naive solution: Jia et al., 2013 and Cruz et al., 2013 use a centralized component

which collects fine-grained statistics on object usage, derives a placement using an optimization

algorithm for improving load balancing across the system and then acts as a directory to locate

objects. Ursa (You et al., 2013) also follows a similar design for achieving load balancing goals,

but it only considers the most-used objects in order to improve scalability, in a similar way as

AutoPlacer uses top-k. Schism (Curino et al., 2010) and the work by Pavlo et al., 2012 also
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follow this centralized design, with a similar goal as AutoPlacer of improving data locality.

To achieve optimal placement, these latter two systems collect system execution logs to extract

statistics on correlated objects, and then use graph partitioning algorithms to place the objects

into groups which are then mapped to nodes. Despite achieving near-optimal placements, these

are mostly o✏ine algorithms, which consider all data in the system and have limited scalability

as the number of data items grows.

Recent work by Li et al., 2013 proposes Proteus, a virtual node placement algorithm that

allows minimizing the delay penalties otherwise incurred during server provisioning dynamics

when using a conventional consistent hashing placement scheme. This scheme could be easily

integrated with AutoPlacer, as a mechanism like Proteus could be used in AutoPlacer as

alternative to the consistent hashing scheme.

Finally, this work is also related to the vast literature on self-management (Cook et al.,

2012; Forell et al., 2011) of cloud data platforms, and in particular to the problems of thermal

optimization (Li et al., 2011; Chen et al., 2011), and SLA-based provisioning (Wang et al.,

2011; Didona et al., 2012). The self-tuning mechanisms designed to cope with these problems

can induce significant variations of the locality patterns exhibited by the nodes of a distributed

key-value store, e.g., by dynamically altering the amount of allocated resources, or the way in

which requests are dispatched to resources. AutoPlacer can be used to ensure that, whenever

these systems reconfigure the platform to meet SLA or thermal constraints, the placement of

data across the nodes of the system is always constantly optimized.

4.2 System Characterization

The development of AutoPlacer has been motivated by our experience (Peluso et al.,

2012b; Peluso et al., 2012a; Ruivo et al., 2011) with the use of an existing, state-of-the-art, key-

value store, namely Infinispan (Marchioni and Surtani, 2012) by Red Hat. In Infinispan (and

other similar products such as (Lakshman and Malik, 2010; DeCandia et al., 2007)), data is

stored in multiple nodes using consistent hashing. For each key, consistent hashing determines a

supervisor node for that item. Items can be replicated. A node that stores a copy of data item

i is denoted an owner of that item. Assume that d copies are maintained of each data item, the

owners of data item i are deterministically assigned to be j’s supervisor plus its d�1 immediate
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successors (in the one-hop distributed hash-table that is used to implement consistent hashing).

Each node serves a dual purpose: it stores a subset of the data items maintained by the

distributed store and also executes application code. The application code may be structured as

a sequence of transactions (Infinispan supports transactional properties), with di↵erent isolation

levels.

When the application code reads a data item, its value must be retrieved from one of its

owners (which can be another node in the cluster). Thus, optimal performance is achieved if the

node that executes a given application is the owner for the items it accesses more often. When

the application writes a data item, all owners must be updated. Interestingly, the placement

policy can also a↵ect the performance of write operations. When multiple writes are performed

in the context of a transaction, they can be applied in batch when the transaction commits.

Hence, the larger the number of owners of keys updated by a transaction, the higher the number

of nodes that have to be contacted during its commit phase.

Infinispan uses consistent hashing to ensure that all lookups can be executed locally. Unfor-

tunately, in typical deployments of large-scale key-value stores, random data placement can be

largely suboptimal as applications are likely to generate skewed access distributions (Leutenegger

and Dias, 1993), often dependent on the actual “type” of operations processed by each node (You

et al., 2013; Curino et al., 2010). Also, workloads are frequently distributed according to

load balancing strategies that strive to maximize locality (Garbatov and Cachopo, 2011)/min-

imize contention (Amza et al., 2003). As we will show in the evaluation section, all these facts

make consistent hashing sub-optimal. Therefore, significant performance improvements can be

achieved by using appropriate autonomic data placement strategies.

4.3 AutoPlacer Overview

AutoPlacer is designed to optimize data location in a decentralized manner, i.e., each

node in the system contributes to the global optimization process. Since AutoPlacer is aimed

at systems that use consistent hashing as the default data placement policy, we also rely on

consistent hashing to decentralize the optimization e↵ort: each node is responsible for deciding

the placement for the items it supervises. AutoPlacer executes, periodically, a sequence of

optimization rounds. As a result of each round, a number of data items may be relocated. This
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happens only if the expected gains are above a minimum threshold. Each optimization round

consists of the following sequence of six tasks.

Task 1: The first task of the AutoPlacer approach consists of collecting statistics about

the hotspots data, i.e., the top-k most accessed data items, at each node. In fact, instead of

trying to optimize the placement of every data item in a single round, at each optimization

round, AutoPlacer only optimizes the placement of items that are identified as hotspots.

Since this task is run periodically, once some hotspots have been identified (and relocated) in a

given round, new (di↵erent) hotspots are sought in the next round. Therefore, although in each

round only a limited number of hotspots is identified, in the long run, a large number of data

items may be selected over multiple optimization rounds, as long as gains can still be obtained

from their relocation.

Task 2: The second task consists of having the nodes exchange statistics regarding the

data items that were identified as hotspots during the current round. More precisely, each node

gathers (from the remaining nodes of the platform) access statistics on any hotspot items it

supervises.

Task 3: The above information is used in the third task (denoted the optimization task)

to find an appropriate placement for those items. The result of this task is a partial relocation

map, i.e., a mapping of where replicas of each hotspot items that the node supervises (for the

current round) must be placed.

Task 4: Even if the number of hotspots tracked at each round is a small fraction of the

entire set of items maintained in the key-value store, over multiple rounds the relocation map

can grow in an undesired way, and may even be too large to be e�ciently distributed to all

nodes. This task is devoted to encoding the relocation map in a probabilistic data structure

that can be e�ciently replicated on all nodes in order to ensure fast lookups, i.e., a Probabilistic

Associative Array (PAA). Specifically, each node computes the PAA for the (relocated) objects

it supervises.

Task 5: Once each PAA has been computed, each node disseminates it among all nodes.

By assembling the PAAs received from all the nodes in the system, each node can locally build

an object lookup table that includes updated information on the placement of data optimized

during this round.
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Task 6: Finally, at the end of each round, the data items for which new locations have been

derived are transferred (using conventional state-transfer facilities (Jiménez-Peris et al., 2002;

Ahmad et al., 2013)) in order to match the new data placement.

As can be inferred from the previous description, the work is divided among all nodes

and communication takes place only during tasks 2, 5, and 6, in order to, respectively, exchange

statistical information on hotspots, distribute the PAA, and finally relocate the objects. Also, the

tasks that require communication are performed in parallel, without the help of any centralized

component.

Note that AutoPlacer is only concerned with the placement of data and is agnostic to the

data consistency mechanisms used by the key-value store. For instance, AutoPlacer is com-

patible with the di↵erent consistency levels supported in Infinispan. Naturally, the consistency

protocol in use must be prepared to support dynamic re-adjustment of the number and place-

ment of replicas, but this is today the default for most consistency protocols, as it is required

anyway for fault-tolerance.

In the next subsections, we provide more information about the two main components of

AutoPlacer, namely, the optimizer (executed by Task 3) and the PAA (built in Task 4 and

used subsequently to perform data lookups locally).

4.3.1 Optimizer

Most works, e.g., You et al., 2013, Le↵ et al., 1993, Krishnan et al., 2000, Dowdy and Foster,

1982, in the area of data placement (and of its many variants (Krishnan et al., 2000; Dowdy and

Foster, 1982)) assume that the objective and constraint functions of the optimization problem

can be expressed (or approximated) via linear functions, and, accordingly, formulate an Integer

Linear Programming (ILP) problem. The ILP model can indeed be also adopted for the specific

data placement problem tackled by AutoPlacer. To this end, one can model the assignment

of data to nodes by means of a binary matrix X, in which Xij = 1 if the object i is assigned to

node j, and Xij = 0 otherwise. Further, one can associate (average, or per-object) costs with

local/remote read/write operations. For simplicity of exposition, we consider only objects with

fixed size. The ILP problem is then formulated as the minimization of the objective function that

expresses the total cost of accessing all data items across all nodes, subject to two constraints:
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Table 4.1: Parameters used in the ILP formulation.

N the set of nodes j in the system
D the set of objects i in the system (Data-Set)
X a binary matrix in which Xij = 1 if the object i is

assigned to node j, and Xij = 0 otherwise
rij , wij the number of read, resp. write, accesses performed

on an object i by node j

crr, crw the cost of a remote read, resp. write, access
clr, clw the cost of a local read, resp. write, access

d the replication degree, that is, number
of replicas of each object in the system

Sj the capacity of node j.

i) the number of replicas of each object must meet a predetermined replication degree, and ii)

each node has a finite capacity (it must not be assigned more objects than it can store). In

Table 4.1, we list the parameters used in the problem formulation, which aims at minimizing

the following cost function:

X

j2N

X

i2D
Xij(cr

rrij + crwwij) +Xij(cl
rrij + clwwij) (4.1)

subject to:

8i 2 D :
X

j2N
Xij = d ^ 8j 2 N :

X

i2D
Xij  Sj

Despite its convenient mathematical formulation, ILP problems are NP-hard. Further, solving

the above ILP problem would require collecting and exchanging among nodes access statistics for

all objects in the system. We tackle these drawbacks by introducing a lightweight, multi-round

distributed optimization algorithm, which we describe in the following Section 4.3.1.1.

4.3.1.1 Space-Saving Top-k algorithm

An important building block of AutoPlacer is the Space-Saving Top-k algorithm by Met-

wally et al., 2005. This algorithm is designed to estimate the access frequencies of the top-k

most popular objects in an approximate, but very e�cient way, i.e., by avoiding maintaining in-

formation on the access frequencies (namely counters) for each object in the stream. Conversely,

the Space-Saving Top-k algorithm maintains a tunable, constant, number m, where m ⌧ |D|,
of counters, which makes it extremely lightweight. On the downside, the information returned
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in the top-k list may be inaccurate in terms of both the elements that compose it and their

estimated frequency. However, this algorithm has a number of interesting properties concerning

the inaccuracies it introduces. First, it ensures that the access frequencies of the objects it tracks

are always consistently overestimated. Also, its maximum overestimation error is known, and

is equal to the frequency of the least frequently accessed item present in top-k, denoted as Fk.

Finally, its space-requirements can be tuned to bound the maximum error introduced in the

frequency tracking, as we will further discuss in Section 4.5.

4.3.1.2 Using Approximate Information

In AutoPlacer, each node j runs 2 distinct instances, noted as top-krdj , resp. top-kwr
j ,

of the Space-Saving Top-k algorithm, used to track the k most frequently read, resp. updated,

data items during the current optimization round. We denote with top-kj(D) the subset of

cardinality k (of the entire data set D) contained in both the read and write top-k instances

at node j, and with top-K(D) = [j2N (top-kj(D)) the union of the top-k data items across all

nodes.

By restricting the optimization problem to the top-k accessed data items we reduce the num-

ber of decision variables of the ILP problem significantly, namely from |D||N | to O(k|N |) (where
k ⌧ |D|). This choice is crucial to guarantee the scalability of the proposed approach. However,

it requires dealing with the incomplete and approximate nature of the data (read/write) access

statistics provided by the top-k algorithm, which we denote with r̂ik,ŵik to distinguish them

from their exact counterparts (rik,wik). Also, we use the notation X̂ to refer to the solution of

the optimization problem using as input the access statistics provided by the top-k algorithm,

and distinguish it from the one obtained using the exact access statistics in input, which we

denote Xopt.

A first problem to address is related to the possibility of missing information concerning the

access frequency by some node j to some data item i 2 top-K(D): this can happen in case i has

not been tracked in top-kj(D), but is present in the top-kj0(D) of some other node j0 6= j. To

address this issue, we simply set to 0 the frequencies r̂ij ,ŵij .

Finally, the approximate nature of the information provided by the Space-Saving Top-k

algorithm may impact the quality of the identified solution. A theoretical analysis aimed at

evaluating this aspect will be provided in Section 4.5.
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4.3.1.3 Accelerating the solution of the optimization problem

To accelerate the solution of the optimization problem we take two complementary ap-

proaches: relaxing the ILP problem, and parallelizing its solution.

The ILP problem requires decision variables to be integers and is computationally oner-

ous (You et al., 2013). Therefore, we transform it into an e�ciently solvable linear programming

(LP) problem. To this end, we let the matrix X̂ assume real values between 0 and 1 (adding an

extra constraint 8i 2 D, 8j 2 N 0  X̂ij  1). Note that the solutions of the LP problem can

have real values, hence each object is assigned to the d nodes which have highest X̂ij values. As

in the work by You et al., 2013, we use a greedy strategy according to which, if the assignment

to a node causes a violation of its capacity constraint, the assignment is iteratively attempted

to the node that has the (d+ k)-th (k 2 [1, |N |� d]) highest scores.

Second, we introduce a controlled relaxation of the capacity constraint, which allows us to

partition the ILP problem into |N | independent optimizations problems that we solve in parallel

across the nodes of the platform. Let top-kj(D|n) be the set of keys in top-kj(D) of node j that

node n supervises. Each node j sends its top-kj(D|n) to each other node n in the system. As a

result, each node j also gathers the access statistics top-K(D|j) = [n2N top-kn(D|j) concerning
the current hotspots that j supervises. At this point, each node j computes the new placement

for the data in top-K(D|j).

Note that since we are instantiating the (I)LP optimization problems in parallel, and in

an independent fashion, we need to take an additional measure to guarantee that the capacity

constraints are not violated. To this end, we instantiate the (I)LP problems at each node j with

a capacity S0
j = Sj � |N |k. In practice, this relaxation is expected to have minimum impact on

the solution quality, since k ⌧ Sj .

Overall, at the end of an optimization round, each node j produces two outputs: the partial

relocation map X̂, and the cost reduction achievable by relocating the data in top-K(D|j)
according to X̂, which we denote as �Cj . �Cj is computed as the di↵erence between the result

of Equation 4.1 applied to the partial relocation map X̂ obtained in this round, and the map

obtained in the previous round. This value allows estimating the gain achievable by performing

this optimization round, and is used in AutoPlacer to determine the completion of the round-

based optimization algorithm.
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Table 4.2: PAA Interface.

Method Input Parameters Output

create SethKey,Value[d]i, ↵, � PAA
get Key Value[d]
add SethKey,Value[d]i PAA

getDelta PAA �PAA
applyDelta �PAA PAA

4.3.2 Probabilistic Associative Array: Abstract Data Type Specification

Even though in each round AutoPlacer optimizes the placement of a relatively small num-

ber of data items, over multiple optimization rounds the number of relocated objects can grow

very large. Hence, a relevant issue is related to the overhead for maintaining, and replicating,

a possibly very large relocation map. Indeed, the relocation map can be seen as an associative

array in which each entry is a pair mapping a data item to the set of nodes that own it.

The Probabilistic Associative Array (PAA) is a novel data structure that allows maintaining

an associative array in a space e�cient, but approximate way. We present the PAA as an abstract

data type, with an interface analogous to conventional associative arrays. In Section 4.4, we will

discuss how it has been implemented in AutoPlacer.

The PAA is characterized by the API reported in Table 4.2, which is similar to that of

conventional associative arrays, including methods to create and query a map between keys and

(constant d-sized) arrays of values. To this end, the PAA API includes three main methods:

• the create method, which returns a new PAA instance and takes as input a set of pairs

in the domain (key ⇥ array[d] of values) to be stored in the PAA (called, succinctly, seed

map) and two tunable error parameters ↵ and � (discussed below);

• the get method, which allows querying the PAA obtaining the array of values associated

with the key provided as input, or ? if the key is not contained in the PAA;

• the add method, which takes an input a seed map and adds it to an existing PAA.

The PAA is designed to tradeo↵ accuracy for space e�ciency, and may return inaccurate

results when queried. In the following, we specify the properties ensured by the get method of

a PAA:
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• it may provide false positives, i.e., it can provide a return value di↵erent from ? for a key

that was not inserted in the PAA. The probability of false positives occurring is controlled

by parameter ↵.

• it has no false negatives, i.e., it will never return ? for a key contained in the seed map.

• it may return an inaccurate array of values for a key contained in the seed map. The

probability of returning inaccurate arrays is controlled by parameter �. In other words,

with some small and tunable probability, the data items may be located in di↵erent nodes

than those specified by the seed map (thus, the lookup e�ciency may cause some degree

of sub-optimal placement).

• its response is deterministic, i.e., for a given instance of a PAA, the return value for any

given key is always the same.

Finally, the PAA API contains two additional methods that allow to update the content of a

PAA in an incremental fashion: getDelta, and applyDelta. getDelta takes as input a

PAA and returns an encoding, denoted as �PAA, of the di↵erences between the base PAA over

which the method is invoked (say PAA1) with respect to the input PAA, say PAA2. The �PAA

returned by getDelta can then be used to obtain PAA2 by invoking the method applyDelta

over PAA1 and passing as input parameter �PAA.

Before presenting the internals of the PAA implementation (see Section 4.4), we discuss, in

the next sections, the functioning of AutoPlacer’s distributed algorithm.

4.3.3 The AutoPlacer iterative algorithm

We now provide, in Algorithm 1, the pseudo-code formalizing the behavior of the Auto-

Placer algorithm executed by a node j. Each node maintains a local lookup table, denoted as

LookupT, that consists of an array of PAAs, one per each node j in the set of nodes composing

the system (denoted by ⇧ in Alg. 1). Specifically, j’s entry of LookupT is used to keep track of

the objects supervised by node j that have already been relocated by AutoPlacer. For any

given round, LookupT is the same on all nodes.

At the beginning of each round, j collects statistics concerning its top-k most frequently

read/written data items. This activity is encapsulated by the collectStats procedure (line 5),
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which is designed to track only accesses to objects whose placement had not been previously

optimized in previous rounds. This measure is necessary, as, otherwise, in the presence of stable

distributions of the data access among nodes (i.e., stable workloads), the top-k lists at each node

may quickly stagnate. Especially in case of skewed distributions, the top-k lists would tend to

track the very same objects (i.e., the most popular ones) along every round.

By tracking only the keys whose placement has not been optimized in previous rounds, it

is guaranteed that, in two di↵erent rounds, two disjoint sets of objects are considered by the

optimization algorithm, leading to the analysis of progressively less “hot” data items. Further, it

prevents the possibility of ping-pong phenomena (Fleisch and Popek, 1989), i.e., the continuous

re-location of a key between nodes, as it guarantees that the position of each object is optimized

at most once.

To determine whether an access to a data item should be traced or not, the collectStats

procedure is provided with LookupT as input (we recall that LookupT keeps track of all items

whose placement has been previously optimized). Upon a read/write access to a data item,

the collectStats procedure checks if the item is contained in LookupT and, in the positive

case, it avoids tracing this access. Notice that this assumes that the data access frequencies

do not change significantly during the entire optimization process. In fact, in order to cope

with scenarios in which applications’ data access patterns change at a frequency higher than

AutoPlacer’s complete optimization, the structure of LookupT must be more complex. In

Section 4.3.4, we detail how these scenarios are handled by AutoPlacer.

Next, the nodes exchange the information collected by collectStats. Since we also par-

allelize the optimization procedure, we send to each node only the statistical information that

will be relevant to the computation that will be performed at that node, i.e., the statistical

information regarding the data items it supervises.

At this point, each node optimizes the placement for the objects it supervises (Optimize

primitive), determining their new owners (encoded in the partial relocation map, denoted X̂).

The node also computes the reduction of the local cost function (denoted as �Cj ) that the new

assignment brings.

Then, node j computes a temporary PAA, based on the previous value of its PAA (stored

in LookupT [j]) and on the new additional relocation information X̂ (lines 13-14). The API

of the PAA is then used to extract the relevant deltas from the existing PAA that need to
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ALGORITHM 1: AutoPlacer’s behavior at node j

1 Array[1. . . |N |] of PAA : LookupT={?, . . . ,?};
2 PAA: tmpPAA=?;
3 do

4 Array[1. . . |N |] of Sethi, r, wi : req=?;
5 htoprdk , top

wr
k i  collectStats(LookupT);

6 foreach n 2 ⇧ do

7 send({hi, r, wi 2 {toprdk [ top

wr
k } such that supervisor(i) = n}) to n;

8 end

9 foreach n 2 ⇧ do

10 req[j] receive() from n;
11 end

12 hX̂,�Cj i  Optimize(req);

13 tmpPAA  LookupT[j];

14 tmpPAA.add(X̂);
15 �PAA: delta  tmpPAA.getDelta(LookupT[j]);
16 broadcast(delta,�Cj);

17 �C⇤  0;
18 foreach n 2 ⇧ do

19 [delta,�Cn ]  receive() from n;
20 LookupT[n] LookupT[n].applyDelta(delta);
21 �C⇤  �C⇤ +�Cn ;

22 end

23 moveData();

24 while �C⇤
> �;

be disseminated, in order to avoid sending the entire PAA again (line 15). These deltas are

exchanged among nodes, and applied locally, such that every node can update all entries of

LookupT (lines 16-22).

Each optimization round ends by triggering the re-location of the data via the moveData()

primitive. This primitive will use the updated PAAs to determine the set of items that have

been re-located, and gives the necessary commands to perform the corresponding state transfers.

Several state transfer techniques can be used for this purpose (Jiménez-Peris et al., 2002; Ahmad

et al., 2013), whose complexity depends on the consistency guarantees that the key-value store

implements (e.g. transactional vs eventual consistency). These mechanisms are orthogonal to

the AutoPlacer system. In the Infinispan version used for evaluation of the current work, the

state transfer is achieved through an algorithm which temporarily bu↵ers the a↵ected operations

during the state transfer phase and re-routes them to the correct nodes after the state transfer,

hence causing no consistency losses. Techniques to optimize this procedure may be found in the

related work (Ahmad et al., 2013; Jiménez-Peris et al., 2002; RedHat/JBoss, 2013).
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ALGORITHM 2: PAA-based lookup function

1 Array[1 . . . d] of Nodes lookup(Key k)

2 if LookupT[supervisor(k)].get(k) 6= ? then

3 return LookupT[supervisor(k)].get(k);
4 else

5 s  supervisor(k);
6 return {s, s+1, . . ., s+d-1};
7 end

8 end

AutoPlacer relies on a mechanism that halts the distributed optimization algorithm if the

“gain” achieved during the last optimization round does not exceed a user-tunable minimum

threshold, denoted � (line 23). This allows avoiding analyzing the “tail” of the data access

distribution, whose optimization would lead to negligible gains. We chose as metric to evaluate

the optimization gain the reduction of the cost function achieved during the last optimization

round, �C⇤ . To compute this value, each node j disseminates the value for the reduction of

its local cost function �Cj along with delta (line 16). After this dissemination phase, each

node can deterministically compute �C⇤ and evaluate the predicate on the termination of the

optimization algorithm.

Finally, AutoPlacer leverages the fault-tolerant mechanisms used by the underlying key-

value store itself to recover from node failures. In fact, Infinispan relies on JGroups (Ban and

Blagojevic, 2002) to maintain cluster membership; if a node crashes, both the key-value store and

the AutoPlacer components receive consistent up-to-date membership change notifications

that can be used to safely recover from failures (for instance, this prevents AutoPlacer from

blocking while waiting for inputs from di↵erent nodes).

After one round of the AutoPlacer algorithm, some items will be mapped to nodes dif-

ferent from those mapped by consistent hashing. Hence, the system must use a lookup function

which supports this change. Algorithm 2 shows the pseudocode for the lookup function for a

key k. First, consistent hashing is used to identify the supervisor of k, s. We then check whether

the PAA associated with s contains k. In the positive case, we use the mapping information

provided by LookupT [s] to identify the set of nodes that are currently maintaining key k. Oth-

erwise, we simply return the set of owners for k as determined by consistent hashing (d is the

replication degree).
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4.3.4 Handling dynamic workloads

In the previous sections, we have described how AutoPlacer can be employed to optimize

data placement in the presence of static workloads. However, the algorithm can be extended to

cope with dynamic workloads, i.e., scenarios in which the data access patterns generated by the

nodes in the system vary over time. In this case, the data placement identified by AutoPlacer

at the end of a round may become suboptimal and require the re-location of data items whose

placement had previously been optimized by AutoPlacer. The key issue is that, once a data

item has been relocated by AutoPlacer, its data accesses are no longer traced via the top-k,

in order to avoid re-optimizing its placement in following rounds and to prevent the stagnation

of the top-k statistics. Next, we show how it is possible to extend AutoPlacer to cope with

dynamic workloads, by having it operate in epochs.

In each epoch, AutoPlacer operates exactly as previously described. A new epoch is

started when the need for recomputing data placement is identified, i.e., whenever an abrupt

change of the access patterns is detected during the current epoch. Various key performance

indicators may be adopted to reveal the occurrence of a relevant workload shift, including

the ratio of remote to local data access operations and/or the number of nodes involved in

commit. Indeed, as a consequence of AutoPlacer’s optimization algorithm, these performance

indicators are expected to decrease over time if the data access patterns at the various nodes

remain stable.

In AutoPlacer, we trigger new epochs whenever we detect a sudden growth of the prob-

ability of remote data accesses. To this end, one could use various statistical mechanisms for

robust change detection, such as the work by Sangyeol and Taewook, 2004. However, we exper-

imentally found that using a simple threshold of a three-time increase in remote data accesses

was su�cient to detect workload changes in a reliable way. Each node disseminates the remote

data access information periodically in the system. At each dissemination round, every node

computes the average remote access probability in the system, and uses the same deterministic

function (i.e., comparison with the threshold) to determine whether to trigger a new epoch.

Thus, the need to start a new epoch can be first detected by any node. In such case, the node

sends a message to the remaining nodes to make sure all nodes will re-start executing Alg. 1.

This simple scheme ensures that all nodes will agree on triggering a new epoch in the same

dissemination round.
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Upon beginning a new epoch e, each node creates an empty LookupTe associated with the

current epoch. However, unlike a normal AutoPlacer round, this LookupTe is not merged with

any pre-existing LookupT s, but it is stacked on top of LookupT from previous rounds. This new

LookupTe will serve a twofold purpose. On the one hand, it allows for storing a “patch” for the

currently established data placement (encoded by the set of LookupT s of the preceding epochs).

Furthermore, the current LookupTe is provided as input to the collectStats() method, which

will use it to determine whether or not to track accesses to a data item d in the node’s top-k

in the current epoch, depending on whether d is stored in LookupTe (which, we recall, implies

that d has been re-located by AutoPlacer during epoch e).

Since, in the first round of any epoch e, its LookupTe is empty, the accesses to all objects in

the key-value store will be tracked, allowing to re-optimize the placement of data items that have

been subjected to access patterns shifts since the last epoch. If objects need to be relocated,

their new position is stored in the corresponding PAA in LookupTe. At the end of the round,

each node will broadcast the PAA associated with the data it supervises, as usual, and the

other nodes will merge it with the empty LookupTe. We also alter the way in which the lookup

function operates: since an object may have been relocated in a previous epoch, we query the

stack of LookupT (in reverse chronological order). The lookup function returns the mapping

determined by the first LookupT that contains the required data item (i.e., the most recent

re-location of a data item), or the result of the default consistent hashing scheme in case the

data item has not been relocated in any epoch (and, therefore, is not present in any LookupT ).

A simpler way for AutoPlacer to handle varying workloads would be to reset its LookupT

as it detects a change in the workload. Even though this would be an e↵ective method of resetting

AutoPlacer, it would have the negative e↵ect of causing the system to shu✏e all previously

data optimized, returning to the original consistent hashing data placement. Keeping a history

of previous LookupT, arranged in reverse chronological order and regulated by the notion of

epochs, allows for minimizing the overhead introduced by the need to re-optimize the placement

of data in the system. In fact, if the placement determined in a previous epoch remains optimal

in the new epoch for a subset D of the platform’s data, even though it is sub-optimal for a subset

S, the data items in D will not be re-located in the new epoch (as the optimization algorithm

executing during the new epoch will confirm the optimality of the current placement).

The disadvantage of keeping a history of LookupT is that it could slow down the lookup
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function after a long series of epochs. However, it is important to note that after the system

has stabilized on the most recent epoch e and AutoPlacer has stopped optimizing placement,

LookupTe will contain the entire set of hotspots given the data access patterns currently exhibited

by the application. Thus, PAAs belonging to previous epochs will only be queried to obtain the

location of objects which were relocated in some previous epoch, and that are no longer used by

the nodes they were moved to. Hence, after AutoPlacer has stabilized, all but the most recent

LookupT may be discarded, causing non-hotspot objects to return to their supervisor nodes (as

determined by consistent hashing). Since theAutoPlacer algorithm is executed independently

at each node, each node n may unilaterally decide when to purge the previous PAAs associated

with the data it supervises. Thus, when a node has finished optimizing placement, it broadcasts

a PURGE message so that other nodes will discard the existing history of PAAs associated with

the objects n supervises.

Finally, we note that in order to ensure the termination of the AutoPlacer’s optimization

process, we need to assume that the frequency with which workloads change is su�ciently

low to give AutoPlacer enough time to execute a su�cient number of optimization rounds.

However, even in challenging scenarios characterized by frequent shifts of the application’s data

access patterns, the algorithm described above allows for e↵ectively reacting to workload changes

by minimizing the costs associated with the re-mapping of data replicas to nodes.

4.4 Probabilistic Associative Array Internals

4.4.1 Building Blocks

Scalable Bloom filters (SBF) (Almeida et al., 2007) are a variant of Bloom filters

(BF) (Bloom, 1970), a well-know data structure that supports probabilistic test for member-

ship of elements in sets. A BF never yields false negatives (if the query returns that an element

was not inserted in a BF, this is guaranteed to be true). However, a BF may yield false positives

(a query may return true for an element that was never inserted) with some tunable probabil-

ity ↵, which is a function of the number of bits used to encode the BF and of the number of

elements that one stores in it (that must be known a priori). SBFs extend BFs in that they

can adapt their size dynamically to the number of elements e↵ectively stored, while still ensur-

ing a bounded false positive probability. Internally, this is achieved by creating, on demand, a
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sequence of BFs with increasing capacity.

VFDT (Domingos and Hulten, 2000) is a classifier algorithm that induces decision trees over

a stream of data, i.e., without assuming the a priori availability of the entire training data set

unlike most existing decision trees (Mitchell, 1997). VFDT is an incremental online algorithm,

given that it has a model available at any time during its run and refines the model over time

(by performing new splits, or pruning unpromising leaves) as it is presented with additional

training data. As classical o↵-line decision trees, the output of VFDT is a set of rules that

allows mapping a point in the feature space to a target discrete class. A noteworthy property

of VFDT is that the trees it produces are asymptotically arbitrarily close to the ones produced

by a batch learner (i.e., an o↵-line learner that uses the entire training set to determine how to

grow the tree). The misclassification probability can be configured by means of the parameter

� (Domingos and Hulten, 2000), which a↵ects the frequency with which new rules are induced

in the trees built by the VFDT algorithm.

The PAA uses SBFs and VFDT in the following manner: SBFs are used to assert if a key

was stored in the PAA; VFDT is used to obtain the set of values associated with a key stored

in tha PAA. The following sections explain how this technique works in detail.

4.4.2 FeatureExtractor Key Interface

In order to maximize the e↵ectiveness of the machine-learning statistical inference, pro-

grammers can optionally provide semantic information on the type of key inserted in a PAA,

by having their keys implementing the FeatureExtractor interface. This interface exposes

a single method, getFeatures(), which returns a set of pairs hfeatureName, featureValuei,
where featureName is a unique string identifying each feature and featureValue is a (continuous

or discrete) value defining the value of that feature for the key.

The purpose of this interface is to allow a key to be mapped, in a semantically meaningful

way (and hence inherently application dependant), into a multi-dimensional feature-space that

can be more e�ciently analyzed and partitioned by a statistical inference tool. In particular,

the set of features extracted via this interface defines the “feature space” (Mitchell, 1997) over

which, as we will see in the following section, the VFDT algorithm infers a set of compact rules.

This ruleset, which is encoded as a decision tree, allows defining which regions of the feature
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space should be assigned to the various nodes of the system.

Normally, features can be “naturally” derived from the data model used in the application.

For instance, if an object-oriented (or relational) model is used, a typical encoding for the key

corresponding to an object of class “Person” with ID=3 may be “Person-3”. The Feature-

Extractor interface can then simply parse the key and return the pair h“Person”, idi. This

can be further illustrated considering the real example of the TPC-C benchmark, which we

used in our evaluation. In this case, a “Customer” object with id c1 would be associated with

a feature, h“Customer”, c1i. Further, since in TPC-C a customer is statically registered in a

“Warehouse” object, c1 would have a second feature h“Warehouse”, w1i, being w1 the identifier

of the warehouse where c1 is registered. Hence, a di↵erent customer c2 registered with a ware-

house w2 would be associated with the features h“Customer”, c2i and h“Warehouse”, w2i, while
the object representing warehouse w2 itself would be associated with the features h“Customer”,

N/Ai and h“Warehouse”, w2i.

Note that this sort of feature extraction could be automated, provided the availability of

information on the mapping between the application’s domain model, in terms, e.g., of enti-

ties and relationships, and the underlying key/value representation. This can be done using

annotations or domain specific languages, analogously to what is done in Object-to-Relational

Mapping (ORM) solutions (Bauer and King, 2006).

Finally, we note that this approach could be used, at least in principle, even in case of

completely unstructured keys. In such a case, the feature extraction phase would map the

keys onto a uni-dimensional feature space that coincides with the keys’ domain. However, as

we mentioned in Section 4.4.1, the PAAs use VFDT, an online decision-tree based classifier

algorithm, to infer a set of rules that map regions of the feature space onto nodes in the system.

As in any machine learning problem (Bishop, 2006), the ability of the classifier to infer a compact,

yet accurate ruleset is, in practice, strongly dependant on the quality of the used features, and

on their capability to promote the identification of clusters. Although, generally speaking,

there is no universal rule that determines how many features should be used to achieve optimal

performance (Liu and Motoda, 1998), one may argue that, in most classification problems,

using a uni-dimensional feature space is likely to limit the inference capabilities of classifier

algorithms. This is the reason why AutoPlacer’s programming model promotes, via the

FeatureExtractor interface, the encapsulation of additional semantic information in the
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key structure.

4.4.3 PAA Operations

We can finally discuss how each of the methods specified by the PAA abstract interface

introduced in Section 4.3.2 is implemented:

• Create: to instantiate a new PAA from a seed map, an SBF is first created, sizing it

to ensure the target error rate ↵ and populating it with the keys passed as input. Next, d new

instances of VFDT are trained. The i-th instance of VFDT (i 2 [1, . . . , d]) is trained by using

a dataset containing, for each key k in the seed map, an entry composed by the mapping of k

in the feature space (obtained using k’s FeatureExtractor interface), and, as target class

value, the i-th value associated with k in the seed map. As we are creating a decision-tree from

scratch over a fully-known training set, we use, in this phase, VFDT as an o✏ine-learner, by

configuring it to use the C4.5 algorithm (Quinlan, 1993). This allows us to tightly control the

cardinality of the ruleset it generates to achieve arbitrary accuracy in encoding the mapping,

and, hence, fine tune the pruning of the ruleset to achieve the user specified parameter �. To

this end, we need to keep into account that, when new data is added to the PAA (via the Add

method, to be discussed shortly), the decision tree is grown using the VFDT online algorithm,

which can introduce an additional misclassification probability �. Hence, during the pruning

phase of the initial o↵-line trained decision tree, we aim at achieving a misclassification rate on

the training set equal to �0 = 1� 1��
1�� .

The asymptotic complexity of the Create operation results as the sum of: i) creating an

SBF — an operation that has constant cost, as it boils down to allocating a byte array whose

size can be computed in O(1) based on ↵; ii) building the training set for d VFDTs via the

FeatureExtractor interface — an operation that has O(S ·f ·d) cost, where S is the number

of keys in the seed map, f is the number of features encoded in the keys, and d is the replication

degree; and iii) training d VFDTs, which has complexity O(d · (S ·f · log(S)), which is the cost of

building d decision trees over a training set of cardinality S with f attributes using C4.5 (Witten

and Frank, 2005).

• Get: queries for a key k are performed by first querying the SBF. If the response is

negative, ? is returned. Otherwise (and this may be a false positive with probability ↵), the
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VFDT is queried by transforming k in to its representation in the feature space by means of

the FeatureExtractor interface. If k had actually been inserted in the PAA, the query to

the SBF is guaranteed to return a correct result. However, it may still be wrongly classified by

the VFDT algorithm, which may return any of the target classes that it observed during the

training phase. Despite such inaccuracies, operations will never be misrouted in AutoPlacer,

since all nodes move data according to LookupT. At most, such inaccuracies may only lead to

degraded performance, due to moving data that was not to be relocated, or due to moving data

to unintended nodes.

The asymptotic complexity of the Get operation is equal to O(h · sl + dt � depth) where

h and sl are, respectively, the number of hash functions and of internal Bloom filters used by

the SBF, and dt� depth is the depth of the decision tree induced by VFDT, which is typically

assumed O(log(S)) when analyzing complexity of decision tree algorithms (Witten and Frank,

2005).

• Add: to implement this method, we leverage on the incremental features of the SBF and

VFDT. To this end, we first insert each of the entries k passed as input into the SBF. This

may lead to the generation of an additional, internal Bloom filter, to ensure that the bound

on ↵. Next, we incrementally train the VFDT instances currently maintained in the PAA, by

providing them, in a single batch, the entire set of key/value pairs that is being added to the

PAA. As the VFDT algorithm introduces, at most, � misclassification errors with respect to an

o↵-line decision tree, and given that we prune the initial, o↵-line built decision tree to achieve

accuracy �0, we guarantee the tree built by VFDT upon the execution of the Add method still

achieves the target bound on misclassification �.

The asymptotic complexity of the Add operation is equal to O(Sh + dSf log(S)), which

corresponds to the cost of inserting S items in the SBF (by using h hash functions), plus the

cost of build d trees using VFDT over a batch of S examples in the training set.

• getDelta: the output consists of the binary di↵erence of the SBFs, plus the ruleset of

the VFDT maintained by the PAA over which this method is invoked. To obtain the binary

di↵erence of the SBFs, we use a simple optimization that allows for avoiding the processing of

all but the latest internal BF in common between the 2 PAAs being compared. As new elements

are added always to the most recent internal BF, when this method is invoked over a PAA p,



84 CHAPTER 4. DATACENTER SCALE DATA PLACEMENT

passing as input parameter a PAA p’, it returns: i) any new BF included in p as a result of the

insertion of additional elements in p’, and ii) the most recent BF stored by p’, which may have

been in the meanwhile altered to store additional elements.

Excluding, for simplicity, this optimization from the analysis, the complexity of the get-

Delta operation can be estimated as proportional to the size (measured in bytes) of the PAA

over which this operation is invoked.

• applyDelta: symmetrically to what is done in getDelta, this method generates a new

PAA, whose SBF is obtained by applying the binary SBF di↵erence contained in the input

�PAA to the SBF of the PAA over which this method is invoked. The ruleset of the output

PAA is set equal to the one contained in the input �PAA.

The complexity of this method, analogously to getDelta, is proportional to the size of the

PAA passed as input.

4.4.4 Example use of PAAs in AutoPlacer

Figure 4.1 provides a concrete example of use of PAA in AutoPlacer. Let us start by

analyzing Figure 4.1(a). On the left side, we report an example set of keys whose placement in

the system needs to be updated, together with their corresponding new placement. We recall

that this information is obtained as output of the optimization phase of each AutoPlacer’s

round. Before inserting these keys in the PAA, the FeatureExtractor interface is first

executed, yielding the result on the right. This phase allows extracting semantic information

embedded in the key structure, and to map them into a feature space, which, in the considered

example, consists of tuples of the form {Customer⇥Warehouse⇥District}, and having as

target class the identifier of the node to which the key should be reassigned.

Figure 4.1(b) illustrates the mapping of the seed map in the feature space. Note that, in

this diagram, we indicate with di↵erent point types (namely, a circle, a box, and a triangle)

keys that are mapped to di↵erent nodes/values of the target class. Note also that we omit to

label the Customer axis for the sake of readability. The figure also depicts a possible clustering

induced by the ruleset determined by running the VDFT algorithm on the seed map. In the

considered example, the decision tree is built using three rules that partition the feature space

according to the value of the Warehouse feature, and attribute a di↵erent target class value
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(a) Example use of the FeatureExtractor Interface.

(b) Mapping of the seed map in the feature space and ruleset inference via VFDT.

Figure 4.1: Example use of PAAs in AutoPlacer

(i.e., node) to each partition. In the considered example, which is clearly simplistic for the

sake of clarity, the mapping of 7 keys to 3 di↵erent nodes (out of a possibly much larger set of

total nodes) is encoded using only 3 rules, which can be encoded in a much more compact way

than the relocation map. It should be noted that the considered ruleset may actually match

a much larger number of keys than those included in the seed map. This would happen, for

instance, each warehouse, in the considered example, was associated with a large population of

customers. This is the reason why PAAs integrate a SBF, which they use to store the identifiers

of the keys, whose mapping has been inserted in the PAA. Assume that a PAA, following its

initialization with the considered set of keys, is queried about a key k not included in this set,

where k = Customer : Pedro � W1 � D2. With high probability — more precisely, with the

probability ↵ specified upon the creation of the PAA — the key will not be present in the PAA’s

SBF, and the ruleset of the VFDT will not be queried. In this case, we recall that AutoPlacer

would consider the key not relocated, and locate it using the default consistent hash function.
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On other hand, had the SBF su↵ered of a false positive, the PAA would have used the VFDT’s

ruleset to determine the value associated with k, and also su↵er of a false positive.

An example of inaccurate mapping for a key stored in the PAA would have occurred in case

the same ruleset had been produced with an input seed map containing also the key-value pair

< Customer : SomeName � W1 � D2, 2 >. In this case, the ruleset induced by the VDFT

algorithm misclassifies the key based on the fact that the value of its Warehouse feature is 1,

and erroneously associates it with the target value/node 1, instead of 2.

4.5 Optimizer Analysis

As already noted, the approximate nature of the information provided by top-k may a↵ect

the quality of the identified solution. An interesting question is therefore how degraded is the

quality of the data placement solution when using top-k. Next, we provide an answer to this

question by deriving an upper bound on the approximation ratio of the proposed algorithm in

a single optimization round. Our proof shows that the approximation ratio is a function of

the maximum approximation error provided by any top-kj(D), which we denote e⇤, and of the

average frequency of access to remote data items when using the optimal solution.

Theorem 1 The approximation ratio of the solution X̂ found using the approximate frequencies

r̂ik,ŵik is:

1 +
d

|N |� d
�, with � =

e⇤(crr + crw)

crrrR+ crwrW

where e⇤ is the maximum overestimation error of top-k, and rR, resp. rW , is the average,

across all nodes, of the number of read, resp. write, remote data items using the optimal data

placement XOpt.

Proof Let us now denote with C(X, rij , wij) the cost function used in Eq. 4.1 of the ILP

formulation, restricted to the data items contained in top-K(D):

X

j2N

X

i2top-K(D)

Xij(cr
rrij + crwwij) +Xij(cl

rrij + clwwij)



4.5. OPTIMIZER ANALYSIS 87

and with Opt = C(Xopt, rij , wij) the value returned by the cost function using the binary matrix

Xopt obtained solving the ILP problem with exact access statistics rij , wij .

Let lR, resp. rR, be the average, across all nodes, of the number of read accesses to local,

resp. remote, data items using the optimal data placement X. lW and rW are analogously

defined for write accesses. These can be directly computed, once known XOpt and rij ,wij as:

rR =

P
j2N

P
i2top-K(D)X

Opt
ij rij

|top-K(D)|(|N |� d)

rW =

P
j2N

P
i2top-K(D)X

Opt
ij wij

|top-K(D)|(|N |� d)

lR =

P
j2N

P
i2top-K(D)X

Opt
ij rij

|top-K(D)|d

lW =

P
j2N

P
i2top-K(D)X

Opt
ij wij

|top-K(D)|d

We can then rewrite Opt and derive its lower bound:

Opt =|top-K(D)|((|N |� d)(crrrR+ crwrW )+ (4.2)

+ d(clrlR+ crwlW )) �
� |top-K(D)|(|N |� d)(crrrR+ crwrW )

Next, let us derive an upper bound on the “error” using the solution X̂ obtained instantiating

the ILP problem using the top-k-based frequencies r̂ij , ŵij . The worst scenario is that an object

o 2 D is not assigned to the d nodes that access it most frequently because they do not include

o in their top-k. In this case, we can estimate the maximum frequency with which o can have

been accessed by any of these nodes as e⇤. Hence, if we evaluate the cost function C(X̂, rij , wij)

using the exact data access frequencies, and the solution X̂ of the ILP problem computed using

approximate access frequencies, we can derive the following upper bound:

C(X̂, rij , wij)  Opt+ |top-K(D)|de⇤(crr + crw) (4.3)
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The approximation ratio is therefore:

C(X̂, rij , wij)

C(XOpt, rij , wij)
 1 +

d

(|N |� d)

e⇤(crr + crw)

crrrR+ crwrW
(4.4)

In the following corollary, we exploit the bounds on the space complexity of the Space-Saving

Top-k algorithm (Metwally et al., 2005) to estimate the number of distinct counters to use, to

achieve a target approximation factor 1 + d
|N |�d�.

Corollary 2 The number m of individual counters maintained by the Space-Saving Top-k al-

gorithm to achieve an approximation factor equal to 1 + d
|N |�d� is:

m =
SL

�

crrrR+ crwrW

crr + crw

where SL is the total number of accesses in the stream.

Proof Derives from Theorem 6 of the work by Metwally et al., 2005, which introduced the

Space-Saving Top-k algorithm. The Theorem states that to guarantee that the maximum over-

estimation error e⇤  ✏Fk, where Fk is the frequency of the k-th element in top-k, it is su�cient

to use m = SL
✏Fk

counters.

Finally, since in each round AutoPlacer optimizes the placement of a disjoint set of items,

it follows that, if we assume stable data access distributions, the approximation ratio achieved

by the optimization algorithm during round i will necessarily be lower (hence, better) than for

round i � 1. In fact, at each round, the frequencies of the items tracked by the top-k will be

lower than in the previous rounds, and, consequently, e⇤ will not increase over time.

4.6 Evaluation

This section evaluates the di↵erent aspects of the AutoPlacer. First, we describe our

experimental setting. Next, we discuss the e�ciency of the PAA data structure. We then

present two case-studies of our system, one based on the well-known OLTP benchmark, TPC-

C, and one based on a benchmark representative of geo-social applications, GeoGraph (Ziparo
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et al., 2013). In order to use both benchmarks in AutoPlacer, we modified the keys of objects

in the benchmarks in order to implement the Feature Extractor Interface according to the static

attributes of the objects they represent. For both benchmarks, we configured AutoPlacer to

run new rounds every minute, and limited the k = 1000.

4.6.1 Experimental Settings

In order to evaluate experimentally AutoPlacer, we integrated it in the Infinispan key-

value store. We have run experiments on two settings, one for each benchmark we make use

of. For the TPC-C benchmark, we used a cluster of 40 virtual machines (deployed on 10

physical machines) running Xen, equipped with two 2.13 GHz Quad-Core Intel(R) Xeon(R)

E5506 processors and 40 GB of RAM, running Ubuntu Linux 2.6.32-33-server and interconnected

via a private Gigabit Ethernet. For the GeoGraph benchmark, we deployed our platform on

of FutureGrid1. More specifically, we deployed the Cloud-TM Platform on top of a virtualized

infrastructure with 25 VMs, which were configured with 16GB RAM, one 2.93GHz core Intel

Xeon CPU X5570, running CentOS 5.5 x86 64 and interconnected by an InfiniBand network.

TPC-C Benchmark: Since Infinispan provides support for transactions, we developed for

our experimental study a port of a well-known benchmark for transactional systems, namely

the TPC-C benchmark (Leutenegger and Dias, 1993), which we adapted to execute on a key-

value store2. TPC-C is a complex benchmark, which generates workloads representative of

realistic OLTP environments, with complex and heterogeneous transactions having very skewed

access patterns and high conflict probability. This is in contrast with common key-value store

benchmarks (Cooper et al., 2010), which are typically composed of simple synthetic workloads.

Since our evaluation focuses on assessing the e↵ectiveness of AutoPlacer in di↵erent

scenarios of locality, we have modified the benchmark, so that we can induce controlled local-

ity patterns in the data accesses of each node. This modification consists of configuring the

benchmark so that the transactions originated on a given node access, with probability p data

associated with a given warehouse, and, with probability 1�p, data associated with a randomly

1http://portal.futuregrid.org
2The code of AutoPlacer and of the port of TPC-C employed in this evaluation study are freely available

in the Cloud-TM project public repository: http://github.com/cloudtm
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chosen warehouse. Thus, for example, by setting p = 90%, nodes will have disjoint data access

patterns (each accessing a di↵erent warehouse) for 90% of the transactions, while the remaining

10% access data uniformly. In the rest of the text, when we refer to “degree of locality” in the

context of the TCP-C benchmark, we refer to the value of probability p as described above.

GeoGraph Benchmark: Geograph (Ziparo et al., 2013) is a benchmarking tool that allows

injecting complex and rich workloads representative of the most popular geo-social applications.

Geograph has been designed to be flexible both in the heterogeneity and in the dynamics of the

workload. In particular, it provides 19 di↵erent geo-social services (i.e., actions) and 16 applica-

tion specific user simulators. These simulators (named agents) can be combined in complex ways

to generate dynamic workload profiles. In order to have a realistic geographical distribution of

the agents, GeoGraph uses as baselines, for each simulation, real GPS traces from Open Street

Maps3.

More specifically, the benchmark divides the spatial region where the agents move into

10km2 areas named Landmarks. It starts by inserting a set of posts (virtual messages) associated

with each Landmark. Then, agents are spread throughout the map and move across it using

realistic GPS traces, while issuing actions in its vicinities. The simplest action is read-post,

which is used to query the landmark state for getting posted messages. The second action is

update-position which leads to a move operation of the agent between adjacent landmarks,

and possibly to leave a new post.

In order to simulate a real-world deployment of a geo-social service, we have configured the

benchmark to dispatch requests across the nodes in the system depending on their geographical

origin. We then attributed geographical areas (sets of adjacent Landmarks) to servers, so that

the requests of an agent are dispatched to the server responsible for the closest landmark, based

on the agent’s current geographic position.

4.6.2 Probabilistic Associative Array

In this section, we study tradeo↵s in space e�ciency and accuracy involved in the config-

uration and implementation of the PAA. For these results, we have used traces of the TPC-C

3http://www.openstreetmap.org/traces
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Figure 4.2: PAA Performance.

Table 4.3: Re-located objects and size of di↵erent PAA implementations.

PAA Implementation Re-located objects Local space (KB)

PAA-scalable 26600 150.8
PAA-Bloom 26600 31.84
Bloomier 26600 575.3

benchmark configured with 100% locality.

Bloom Filter Figure 4.2(a) presents the network bandwidth of di↵erent implementations of

the PAA, compared with another form of probabilistic associative arrays, the Bloomier Filters

(Bloomier) (Chazelle et al., 2004), as the rounds advance in the system. One implementation

of the PAA uses regular Bloom filters (PAA-Bloom), while the other uses scalable Bloom filters

(PAA-scalable). Both PAAs were configured with ↵ = � = 0.01, and the Bloomier filter’s

false positive probability was also set to 0.01. We note that the best solution is the one that

allows to propagate in the network only di↵erential updates with regard to previous state, which

is the PAA-scalable. Concerning this latter solution, Figure 4.2(a) shows that in some rounds

the message tra�c generate by this solution oscillates. This can be explained considering that,

as a result of the insertion of new data in the PAA, it may be possible to exhaust the capacity

of the most recent internal BF of the scalable Bloom filter, and trigger the allocation of a new

slice. In this case, the getDelta method of the PAA returns the last two (or potentially more,

although this never occurred in this experiment) internal BFs.

Table 4.3 shows the local storage requirements at the end of the experiment. As it can be
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seen, PAA-scalable has higher storage requirements than PAA-Bloom. This is unsurprising,

as scalable Bloom filters are known to achieve lower compression than traditional Bloom filters

when fed with the same data set and configured to yield the same false positive rates (Almeida

et al., 2007). However, the storage requirements of both solutions are still considerably smaller

than those of Bloomier filters.

Machine Learner Figure 4.2(b) presents the error probability and space required by the DT

to encode the objects moved in every round of the experiment. As more objects are moved in the

system, the number of rules increases, leading to an increase in the size taken by this portion of

the PAA. However, the machine learner can represent the mapping of 26600 keys in 1000 Bytes,

corresponding to 213 rules. Furthermore, it can also be observed that while a significant number

of keys is added to the machine learner (around 1000 per round), the error remains relatively

stable.

4.6.3 Leveraging from Locality

This section shows how AutoPlacer is able to leverage form locality patterns in the

workload. The results were obtained with TPC-C, adapted as explained before and with a

replication of degree d = 2.

Figure 4.3(a) shows the throughput of AutoPlacer, compared with the non-optimized

system using consistent hashing for di↵erent degrees of locality in the workload. In the baseline

system, no matter how much locality exists in the workload, since consistent hashing is used

to place the items, on average, the number of remote accesses does not change. Thus, for

all workloads the baseline system exhibits a similar (sub-optimal) behaviour. In the system

running AutoPlacer, locality is leveraged by relocating data items. As times passes, and more

rounds of optimization take place, system throughput increases up to a point where no further

optimization is performed. It is interesting to note that, if there is no locality, throughput is

not a↵ected by the background optimization process. On the other hand, when locality exists,

the throughput of the system optimized with AutoPlacer is much higher than that of the

baseline: it can be up to 6 times better for a workload with 90% locality, and up to 30 times

better in the ideal case of 100% locality.

Figure 4.3(b) helps to understand the improvement in performance by looking at the number
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Figure 4.3: AutoPlacer performance

of remote invocations that are performed in the system as time evolves. Since the initial setup

relies on consistent hashing, both in the baseline and in the optimized system, the average

probability of an operation being local is 1
40 = 2.5% for all workloads. Thus, when the system

starts, most operations are remote. However, the plots clearly show that the number of remote

operations decreases in time when using AutoPlacer. The plots also show another interesting

aspect: although the number of remote operations decreases sharply after a few rounds of

optimization, the overall throughput takes longer to improve. This is due to the fact that read

transactions access a large number of objects, thus multiple rounds of optimization are required

to alleviate the network, which is the bottleneck in these settings. This clearly highlights the

relevance of the continuous optimization process implemented by AutoPlacer. At the end of

the experiment, the percentage of operations performed locally is already close to the percentage

of locality in the workload; this shows that when the system stabilizes, AutoPlacer was able

to move practically all keys subject to locality.

Finally, Figure 4.4 compares the performance of AutoPlacer and that of a directory

service-based system which may be used to store the mappings resulting from a global opti-

mization in systems such as Ursa (You et al., 2013), or Schism (Curino et al., 2010) among other

state-of-the-art solutions which lack an e�cient way of broadcasting mappings. These results

were obtained by storing the data relocation map obtained at the end of the entire optimization

process into a dedicated directory service. In this case, whenever a node requests a data item

that is not stored locally, it contacts the directory service to determine its location, instead of

querying the local PAA. The results clearly show that the additional latency for contacting the
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solution, after a complete optimization process.

directory service can hinder perform significantly, independently of the locality of the workload.

The plots highlight that, unlike with AutoPlacer, the performance of directory-based systems

can be worse than that achievable by using random placement. This is explainable considering

that, with low locality, a large fraction of data accesses is remote, and that directory-based ser-

vices impose a 2-hop latency, unlike consistent hashing and AutoPlacer. Note that, while the

plot depicts throughput values, these numbers are highly correlated with the latency of individual

operations; in fact, the decrease of throughput from AutoPlacer to that of a directory-based

system is due to the latency of lookups and the decrease of throughput from the directory-based

system to the baseline is due to the latency of (non-local) data accesses.

The speed-ups of AutoPlacer vs the directory-based solution are significant, i.e., around

2x, even for the high locality scenarios. In these scenarios, the reduction of the number of remote

operations leads to less directory lookups. However, the cost of accessing a remote data item

is, in our testbed, about 2 orders of magnitude larger than that of accessing a local item. As a

consequence, also in these scenarios, the cost of remote data accesses dominates the execution

time of the requests. Hence, such requests, which su↵er from one additional communication hop

latency in a directory-based solution, e↵ectively limit the throughput of such a solution leading

to considerably worse results than AutoPlacer.
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4.6.4 Distributed Optimization

In this section, we explore how the design decisions behind AutoPlacer’s distributed

optimization algorithm a↵ect the optimality of the final data placement. We have implemented

a version of our optimizer which works in a centralized way using complete and precise traces of

the system, obtained from all nodes during a long period. This is an approach similar to that

of state-of-the-art solutions such as Ursa (You et al., 2013) and Schism (Curino et al., 2010).

Finally, in order to improve the quality of the solution of the optimizer, so that it becomes an

optimal adversary, we did not relax the ILP constraint in this version.

To achieve a fair comparison, we did three runs of TPC-C with the same settings as Sec-

tion 4.6.3, and with two di↵erent configurations of Infinispan. Firstly, we did two long runs of an

unmodified Infinispan, while collecting traces of data access. We used the traces from the first

run to generate an optimization problem, which we fed to the centralized optimizer to derive

an optimized placement. Next, we used the traces from the second run to generate another

optimization problem, and store only its cost function. Finally, we ran AutoPlacer for the

same period and collected the data placements resulting from each round of optimization. In

this evaluation, we used the traces from the second run as a fair baseline for comparison be-

tween AutoPlacer and a centralized optimizer; We applied the data placement resulting from

AutoPlacer and from the centralized optimizer to the cost function derived from the traces

of the second run. This allowed us to compare the quality of the solution returned by each

optimizer with respect to a run independent from that which the optimizers used as input.

Figure 4.5 shows how the quality of the solution generated by AutoPlacer evolves along

rounds, as well as that of a centralized optimizer. This quality is a result of applying the cost

function obtained from the second Infinispan run to the data placement solutions generated by

each optimizer. The results are presented as a percentage of the cost of the (unoptimized) data

placement generated by consistent hashing.

Similarly to the behaviour observed in Section 4.6.3, AutoPlacer converges progressively

towards a steady-state, where the value for the objective function is not reduced any further. As

expected, the more locality is encoded in the workload, the smaller is the value at which Auto-

Placer converges, since more requests can be fulfilled by moving replicas to nodes requesting

data items. In fact, the results shown in Figure 4.5 match those of Figure 4.3(b): since the

remote operations are considerably more expensive than the local operations, the value of the
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Figure 4.5: Progression of the quality of the data placement optimization solutions of Auto-
Placer’s distributed optimization versus that of a centralized optimizer, relative to unoptimized
placement.

objective function at the end of the experiment relative to the unoptimized version corresponds

roughly to the percentage of remote operations relative to the baseline in Figure 4.3(b).

Regarding the comparison with the centralized optimizer, it can be observed that Auto-

Placer’s optimizer’s results are hindered by the fact that it is distributed and relies on uncertain

information. However, it must be noticed that AutoPlacer optimizes the placement based on

a much shorter window of time, which means that the statistics are more prone to be unreliable.

This fact, combined with the fact that AutoPlacer avoids moving data more than once on

each round, means that the system may make more wrong decisions. In absolute terms, this

di↵erence is more pronounced for lower locality scenarios, since AutoPlacer can more easily

be deceived by the randomness in the workload than an algorithm which decides placement

based on a longer period. In relative terms, the di↵erence is more pronounced for higher lo-

cality scenarios, since any single deviation from the data placement devised by the centralized

optimizer will have a strong impact on the objective function. Still, AutoPlacer was able to

approach the results of the centralized optimizer to within 10% of the cost of the unoptimized

placement, without requiring a complete trace of execution and while allowing the paralleliza-

tion of the computation. Furthermore, AutoPlacer also provided considerable gains over the

unoptimized placement, especially for the high-locality scenarios: the cost is reduced by up to

98.5%.



4.6. EVALUATION 97

Figure 4.6: Total throughput of AutoPlacer over time for a dynamic workload with 90% of
locality. T1 and T2 mark the instants when changes in workload occurred.

4.6.5 Dynamic workloads

In this section, we show how changes in the workload a↵ect the behaviour of AutoPlacer.

We deployed TPC-C using the same settings as in Section 4.6.3, with 90% access locality, but

modified the benchmark to be able to introduce changes to the data access pattern at runtime.

This allowed us to emulate the existence of a load balancer able to, at any time, decide to change

the way in which requests are routed to each node (e.g., due to the change of popularity of some

subset of data items).

Figure 4.6 presents the evolution of the throughput of the system when subject to two

changes in workload, taking place at time T1 and T2. At T1, we cause a change in the data

access pattern of 50% of the nodes. This change causes these nodes to access a di↵erent set of

data, and to start accessing data which was previously being accessed by some other node in

the set. At T2, we perform a similar change, to alter the data access pattern for all nodes in

the system.

As Figure 4.6 shows, the throughput of the system drops considerably at both T1 and T2.

This is caused by an increase in the remote read operations in the nodes a↵ected by the change,

which, not only cause their transactions to last longer, but also flood the network, a↵ecting

the transactions of the other nodes. It is noticeable, however, that the throughput drop at T1

is considerably smaller than at T2, since only 50% of the nodes are a↵ected by the change.

Furthermore, after T2, the throughput drops to roughly the same as at the beginning of the

experiment, since after the change at T1, most of the read operations become remote as at the

beginning of the experiment.
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Figure 4.7: Number of objects moved to a specific node per round over time. The figure presents
data for one of the nodes whose data is not a↵ected by the first workload change (at T1).

In terms of convergence time, each section of the experiment runs for 64 minutes, but after

roughly 40 minutes no significant increases in throughput are observed. It is important to notice

that this fact also holds for the second section of the experiment (between T1 and T2). Even

though the drop in performance after T1 is not as large as after T2, AutoPlacer still takes the

same time to converge on the peak throughput as for the other sections. This happens because

at each round, each node moves a limited number of objects, hence it will always require a

similar number of rounds to optimize the same number of objects.

Figure 4.7 shows the number of objects moved to one of the nodes not a↵ected by the change

in workload triggered in T1. During the first rounds of optimization, the node receives most

of its requested objects. As the system reaches a more stable throughput, the rate of objects

moved per round is reduced. Notice also that, even though the node still receives around 80

objects per round after the throughput has stabilized, this object relocation leads to a marginal

throughput gain. Between T1 and T2, this node’s data remains roughly the same: since it is

not a↵ected by the workload change, it does not request any data from its neighbors. After T2,

a new epoch is triggered, and since the node considered in Figure 4.7 is a↵ected by the workload

change, it starts receiving objects, until the system reaches a stable state towards the end of the

experiment.

4.6.6 GeoGraph evaluation

This section studies the behaviour of AutoPlacer when using GeoGraph. Figure 4.8

presents the results for AutoPlacer running the GeoGraph benchmark. We started using the

default, consistent-hashing data placement, with AutoPlacer disabled. After 10 minutes, we
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Figure 4.8: Evolution of throughput over time, duration of read-only transactions, and number
of remote get operations per read-only and update transactions – GeoGraph benchmark.

activated AutoPlacer’s statistics collection, and, after a period, to warm up the statistics, at

minute 20, we triggered the first optimization epoch.

The plots in the top row of Figure 4.8 show how throughput and response time of read-only

transactions vary over time during an experiment in which we inject load using 128 geographi-

cally dispersed agents, generating 90% read-only transactions (i.e., 90% read-post operations

and 10% update-position operations) with no think time. After approximately 10 minutes,

when the performance of the system is of about 60 transactions per second, we trigger the gath-

ering of statistics using the probabilistic top-k algorithm integrated in AutoPlacer. We notice

that the throughput has a temporary drop of performance, with the throughput going down to

53 transactions over the following sampling interval, before achieving a stable throughput of

about 57 transactions per second after about 5 minutes. The temporary drop in performance,

immediately after the activation of the top-k tracing is most likely imputable to the initial

overheads of the JVM in executing new code paths before the JIT targets them and optimizes

them. Interestingly, however, the performance penalty introduced by top-k fades away almost

completely over the following 5 minutes, where the system stabilizes its performance at about
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5% lower than without top-k tracing.

By looking at the plots concerning the average number of remote get operations for both

write and read-only transactions, in the bottom row of Figure 4.8, we can notice that transactions

are generating a large amount of remote accesses, about 23 for write and about 360 for read-only

transactions. This is a clear symptom of application’s poor locality, which represents a typical

use case that could potentially significantly benefit from AutoPlacer’s locality-enhancing

data-placement scheme.

We trigger AutoPlacer at around minute 20, and configure it to execute 10 rounds,

collecting statistics for 1000 keys per node in each round. In order to assess the benefits on per-

formance associated with the activation of each individual round, we set a conservative frequency

of 1 activation every 10 minutes. This choice allows su�cient time to observe the dynamics of

response of the system to the activation of the individual AutoPlacer’s rounds. Analogously

to the results obtained when using TPC-C, AutoPlacer provides significant benefits in terms

of locality of the applications’ data access patterns: over time, we see that the number of re-

mote operations issued drops considerably, with the first rounds being the most e↵ective. This

phenomenon is explicable considering that, during the early optimization rounds, AutoPlacer

relocates the hot-spot data items that are responsible for causing most of the remote accesses

in each node, whereas, in the later rounds, the objects appearing in the nodes’ top-k statistics

are going to be accessed less and less frequently by the nodes. The last round ends at about 120

minutes from the beginning of the experiment.

At the end of the experiment, we concluded that the throughput fluctuates around 220

transactions per second. As expected, the throughput of AutoPlacer clearly increases over

time, peaking at more than 4x of the initial, non-optimized throughput. This result is partic-

ularly good since AutoPlacer can infer the locality patterns of a realistic workload without

requiring the programmer to know a priori how to partition the application’s data and map it to

the set of available nodes. The root causes of these gains are highlighted by the plots concerning

the number of remote operations, as well as by the duration of read-only operations: both of

them decrease significantly as subsequent rounds of AutoPlacer are executed, leading to a

progressive e�ciency growth of the system.
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4.7 Summary

This chapter presented our solution for datacenter scale systems, which is based on moving

selected data items to improve data locality. Despite supporting fine-grained placement of data

items, AutoPlacer guarantees one hop routing latency through scalable mechanisms. The

results showed that by taking advantage of high placement flexibility, AutoPlacer can achieve

considerable throughput improvements over the state-of-the-art systems.

Notes

The results presented in this chapter were accomplished in cooperation with Pedro Ruivo

and Paolo Romano. AutoPlacer was first proposed in the paper “AutoPlacer: scalable self-

tuning data placement in distributed key-value stores”, Proceedings of the 10th International

USENIX Conference on Autonomic Computing, San Jose, CA, USA, June 2013. An extended

version of the work was then published on the paper “AutoPlacer: scalable self-tuning data

placement in distributed key-value stores”, ACM Transactions on Autonomous and Adaptive

Systems, Volume 9, Number 4, December 2014.
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5Final Remarks

Data placement is an important aspect of all data storage systems. It is equally relevant

for in-memory storage or for systems that store data in persistent storage. Data placement

a↵ects several aspects of the system operation such as scalability, fault-tolerance, performance,

among others. Several of these aspects have conflicting requirements, thus defining the optimal

placement calls for a careful weight of these di↵erent aspects.

Unfortunately, even if an appropriate cost function can be defined for optimal placement,

an arbitrary mapping between data items and nodes requires the maintenance of a directory

service to locate the data replicas. Such services may be very expensive. Therefore, many

practical systems have opted to use simple mapping functions, that may implement sub-optimal

placements, but that can be very e�ciently implemented.

In this thesis, we have presented two novel approaches to this problem. They explore a

design space between simple mapping functions with small flexibility and expensive directories

with full placement flexibility.

Our research advanced the state-of-the-art of flexibility for data placement in internet-scale

systems, as well as scalability for data placement in datacenter-scale systems.

For internet-scale systems, moving nodes on the identifier space proved to be an e↵ective

way to increase placement flexibility. Rollerchain proposed a novel combination of gossip-based

mechanisms and structured overlays to generate a DHT of virtual nodes, where each virtual

node is materialized by a set of physical nodes. This design not only allows for a more flexible

placement, but was also experimentally proved to be more robust than competing approaches.

The increased flexibility provided by Rollerchain enabled us to design replication policies that

can provide both low monitoring costs, low data transfer costs, and good load balancing. In

particular, we proposed a novel policy, based on a principle that can be counter-intuitive at first:

to put the most accessed data items on the less reliable nodes. We have shown that this policy,

named “Hotter-On-Ephemeral”, significantly outperforms previous work.
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For the datacenter scale, individually moving select data items allowed AutoPlacer to

optimize data placement in a more scalable way. AutoPlacer self-tunes data placement in a

distributed key-value store. It operates in rounds, and, in each round, optimizes the placement

of the top-k “hotspots”, i.e., the objects generating most remote operations, for each node of

the system. Despite supporting fine-grained placement of data items, AutoPlacer guarantees

one-hop routing latency using a novel probabilistic data structure, the Probabilistic Associative

Array, which minimizes the cost of maintaining and disseminating the data relocation map.

AutoPlacer has been integrated in a popular open-source (transactional) key-value store, In-

finispan, and experimentally evaluated using a porting of the TPC-C benchmark. Results show

that AutoPlacer can achieve a throughput up to thirty times better than the original Infin-

ispan implementation based on consistent hashing. Furthermore, its distributed optimization

algorithm does not significantly hinder the optimization result.

Even though it might be desirable to find a unifying data placement strategy that would

work well in both scenarios, our experience appears to indicate that such goal cannot be achieved.

While Rollerchain provides more flexibility than previous approaches for internet-scale, it does

not provide the granularity required by applications similar to AutoPlacer. On the other

hand, while PAAs can provide significantly more flexibility than Rollerchain, they have to be

broadcast to the whole network to update data placement, which makes them unsuitable for

networks with high churn.

5.1 Research Collaborations

The insights provided by this thesis into how data placement strongly a↵ects the performance

of distributed storage systems led to additional research activities, which were pursued through

collaborations. In the following, a brief summary of these results is presented:

Autonomic Configuration of HyperDex via Analytical Modelling

HyperDex (Escriva et al., 2012) is a recent multi-dimensional distributed key-value store that

aims at supporting e�cient queries using multiple objects’ attributes. However, the advantage

of supporting complex queries comes at the cost of a complex configuration. This work addresses

the problem of automating the configuration of this innovative distributed indexing mechanism.
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We derived a performance model that provides key insights on to how the placement of data

a↵ects the performance of the system. Based on this model, we derived a technique to auto-

matically and dynamically select the best data placement by selecting one of several system

configurations.

ShortMap

ShortMap is a system that relies on a combination of techniques aimed at e�ciently supporting

selective MapReduce jobs that are only concerned with a subset of the entire dataset. The

system combines the use of an appropriate data layout with data indexing tools to improve the

data access speed and significantly shorten the Map phase of the jobs. An extensive experimental

evaluation of ShortMap shows that, by avoiding reading irrelevant blocks, it can provide speedups

up to 80 times when compared to the basic Hadoop implementation. Further, the system also

outperforms other MapReduce implementations that use variants of the techniques we have

embedded in ShortMap.

5.2 Future Work

This research unveiled several new research avenues that could be pursued in the future:

• Despite the fact that AutoPlacer was proposed for improving data location, in fact,

its distributed optimization algorithm and mappings broadcast through PAA might be

applied to other goals. A prominent one would be to control the replication degree of

items on a datacenter in a fine-grained but still scalable way. Since the current state-of-

the-art systems require increasing the replication degree of several items at once (due to

the usage of “buckets“ as described in Section 4.1), such an algorithm would drastically

reduce the costs of replication.

• Despite this thesis proposing an e�cient replication policy for internet-scale systems which

takes advantage of Rollerchain’s flexibility, it is clear that this avenue for research remains

open. For instance, our work could be further improved by minding other system param-

eters such as communication locality, or arbitrary application-specific parameters.

• Since the PAA’s design is generic, it can be decoupled from AutoPlacer and used as a

stand-alone associative array. Thus, one possible research line is to use it to e�ciently com-
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municate other mappings in distributed systems. One example of such use is to broadcast

load balancing directives (e.g. mappings of users to servers) between datacenter frontends

of a storage layer.

Notes

The following lists the relevant publications that have resulted from the collaborative work

discussed in this chapter.

“Auto-Configuração de Bases de dados NoSQL Multi-Dimensionais”, Nuno Diegues, Muhammet

Orazov, João Paiva, Lúıs Rodrigues e Paolo Romano, Actas do Quinto Simpósio de Informática

(Inforum), Évora, Portugal, September 2013

“Autonomic Configuration of HyperDex via Analytical Modelling”, Nuno Diegues, Muhammet

Orazov, João Paiva, Lúıs Rodrigues and Paolo Romano, In Proceedings of the 29th Symposium

On Applied Computing (ACM SAC’14), Gyeongju, South Korea, March 2014

“Optimizing Hyperspace Hashing via Analytical Modelling and Adaptation”,Nuno Diegues,

Muhammet Orazov, João Paiva, Lúıs Rodrigues and Paolo Romano, In ACM SIGAPS Applied

Computing Review (ACR),Volume 14, Number 2, June 2014

“Suporte eficiente para pesquisas seletivas em MapReduce”, Manuel Ferreira, João Paiva e Lúıs

Rodrigues, Actas do Sexto Simpósio de Informática (Inforum), Porto, Portugal, September 2014
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