
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Gossip-based broadcast protocols

João Carlos Antunes Leitão

MESTRADO EM ENGENHARIA INFORMÁTICA

May 2007

http://www.ul.pt
http://www.fc.ul.pt
http://www.di.fc.ul.pt
mailto:jleitao@lasige.di.fc.ul.pt

Gossip-based broadcast protocols

João Carlos Antunes Leitão

Dissertação submetida para obtenção do grau de
MESTRE EM ENGENHARIA INFORMÁTICA

pela

FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DE LISBOA

DEPARTAMENTO DE INFORMÁTICA

Orientador:

Luís Eduardo Teixeira Rodrigues
Júri

Henrique João Lopes Domingos
Miguel Nuno Dias Alves Pupo Correia
Paulo Jorge Cunha Vaz Dias Urbano

May 2007

mailto:jleitao@lasige.di.fc.ul.pt
http://www.fc.ul.pt
http://www.ul.pt
http://www.di.fc.ul.pt

This work was partially suported by FCT with the co-funding of FEDER through
the project P-SON: Probabilistically-Structured Overlay Networks (POSC/EIA/60941/2004).

Aos meus avós: Deolinda e Manuel,
à minha Mãe e ao meu Irmão.

Acknowledgements

I begin these acknowledgements with the most sincere thanks to my
advisor, Professor Luís Rodrigues. His constant dedication and sup-
port during the realization of this work were essential to its success.
Working with him during my master, allowed me to gain new insight
not only in computer science but also in other fields of expertise. I
am very grateful for the opportunity to work with him.

I also want to thank José Orlando Pereira. Because of his vision and
insight this work was able to attain its current level of quality.

My thanks are also extended to the LaSIGE, the Department of Infor-
matics of the Faculty of Sciences of the University of Lisbon, and its
members for the conditions they provided to support my work. In par-
ticular, I wish to thank every member of the DIALNP research group
and everybody in the “famous” laboratory room 6.3.33 for their con-
stant support, help, ideas, and the great work (and fun) environment
they provided. Working with these people has been a real pleasure
that I will never forget.

My friends, which fortunately are many, also have been a constant
presence in my life, and they all have, in some way, contributed to
this work. To all of them I extend my thanks, and in particular I
have to say how very grateful I am for the reviews, suggestions and
constant support of Inês Fragata, Ricardo Graça and Liliana Rosa.

Finally, my thanks to all my family. In particular to my brother Paulo
Leitão who believed in me from the first day.

Abstract

Gossip, or epidemic, protocols have emerged as a powerful strategy
to implement highly scalable and resilient reliable broadcast primi-
tives. Due to scalability reasons, each participant in a gossip protocol
maintains only a partial view of the system, from which they select
peers to perform gossip exchanges. On the other hand the natural
redundancy of gossip protocols makes them less efficient than other
approaches that rely in some sort of structured overlay network.

The thesis addresses gossip protocols and the problem of building
partial views to support their operation. For that purpose, the thesis
presents and evaluates a new scalable membership protocol, which
is called HyParView, that provides a number of properties, such as
degree distribution, accuracy and clustering coefficient, that are highly
useful to the construction of efficient gossip protocols.

The thesis also introduce two new gossip protocols, based on Hy-
ParView, that provide high reliability with small message redundancy.
One is an eager push gossip protocol while the other is a tree based
gossip broadcast protocol. Simulations results show that, in compar-
ison with other existing protocols, HyParView-based gossip protocols
not only provide better reliability but also support higher percentages
of node failures, and are able to recover faster from these failures.

Keywords: membership protocols, gossip protocols, reliable broad-
cast, fault tolerance

Resumo

Os protocolos de rumor (gossip), também chamados de epidémicos,
emergiram recentemente como uma estratégia viável para a concretiza-
ção de primitivas de difusão altamente escaláveis e resilientes. Por
maior capacidade de escala, cada participante num protocolo de ru-
mor mantêm apenas uma vista parcial de todo o sistema, a partir da
qual efectua a selecção dos nós com os quais realiza troca de rumores.
Por outro lado, a redundância natural destes protocolos tornam-nos
menos eficientes do que outras abordagens que se baseiam na utiliza-
ção de redes sobrepostas com estrutura.

Esta tese aborda protocolos de disseminação epidémica e o problema
da construção de vistas parciais para suportar a sua operação. Com
esse fim, a tese apresenta e avalia um novo protocolo escalável de fili-
ação denominado HyParView, que oferece várias propriedades, como a
distribuição de grau, exactidão e coeficiente de agrupamento, que são
bastante úteis na construção de protocolos de disseminação epidémica
eficientes.

Esta tese introduz também dois novos protocolos de disseminação
epidémica baseados no HyParView, que oferecem elevada confiabili-
dade produzindo um número reduzido de mensagens redundantes. Um
destes protocolos baseia-se na utilização de “eager push” enquanto
que o outro baseia-se na utilização de uma árvore de disseminação
epidémica. Resultados obtidos através de simulações mostram que,
quando comparado com outros protocolos existentes, os protocolos de
disseminação epidémica baseados no HyParView, não só conseguem
garantir melhores valores de confiabilidade mas também exibem um
tempo de recuperação às falhas inferior.

Palavras Chave: protocolos de filiação, protocolos epidémicos, broad-
cast confiável, tolerância a faltas

Contents

1 Introduction 1

2 Related Work 5
2.1 Gossip Protocols . 5

2.1.1 Gossip Overview . 5
2.1.2 Parameters . 6
2.1.3 Strategies . 7

2.2 Membership . 8
2.2.1 Peer Sampling Service . 9
2.2.2 Partial View . 10
2.2.3 Strategies To Maintain Partial Views 10
2.2.4 Partial View Properties . 11

2.3 Gossip Metrics . 13
2.4 Application-level Multicast . 14

2.4.1 Tree Construction . 15
2.4.2 Tree Repairing . 16

2.5 Existing Protocols . 16
2.5.1 Scamp . 17
2.5.2 Cyclon . 18
2.5.3 NeEM . 19
2.5.4 CREW . 20
2.5.5 Narada . 20
2.5.6 Bayeux . 21
2.5.7 Scribe . 22
2.5.8 MON . 23

xi

CONTENTS

2.6 Summary . 24

3 Gossip-based Broadcast Systems 25
3.1 Gossip-based System Architecture 25

3.1.1 Proposed Gossip-based System Architecture 27
3.1.2 Components Interactions 28

3.2 HyParView . 30
3.2.1 Rationale . 30
3.2.2 Algorithm . 32

3.2.2.1 Overview . 32
3.2.2.2 Join Mechanism 33
3.2.2.3 Active View Management 35
3.2.2.4 Passive View Management 36
3.2.2.5 View Update Procedures 37
3.2.2.6 Interaction With TCP Flow Control 38

3.3 Eager Push Strategy . 39
3.3.1 Rationale . 39
3.3.2 Algorithm . 40

3.4 Tree Strategy . 41
3.4.1 Rationale . 41
3.4.2 Algorithm . 43

3.4.2.1 Overview . 43
3.4.2.2 Additional Data Structures 44
3.4.2.3 Peer Sampling Service And Initialization 45
3.4.2.4 Tree Construction Process 46
3.4.2.5 Announcement Policy 48
3.4.2.6 Fault Tolerance And Tree Repair 48
3.4.2.7 Dynamic Membership 50
3.4.2.8 Sender-Based Versus Shared Trees 51

3.4.3 Optimization . 51
3.4.3.1 Rationale . 51
3.4.3.2 Algorithm . 53

3.5 Summary . 53

xii

CONTENTS

4 Evaluation 55
4.1 Experimental Setting . 55
4.2 Experimental Parameters . 57
4.3 HyParView And Eager Push Strategy 58

4.3.1 Graph Properties . 58
4.3.2 Effect Of Failures . 61
4.3.3 Healing Time . 64

4.4 Plumtree . 65
4.4.1 Stable Environment . 65

4.4.1.1 Reliability . 66
4.4.1.2 Relative Message Redundancy 66
4.4.1.3 Last Delivery Hop 69

4.4.2 Effect Of Bursty Behavior 70
4.4.3 Effect Of Failures . 72

4.4.3.1 Sequential Failures 73
4.4.3.2 Massive Failures 75

4.4.4 Healing Time . 77
4.5 Summary . 81

5 Conclusion And Future Work 83
5.1 Conclusions . 83
5.2 Future Work . 86

Bibliography 92

xiii

List of Figures

3.1 Generic gossip-based system architecture 26
3.2 Components of a gossip protocol 26
3.3 Specific gossip-based system architecture 27
3.4 Interactions between components of the system 29

4.1 In-degree distribution . 60
4.2 Average reliability for 1000 messages 61
4.3 Reliability after failures . 63
4.4 Membership convergence . 64
4.5 Relative message redundancy in stable environment 67
4.6 Relative message redundancy during bootstrap process 68
4.7 Last delivery hop in stable environment 70
4.8 Last delivery hop with bursts of messages 71
4.9 Reliability with sequential failures 73
4.10 Last delivery hop with sequential failures 74
4.11 Relative message redundancy with sequential failures 75
4.12 Reliability after failures . 76
4.13 Reliability of gossip immediately after failures 77
4.14 Healing time . 78
4.15 Last delivery hop after failures . 79
4.16 Relative message redundancy after failures 80

xv

List of Tables

4.1 Graph properties after stabilization 59
4.2 Number of messages received . 67

xvii

List of Algorithms

1 Join mechanism . 35
2 View manipulation primitives . 38
3 Eager push protocol . 40
4 Internal data structure . 44
5 Spanning tree construction algorithm 47
6 Spanning tree repair algorithm . 49
7 Overlay network change handlers 50
8 Optimization . 52

xix

Chapter 1

Introduction

A gossip, or epidemic, broadcast protocol is a protocol that operates as follows.
When a node wants to broadcast a message, it selects t nodes from the system
at random (this is a configuration parameter called fanout) and sends the mes-
sage to them; upon receiving a message for the first time, each node repeats this
procedure (Kermarrec et al., 2003). Gossip protocols are an interesting approach
because they are highly resilient (these protocols have an intrinsic level of redun-
dancy that allows them to mask node and network failures) and distribute the
load among all nodes in the system.

Ideally, one would like to have each participant to select gossip targets at
random from the entire system membership. Unfortunately, this is not a scalable
solution, not only due to the high memory costs associated with maintaining full
membership information about all nodes participating in the protocol, but also
due to the cost of ensuring that such information is up-to-date.

To overcome this scalability problem, several existing protocols rely on a par-
tial view, instead of full membership information. A partial view is a small subset
of the entire system membership, from which nodes can select peers to whom relay
gossip messages. This solution resolves the scalability issues, but it also makes the
system more vulnerable to the effects of nodes failures (for instance, by increasing
the chance of having the system partitioned.). If partial views are carefully con-
structed, gossip protocols may be used to implement highly scalable and resilient
reliable broadcast primitives.

1

1. INTRODUCTION

On the other hand, gossip based broadcast protocols are less efficient than
other approaches that rely on some sort of structured overlay to disseminate in-
formation, as the intrinsic redundancy of gossip protocols produces more network
traffic, which might exhaust network capacity, making any sort of broadcast im-
possible. This is the price to pay in order to avoid the high cost and additional
complexity of construction, and also the time costs for repair, such structured
overlays.

Motivation

The work presented on the thesis is motivated by the following observations:

• The fanout of a gossip protocol is constrained by the target reliability level
and the desired fault tolerance of the protocol. When partial views are
used, the quality of these views has an impact on the fanout required to
achieve high reliability1.

• High failure rates may have a strong impact on the quality of partial views.
Even if the membership protocol has healing properties, the reliability of
message broadcasts after heavy failures may be seriously affected.

• Structured approaches to reliable broadcast use less network resources, by
avoiding redundant messages. If some structure can be extracted from the
normal operation of the gossip protocol some resource consumption gains
can be achieved without the maintenance associated with pure structured
approaches.

Contributions

The primary goals of this work are to design and implement: i) a membership
service for gossip-based reliable broadcast, and ii) gossip strategies that can be
combined with such a service in order to provide high values of message delivery
(aiming at 100% delivery) even in scenarios where large number of nodes fail
simultaneously.

1A precise definition of reliability is given in Section 2.3.

2

In detail, the contributions of the thesis can be enumerated as follows:

• A novel, highly scalable, gossip based membership protocol which is based
on two distinct partial view, for different purposes, and that are maintained
by different strategies. This membership protocol, named HyParView, is
able to sustain large rates of node failures while ensuring high reliability.

• An eager push gossip protocol, developed to leverage on HyParView’s prop-
erties, that can ensure high reliability values and fast message dissemina-
tion, while using smaller fanout values than other existing protocols.

• A tree based gossip protocol that, combined with HyParView, is able to
provide as much reliability as the flood strategy without generating large
amounts of redundant messages. This strategy combines eager push and
lazy push gossip approaches, to explicitly produce a fault tolerant spanning
tree.

Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2 presents related work, addressing topics such as gossip protocols,
existing membership protocols, and application level multicast.

Chapter 3 starts with the description of the HyParView membership proto-
col then, based on this membership protocol, two distinct gossip protocols are
proposed, namely a flood gossip protocol and a tree based gossip protocol.

Chapter 4 shows an extensive evaluation of the previous protocols based on
simulations.

Chapter 5 presents the conclusions and future work.

3

Chapter 2

Related Work

The thesis addresses gossip-based broadcast protocols and the underlying mem-
bership protocols required for their operation. This chapter introduces funda-
mental concepts, starting with a brief explanation of gossip protocols in general.
The concepts of peer sampling service and partial view are then introduced fol-
lowed by the definition of a number of metrics which are used in the evaluation
of the overlay networks established by these partial views. Next, some specific
metrics to evaluate the performance of gossip protocols are introduced. Some
techniques used in the creation and maintenance of overlay spanning trees used
in application-level multicast are presented. This chapter concludes with a brief
overview of existing membership services for gossip-based broadcast protocols
and a description of existing solutions for application-level multicast.

2.1 Gossip Protocols

This section introduces gossip protocols and some strategies used in the imple-
mentation of these protocols.

2.1.1 Gossip Overview

The initial inspiration to gossip protocols comes from sociology - by the obser-
vation of how gossips spreads in a community - and biology - by the observation

5

2. RELATED WORK

of how diseases spreads over a population - the last justifies the designation of
“epidemic protocols”, another name by which this class of protocols is also known.

Gossip protocols have been proposed as a building block to solve various
problems in distributed systems namely: consistency management in replicated
databases (Demers et al., 1987), failure detection (Renesse et al., 1998), publish-
subscribe (Eugster et al., 2003) and application level reliable broadcast (Ganesh
et al., 2001; Voulgaris et al., 2005).

The basic idea behind gossip is to have all participants in the protocol to
collaborate, in the same manner, to disseminate information. To this end, when
a node wishes to send a broadcast message, it selects t nodes at random - its gossip
targets - and sends the message to them (t is a typical configuration parameter
called fanout, which is explained later in section 2.1.2). Upon receiving a message
for the first time, a node repeats this process (selecting t gossip targets and
forwarding the message to them).

If a node receives the same message twice - which is possible, as each node
selects its gossip targets in an independent way (without being aware of gossip
targets selected by other nodes) - it simply discards the message. To allow this,
each node has to keep track of which messages it has already seen and delivered.
Without purging, this set of message identifiers may grow continually during the
execution of the protocol. The problem of purging message histories is out of the
scope of this thesis; it has been addressed previously, for instance in Koldehofe
(2003).

The simple operation model of gossip protocols not only provides high scala-
bility but also, a high level of fault tolerance, as its intrinsic redundancy is able
to mask network omissions and also node failures.

2.1.2 Parameters

There are two important parameters associated with the configuration of gossip
protocols:

Fanout: This is the number of nodes that are selected as gossip targets by a
node for each message that is received by the first time. There is a trade-off
associated with this parameter between desired fault tolerance / reliability

6

2.1 Gossip Protocols

level and redundancy level of the protocol. High fanout values guarantee
a major fault tolerance level and probability of atomic delivery but it also
generates an increasing redundant network traffic.

Maximum rounds: This is the maximum number of times a given gossip mes-
sage is retransmitted by nodes. Each message is transmitted with a round
value - initially with value zero - which is increased each time a node re-
transmit the message. Nodes will only retransmit a message if its round
value is smaller than the maximum rounds parameter.

A gossip protocol can operate in one of the two following modes:

• Unlimited mode: In this mode of operation the parameter maximum
rounds is undefined, and there is no specific limit to the number of
retransmissions executed to each gossip message.

• Limited mode: In this mode of operation the parameter maximum
rounds is defined with a value above 0, effectively limiting the maxi-
mum hops executed by each message in the overlay1.

There is an inherent a trade-off between reliability and redundancy level
associated with the use of this attribute. In unlimited mode (or configuring
the maximum rounds parameter with high values) there is a major proba-
bility to achieve atomic delivery (as defined in Kermarrec et al. (2003)), on
the other hand, there will be more redundant messages produced.

2.1.3 Strategies

We distinguish the following four approaches to implement a gossip protocol:

Eager push approach: Nodes send messages to random selected peers as soon
as they receive them for the first time.

1Neighboring relations between nodes form an overlay network, as it will be explained later,
in Section 2.2.2.

7

2. RELATED WORK

Pull approach: Periodically, nodes query random selected peers for information
about recently received messages. When they receive information about a
message they did not received yet, they explicitly request to that neighbor
the message. This is a strategy that works better when combined with some
best-effort broadcast mechanism (i.e. IP Multicast (Deering & Cheriton,
1990)).

Lazy push approach: When a node receives a message for the first time, it
gossips only the message identifier (i.e. for instance, the hash of the mes-
sage) and not the full payload. If peers receive an identifier of a message
they have not received, they make an explicit pull request.

Hybrid approach: Gossip is executed in two distinct phases. A first phase uses
push gossip to disseminate a message in a best-effort manner. A second
phase of pull gossip is used in order to recover from omissions produced in
the first phase.

There is also a trade-off between eager push and pull strategies. Eager push
strategies produce more redundant traffic but they also achieve lower latency
than pull strategies, as pull strategies require at least an extra round trip time to
produce a delivery. Lazy push gossip is very similar to pull gossip in the sense that
it also requires at least an extra round trip time to achieve a message delivery.
This approach differs from pull gossip in the sense that the dissemination process
is started by the “sender” node whereas, in pull gossip, the dissemination process
is started by the receiver.

One other aspect to retain is that eager push gossip does not require, con-
trary to pull/lazy push gossip, to maintain copies of delivered messages for later
retransmission upon request. Hence, pull/lazy push gossip approaches are more
demanding in terms of memory usage at each node.

2.2 Membership

We now introduce a number of concepts relevant in the context of membership
protocols.

8

2.2 Membership

2.2.1 Peer Sampling Service

A peer sampling service (which was introduced in Jelasity et al. (2004)) is a
abstract service that allows nodes, executing a gossip protocol, to obtain a sub-
set from the full group of nodes executing the protocol.

The proposed interface of this service is quite simple and is only composed by
the following two methods:

init(): This method initializes the service if it has not been initialized before.
Note that, although the specific procedure for this method is implemen-
tation dependent, it should, at least, ensure that the probability of other
participating nodes selecting the identifier of the node that called the init
method, as a return value of the getPeer() method is greater than 0.

getPeer(): This method returns the identifier of a participating node, as long as
there exists more than one node executing the service. The node returned
should be selected at random across nodes that have called the init()

method, although the specific qualities of this randomness (i.e. correlation
with returned identifiers from previous call of this method) are implemen-
tation dependent.

The getPeer() method is enough to support the requirements of any gossip
protocol - as a node can call repeatedly this method if it requires more than one
peer - however, in practice, this method can (and should) be redefined as:

getPeer(n, peer): Where n is an integer greater than zero and peer is a node
identifier. This method returns a list with, at most, n identifiers of par-
ticipating nodes that does not contain the peer identifier nor the identifier
of the invoking node. This method should be called with n equal to the
fanout used by the gossip protocol and peer should be the identifier of the
node who sent the message to the invoking node1.

1When a node wishes to send a message by the first time, the node argument should take
a null value.

9

2. RELATED WORK

2.2.2 Partial View

A partial view is a set of node identifiers maintained locally at each node. This
set should be a much smaller than the full system membership information; the
size constraint is related with scalability requirements, that should be, ideally,
of logarithmic size with the number of processes in the system. Typically, an
identifier is a tuple (ip : port) that allows a node to be reached.

A membership protocol is in charge of initializing and maintaining the partial
views at each node in face of dynamic changes in the system membership. For
instance, when a new node joins the system, its identifier should be added to the
partial view of (some) other nodes and it will have to create its own partial view,
including identifiers of nodes already in the system. On the other hand, if a node
fails or leaves the system, its identifier should be removed from all partial views
as soon as possible.

Partial view establish neighboring associations among nodes. Therefore, par-
tial views define an overlay network or, in other words, partial views establish
an oriented graph that captures the neighbor relation between all the nodes ex-
ecuting the protocol. In this graph, nodes are represented by a vertex while a
neighbor relation is represented by an arc originating from the node who contains
the target node in his partial view.

One possible implementation of a peer sampling service is to use a membership
service that maintains a partial view of participating nodes at each node. The
selection of nodes to serve as gossip target is then performed locally using the
partial view.

2.2.3 Strategies To Maintain Partial Views

There are two main strategies that can be used to maintain partial views, namely:

Reactive strategy: In this type of approach, a partial view only changes in
response to some external event that affects the overlay (i.e. a node joining
or leaving the system). In stable conditions, partial view remains unaltered.
Scamp (Ganesh et al., 2001, 2003) is an example of such an algorithm1.

1To be precise, Scamp is not purely reactive as it includes a lease mechanism that forces
nodes to periodically rejoin.

10

2.2 Membership

Cyclic strategy: In this type of approach, a partial view is updated every ∆T

time units, as a result of some periodic process that usually involves the
exchange of information with one or more neighbors. Therefore, a partial
view may be updated even if the global system membership is stable. Cy-
clon (Stavrou et al., 2002; Voulgaris et al., 2005) is an example of such an
algorithm.

Reactive strategies usually rely on some failure detection mechanism to trigger
the update of partial views when a node leaves the system. If the failure detection
mechanism is fast and accurate, reactive mechanisms can provide faster response
to failures than cyclic approaches. On the other hand, a cyclic strategy allows
each node to select a wide range of distinct nodes as gossip targets for differ-
ent messages even in stable conditions, as the elements of each partial view are
continually changing.

2.2.4 Partial View Properties

In order to be useful, namely to support fast message dissemination and high level
of fault tolerance to node failures, partial views must own a number of important
properties. These properties are intrinsically related with graph properties of the
overlay defined by the partial view of all nodes and are also used to measure the
quality of these partial views. Some of the most important properties are:

Connectivity The overlay defined by the partial views should be connected.
To consider an overlay as connected, there should be at least one path from each
node to all other nodes1. If this property is not met, isolated nodes will not
receive broadcast messages.

Degree Distribution In an undirected graph, the degree of a node is simply
the number of edges of the node. Given that partial views define a directed graph,
it is important to distinguish in-degree from out-degree of a node. The in-degree
of a node n is the number of nodes that have n’s identifier in their partial view;

1Obviously, if the graph is directed, the path between nodes have to respect the direction
of arcs.

11

2. RELATED WORK

it provides a measure of the reachability of a node in the overlay. The out-degree
of a node n is the number of nodes in n’s partial view; it is a measure of the
node contribution to the membership protocol and consequently a measure of the
importance of that node to maintain the overlay.

If the probability of failure is uniformly distributed in the node space, for
improved fault-tolerance both the in-degree and out-degree should be evenly dis-
tributed across all nodes executing the membership protocol.

Average Path Length A path between two nodes in the overlay is the set of
edges that a message has to cross from one node to the other. The average path
length is the average of all shortest paths between all pair of nodes in the overlay.
This property is closely related to the overlay diameter. To ensure the efficiency
of the overlay for information dissemination, it is essential to enforce low values
of the average path length, as this value is related to the time (and number of
hops in the overlay) a message will require to reach all nodes.1

Clustering Coefficient The clustering coefficient of a node is the number of
edges between that node’s neighbors divided by the maximum possible number
of edges across those neighbors. This metric indicates a density of neighbor
relations across the neighbors of a given node, having it’s value between 0 and 1.
The clustering coefficient of a graph is the average of clustering coefficients across
all nodes. This property has a high impact on the number of redundant messages
received by nodes when disseminating data, where a high value to clustering
coefficient will produce more redundant messages. It also has an impact in the
fault-tolerant properties of the graph, given that areas of the graph that exhibit
high values of clustering will more easily be isolated from the rest of the graph.

Accuracy Accuracy of a node is defined as the number of neighbors of that
node that have not failed divided by the total number of neighbors of that node.
The accuracy of a graph is the average of the accuracy of all correct nodes.

1The reader should notice that this property is only meaningful if the property of connectiv-
ity is met. If the overlay is not connected then at least one node in unreachable which translates
into a infinite shortest path between all other nodes and that node.

12

2.3 Gossip Metrics

Accuracy has high impact in the overall reliability of any dissemination protocol
using an underlying membership protocol to select its gossip targets. If the graph
accuracy values are low, the number of failed nodes selected as gossip targets will
be higher, which, in turn, can disrupt the gossip process. To avoid this,higher
fanout values must be used to mask the selection of failed nodes.

2.3 Gossip Metrics

It is essential to define a set of metrics to be used in order to evaluate the per-
formance of gossip protocols. Some of the metrics used in this thesis are defined
as follows:

Reliability Gossip reliability is defined as the percentage of active nodes that
deliver a gossip broadcast. A reliability of 100% means that the protocol was
able to deliver a given message to all active nodes or, in other words, that the
message resulted in an atomic broadcast as defined in Kermarrec et al. (2003).

Relative Message Redundancy (RMR) This metric measures the messages
overhead in a gossip protocol. It is defined as:(

m

n− 1

)
− 1

where m is the total number of payload messages exchanged during the broad-
cast procedure and n is the total number of nodes that received that broadcast.
This metric is only applicable when at least 2 nodes receive the message.

A RMR value of zero means that there is exactly one payload message ex-
change for each node in the system, which is clearly the optimal value. By oppo-
sition, high values of RMR are indicative of a broadcast strategy that promotes a
poor network usage. Note that it is possible to achieve a very low RMR by failing
to be reliable. Thus the aim is to combine low RMR values with high reliability.
Furthermore, RMR values are only comparable for protocols that exhibit similar
reliability. Finally, note that in pure gossip approaches, RMR is closely related
with the protocol fanout, as it tends to fanout −1.

13

2. RELATED WORK

Control messages are not considered by this metric, as they are typically much
smaller than payload messages hence, they are not the main source of contribution
to the exhaustion of network resources. Moreover, these messages can be sent
using piggyback strategies providing a better usage of the network.

Last Delivery Hop (LDH) The last delivery hop is the round number of
the last message that is delivered by a gossip protocol or, in other words, is the
maximum number of hops that a message must be forwarded in the overlay that
causes a message delivery. This metric has a close relation with the diameter of
the overlay used to disseminate messages, and it also gives some insight on the
latency of a gossip protocol.

The reader should notice that, if all links between nodes were to exhibit the
same latency, the latency of a gossip broadcast transmission would simply be the
last deliver hop multiplied by the per hop latency.

2.4 Application-level Multicast

Application-level multicast (Chu et al., 2000) appears as an alternative to IP
Multicast (Deering & Cheriton, 1990), to circumvent the deployment problems
of IP multicast in the internet structure (Diot et al., 2000).

Several application-level multicast solutions have been proposed, such as those
presented in Ratnasamy et al. (2001), Rowstron et al. (2001) or Zhuang et al.
(2001). Usually, these solutions try to produce distribution structures like trees
that have a performance comparable to that of IP Multicast (using low level
metric such as, for instance, latency or physical link stress.).

Reduce end-to-end latency or physical link stress are not main goals of gossip,
or of the work presented in this thesis, nevertheless one has to consider that the
use of distribution trees allows a protocol to broadcast a message to large group
of participants without generating the excessive redundancy in network traffic
that may be produced when using gossip strategies.

Unfortunately, the overhead of building a distribution tree is usually very
high. Also, these protocols usually exhibit problems when facing node failures,
as the tree become disconnected and has to be repaired, which might exhibit a

14

2.4 Application-level Multicast

big complexity and large overheads. Until the tree is repaired, the messages can
not be sent to participants in a reliable manner, impairing the reliability of the
broadcast protocol. This is even more noticeable when massive failures occur
in these systems; in these scenarios the only solution might be to rebuild, from
scratch, the multicast tree.

2.4.1 Tree Construction

The key aspect of these protocols, is that nodes self-organize in a tree structure
so that each node knows exactly to whom it has to forward messages.

In order to build these trees, state has to be set-up at nodes from the root of
the tree to all receivers. There are two main strategies to accomplish this:

Receiver-based strategy: In this type of approach, the receiver sends a special
message to the root of the tree. This message is used to set-up a path
between the receiver and sender while it traverses the network. The process
of adding a new member is complete as soon as the message reaches the
root tree or any node that already maintains state concerning the tree.

This process allows for a faster node integration in the tree, as it does not
always require that all nodes contact the root. On the other hand it might
not select the best path between the root and the receiver if the capacity
of links are not symmetric.

Scribe (Castro et al., 2002; Rowstron et al., 2001) is an example of an
application-level multicast protocol that employs this strategy.

Source-based strategy: In this type of approach, the tree is constructed by
selecting a path from the root of the tree to all individual receivers. The
process is usually initiated when the root node receives a request from a
specific receiver. Subsequently, the path between the nodes is then set up
by routing a special message from the root to the receiver.

This strategy will choose the best path between the root and the receiver,
but it has a additional cost in the set-up process, as it requires messages to
travel from the receiver to the root and back from the root to the receiver.

15

2. RELATED WORK

Also the root is a bottleneck, as all receivers have to contact it in order to
join the tree.

Bayeux (Zhuang et al., 2001) is an example of an application-level multicast
protocol that employs this strategy.

2.4.2 Tree Repairing

When a node fails, the tree becomes disconnected. The number of nodes that
effectively become disconnected from the source will depend on the distance of
the failing node to the root (intuitively, if a tree has n elements, a degree of d,
and is balanced, the failure of a node that is connected to the root would leave
approximately n/d nodes disconnected from the root).

Given that failures disconnect the tree, it is of paramount importance to have
some process to repair it. As in the process of construction of the tree, there are
two strategies to address this problem, that can be described as follows:

Receiver-based strategy: In this type of approach, each receiver is responsible
to detect the failure of its parent, and to initiate actions to rebuild the tree
when this happens. This is a technique used in Scribe.

Source-based strategy: In this type of approach, each node is responsible to
detect the failure of its children, and when this happens it should take
measures to link the orphan nodes to himself. This solution is not used
very often as it requires each node to have full topology information on the
tree. Nevertheless, Bayeux employs this technique.

2.5 Existing Protocols

In this section, some existing protocols are presented. First Scamp and Cyclon

are introduced: these are pure membership protocols that rely on partial views.
Each is representative of a different strategy to maintain these partial views. Next
NeEM and CREW are briefly introduced. Both are gossip protocols that use
TCP connections to better disseminate information.

16

2.5 Existing Protocols

The section concludes with the introduction of some application level multi-
cast protocols, and finally the MON, a system that produces on-demand overlay
structures, is depicted.

2.5.1 Scamp

Scamp (Ganesh et al., 2001, 2003), is a reactive membership protocol that main-
tains two separate views, a PartialView from which nodes select their targets to
gossip messages, and a InView with nodes from which they receive gossip mes-
sages. One interesting aspect of this protocol is that the PartialView does not
have a fixed size, it grows to values that are distributed around log n, where n is
the total number of nodes executing the protocol, without n being known by any
node executing the protocol.

When one node wishes to join the overlay, it has to know a node that al-
ready belongs to the overlay, to which it sends a new subscription request. Upon
reception of this request, a node forwards it to all neighbors that belong to its
PartialView in the form of a forwarded subscription request ; it also creates c

additional copies of this forwarded subscription request that are forwarded to c

random neighbors from the PartialView ; c is a configuration parameter that is
related with the level of fault tolerance supported by this protocol as it will af-
fect the global distribution of degree (in-degree and out-degree) values across the
overlay. Higher values of c will produce overlays in which nodes have, on average,
higher degrees. In turn, this will also impact network usage, as well as other
graph properties.

Upon receiving a forwarded subscription request a node integrates the new
member in its local PartialView (if the node is not already present) with a prob-
ability p, where p is equal to 1/(1 + sizeof(PartialView)). If the node does not
integrate the new member, it forwards the request to a random neighbor in his
own PartialView. To avoid these messages to be forwarded an infinite number
of times, which is more probable when the number of nodes in the overlay is
small, there is a upper limit to the number of times a node can forward the same
message. When this limit is reached the message is simply dropped.

17

2. RELATED WORK

The InView is used when a node wishes to leave the overlay. In this case an
unsubscribing node, say nu, will send to some of it peers1 in the InView a replace
request containing a element from its PartialView, say np. The node that receives
this request will replace in its Partial View the identifier of nu with the received
identifier np. To the remaining nodes in its InView, nu will simply send a request
asking them to remove its own identifier from their PartialView.

In order to recover from node isolation, this algorithm uses a mechanism
in which nodes periodically send heartbeat messages to all members of their
PartialView. If a node does not receive a heartbeat for a long time, it assumes
that it has become isolated, and it sends a new subscription request to a random
node in his own PartialView, in order to rejoin the overlay.

When a node fails (i.e leaves the system without executing the unsubscription
procedure), its identifier will remain in the PartialViews of some correct nodes,
which means that it can still be selected by those nodes as a gossip target. In
order to purge this identifiers from PartialViews of correct nodes, Scamp relies
in a lease mechanism. When a node joins the overlay, its subscription has a finite
lifetime which is called its lease time. When the lease of a node subscription
expires, all peers having that node identifier in their PartialView should delete
it. Each node is responsible to rejoin the overlay through a new subscription
request sent to a random peer in its PartialView before the lease time of its last
subscription expires. The lease time of each subscription might be set individually
by each node (sending information relative to it in the new subscription request),
or be enforced through a global configuration parameter that affects all nodes.

2.5.2 Cyclon

Cyclon (Voulgaris et al., 2005), is a cyclic membership protocol where nodes
maintain a fixed length partial view. The size of partial view is a protocol param-
eter: it takes into account the maximum number of nodes that are expected to
participate in the protocol and the desired level of fault-tolerance (in the sense

1The number of peers who receive a replace request is sizeof(InV iew) − c this is related
with the overlay desired average degree.

18

2.5 Existing Protocols

that the bigger the partial views are, the smaller is the probability of the overlay
to become partitioned, specially by having single isolated nodes).

This protocol relies in a shuffle operation which is executed every ∆T time
units by every node. Basically, to execute a shuffle operation, a node selects
the “oldest” node in its partial view and performs an exchange with that node.
In the exchange, the node provides to its peer a sample of its partial view and,
symmetrically, collects a sample of its peer’s partial view. If the selected node
does not reply to the shuffle request, the originator of the shuffle will assume that
the selected node has failed, and removes its identifier from it’s own partial view.
The authors show that this behavior generates an overlay with similar properties
to those of random graphs.

This protocol requires each node identifier, in partial views, to have an age
value associated with it. The age value is increased for all node identifiers in the
partial view at the beginning of each shuffle operation. Furthermore, since shuffle
targets are selected according to their age, this protocol eliminates failed nodes
identifiers from partial views in a bounded time.

As in Scamp, a node that wishes to join the overlay must know another
node that already belongs to the overlay. The join operation is based on fixed
length random walks on the overlay. The join process ensures that, if there are no
message losses nor node failures, the in-degree of all nodes will remain unchanged.
Additionally, the partial view of the new node will exhibit the same properties of
the partial views of all other nodes in the overlay.

2.5.3 NeEM

NeEM, or Network Friendly Epidemic Multicast (Pereira et al., 2003), is a gossip
protocol that relies on the use of TCP to disseminate information across the over-
lay. In NeEM, the use of TCP is motivated by the desire to eliminate correlated
message losses due to network congestion. The authors show that better gossip
reliability can be achieved by leveraging on the flow control mechanisms of TCP.

NeEM applies buffer management techniques directly itself (by disabling TCP
buffers) using several purging strategies to discard messages on overflow. This
enables the gossip protocol to preserve throughput stability even at times when

19

2. RELATED WORK

the network became congested and also avoids inter-blocking of nodes, due to
exhaustion of TCP reception buffers.

NeEM uses its own (partial view) membership service, which is also main-
tained through gossip. This membership service is based on random walks in the
overlay, with a probabilistically length dependent on a value p that is fixed and
is a protocol parameter. Random walks are used when a node joins the overlay
and also in a cyclic manner, to “advertise” neighbors to random nodes.

2.5.4 CREW

CREW (Deshpande et al., 2006), is a gossip protocol for flash dissemination,
i.e. fast simultaneous download of files by a large number of destinations using
a combination of pull and push gossip. It uses TCP connections to implicitly
estimate available bandwidth thus optimizing the fanout of the gossip procedure.

CREW uses an underlying membership service, also based on partial views,
called Bounce. Bounce is briefly presented in Deshpande et al. (2005) where the
authors claim, based on experimental results, that the use of the overlay produced
by Bounce is equivalent to the selection of nodes uniformly at random, from all
nodes in the system. Bounce relies in random walks to establish neighbor relations
between nodes. Random walks are probabilistically terminated according to a
certain probability p that depends on the degree of the receiving node, a random
factor and finally, to avoid infinite sizes random walks in the overlay, the length
of the actual random walk.

Unfortunately a full specification of the Bounce protocol is not available, nor
a full evaluation of the protocol has been published.

The emphasis of CREW is on optimizing latency, mainly by improving con-
current pulling from multiple sources. A key feature is to maintain a cache of
open connections to peers discovered using a random walk protocol, to avoid the
latency of opening a TCP connection when a new peer is required.

2.5.5 Narada

The Narada protocol (Chu et al., 2002), is used to support efficient application-
level multicast, relying in dissemination trees that are produced in two distinct

20

2.5 Existing Protocols

steps.
In the first step the protocol creates and maintains a random and rich con-

nected overlay (that the authors name mesh) that try to ensures that quality1

of paths between any two nodes in the overlay is comparable to the quality of
the unicast path between that pair of nodes, and that each node has a limited
number of neighbors.

Also, the overlay is self-organizing and self-improving, and it try to be as
efficient as possible and adapt itself to network conditions, by using a set of
heuristics that adds or removes links between nodes.

In a second step, the overlay is used to create several multicast trees rooted at
each source. To this end a distance vector algorithm is run on top of the overlay.
Nodes that wish to join a multicast group explicitly select their parents among
their neighbors using information from the routing algorithm.

Unfortunately, Narada is targeted toward medium sized groups; all nodes
maintain full membership list and some additional control information for all
other nodes, and consequently it can’t scale to very large systems. Also the
normal dynamics of the algorithm may partition the overlay. Affecting the global
reliability of the system, until the protocol is able to repair the overlay. The
authors do not explicitly show results concerning the effect of failures in the
reliability of the multicast.

2.5.6 Bayeux

Bayeux (Zhuang et al., 2001), it is a source-specific, application-level multicast
system that leverages in Tapestry (Zhao et al., 2001), a wide-area location and
routing architecture that also maintains an overlay network. Bayeux uses a
source-based approach to set-up and tear down distribution trees that work as
follows:

When a node wishes to join a multicast group, or in other words, a distribution
tree, it must know the root of that group and send a join message to that node.
Upon receiving a join request, a source node uses Tapestry to route a tree

1In this context, quality refers to application dependent metrics such as latency or band-
width.

21

2. RELATED WORK

message to the new node. As the join message is routed along the Tapestry
overlay, it is used to set-up state on nodes to explicitly create a distribution tree.
There are also similar leave and prune messages, that are used in the same way
to remove state from nodes when a receiver wishes to leave a multicast group.

Although Bayeux is fault-tolerant, as it take-in the fault-tolerance nature of
the underlying Tapestry, it requires that root nodes maintain information con-
cerning all receiving nodes, also root nodes are single point of failure and a bot-
tleneck, as all messages that are broadcasted on the distribution tree must pass
through them. The authors propose a replication scheme to compensate for this,
never the less this implies that Bayeux will not scale properly in very large systems
with several thousands of receivers.

There is also a lack of experimental results concerning the effect of failures
(and massive node failures) on the reliability of the dissemination scheme.

2.5.7 Scribe

Scribe (Castro et al., 2002; Rowstron et al., 2001) is a scalable application-level
multicast infrastructure built on top of Pastry (Rowstron & Druschel, 2001).

Scribe supports multicast groups with multiple senders. It constructs a dis-
tribution tree for each group, by using a receiver-based strategy and leveraging
in Pastry as follows:

Each multicast group has a node that serves as rendez-vous point. This node
is selected, and can be found by other nodes, using the multicast group name, and
taking advantage of Pastry resource location mechanism. This node will serve
as a root for the multicast tree. When a node wishes to join a multicast group
it uses Pastry to route a join message to the rendez-vous point. This message
is used to set-up state in the intermediate nodes along the route, concerning the
specific multicast message, thus constructing a distribution tree.

Repairing the tree is done by using a similar strategy as follows: Intermediate
nodes periodically send heartbeat messages to nodes they have registered as
being their children. A node will suspect that its parent node has failed when it
stops receiving heartbeat messages from it. In this case, the node uses Pastry

22

2.5 Existing Protocols

to send another join message, that is used to set-up another route to the node,
recovering the tree structure.

All state concerning multicast trees is maintained using a soft state approach.
Therefore, nodes have to periodically refresh their interest in belonging to a mul-
ticast route by resending join messages.

Although Scribe is fault-tolerant and it provides a mechanism to handle root
failures, it only provides best-effort guarantees. The authors argue that strong
reliability and also order guarantees are only required for some applications, and
that those properties can be easily provided on top of Scribe.

2.5.8 MON

MON (Liang et al., 2005), which stands for Management Overlay Network, is a
system designed to facilitate the management of large distributed applications
and is currently deployed in the PlanetLab testbed1.

MON builds on-demand overlay structures that are used by users to issue a
set of instant management commands or distribute software across a large set of
nodes. To that end it uses a random overlay network based in partial views that
is maintained by a cyclic approach. It supports the construction of both tree
structures and directed acyclic graphs structures.

A tree is always rooted at a external entity (named the MON client). To build
the tree the MON client sends a Session message to a nearby MON node. A node
that receives a Session message for the first time reply with a SessionOK and
becomes a child node of the Session sender. It then sends k Session messages
to random nodes from its partial view. A node that receives a Session message
for a second time simply sends a Prune message to its originator. Hence the
tree is constructed using the combination of a sender-based strategy with a gossip
strategy, where k is the gossip fanout value.

To build a directed acyclic graph, where a node can have more than one
parent, MON employs the same algorithm with the following modifications in
order to avoid cycles: Each node has a level value, where the level at the root is
1 and the level of other nodes is 1 plus the level of their (first) parent. When a

1http://planet-lab.org/

23

2. RELATED WORK

node receives a second Session message, that also carries the level value of the
node who sent it, a node can accept the message, and reply with a SessionOK

message, if the level value in the Session is smaller than its own (therefore, it
gains one more parent node).

Because MON is aimed at supporting short-lived interactions hence, it does
not require to maintain these structures for prolonged time, therefore, it does not
have any repair mechanism to cope with failures. Also, it only gives probabilistic
coverage of all nodes, as the gossip strategy used to disseminate the Session

message only gives probabilistic atomic broadcast guarantees.

2.6 Summary

This chapter introduced gossip protocols and some fundamental concepts, which
will be central in the following discussion presented in the thesis.

It introduces an abstract service: peer sampling service and also defines the
partial view concept. In the following chapter a new membership protocol -
HyParView - that implements the peer sample service abstraction based on partial
views will be presented.

Some metrics, used in the evaluation of overlay networks established by partial
views, were explained and specific metrics for evaluating gossip strategies were
also proposed. The chapter follows by presenting some existing gossip-based
membership and application-level multicast protocols.

In the following chapter a novel gossip-based membership protocol - Hy-
ParView - is presented as well as two gossip strategies that can be used in
combination with HyParView. Metrics presented in the chapter will be used
in in Chapter 4 for the evaluation of the HyParView protocol and both gossip
strategies.

24

Chapter 3

Gossip-based Broadcast Systems

This chapter presents the main contributions of the thesis. It starts with pre-
senting a generic architecture of a gossip-based system. It shows how the specific
components described in the thesis fit into that generic architecture and how they
interact.

If follows with the presentation of HyParView, a membership protocol for
gossip-based reliable multicast. The rationale behind the design of the protocol
is presented as well as the description of the protocol in some detail. Pseudo code
is depicted that illustrates some specific details of this protocol.

This chapter concludes with the presentation of two distinct gossip strategies,
namely the eager push strategy and the tree strategy. Both strategies can be
independently used with the HyParView membership protocol to obtain different
trade-offs between reliability and efficiency in message broadcast.

3.1 Gossip-based System Architecture

Gossip protocols are a middleware component that is usually implemented be-
tween the application layer and the transport layer. Figure 3.1 shows a simple
view of a gossip-based system. A gossip protocol has two main components,
depicted in Figure 3.2, that can be described as follows:

Gossip strategy: It is the component that controls the message flow in the gos-
sip protocol. It selects which messages are delivered to the above applica-

25

3. GOSSIP-BASED BROADCAST SYSTEMS

Figure 3.1: Generic gossip-based system architecture

Figure 3.2: Components of a gossip protocol

tion and which messages are retransmitted to other nodes. This component

should also determine which gossip mode to use (either eager push, pull,

lazy push or hybrid modes, as seen in section 2.1.3) when sending messages

to other nodes. If the gossip strategy requires the use of a pull, lazy push

or hybrid mode, it also maintains a message repository to enable it to send

messages when it receives explicit payload message requests from neighbors.

A gossip strategy may be topology aware or topology independent, in the

sense that it might require to keep a track of neighbors maintained by the

membership protocol or not. This will have implications in the interface

26

3.1 Gossip-based System Architecture

used to obtain information about other peers, a issue that will be further
addressed later in Section 3.1.2.

Membership protocol: It is the component that maintains state concerning
other nodes participating in the gossip protocols, it implements the ab-
straction of a peer sampling service (as described in section 2.2.1). The
main goal of this component is to provide to the gossip strategy component
a sample of other peers from the system, to whom gossip messages may be
sent.

3.1.1 Proposed Gossip-based System Architecture

Figure 3.3: Specific gossip-based system architecture

Figure 3.3 illustrates how the specific components developed in the context
of this work fit in generic gossip-based architecture. It also shows that we have
selected TCP as the transport layer of choice for the operation of our protocols.
This choice is justified below.

The components can be briefly described as follows:

27

3. GOSSIP-BASED BROADCAST SYSTEMS

HyParView protocol is a novel gossip-based membership protocol. It was de-
veloped to sustain high level of node failures, while ensuring connectivity
of the overlay that is implicitly created by the neighbor relations between
nodes. It also ensures that the overlay as a set of other desirable properties
as listed in section 2.2.4.

Eager push algorithm is a topology independent gossip strategy which was
devised to obtain a high reliability and low latency by leveraging on the
special properties of HyParView.

Tree algorithm is a topology aware gossip strategy that reduces the message
redundancy produced on the overlay, this is accomplished by creating a tree
like structure across nodes.

These components will be described in detail in following sections of this
chapter. They have been designed to operate on top of TCP. We selected TCP
because it helps to maintain the symmetry in partial views of the membership
protocol as well as enables the protocol to have a network friendly behavior, as
the flow control mechanisms of TCP will avoid that the gossip protocol exhausts
network resources. TCP also provides an unreliable failure detector service which
is the basis for the reactive strategy employed in the maintenance of active views
of the HyParView protocol (this will be further addressed later, in Section 3.2.).
The advantages of TCP will became even more clearer as each component is
described in more detail.

3.1.2 Components Interactions

The interaction between all components of the system is depicted in figure 3.4.
These interactions are based on the interface exported by each component.

An Init call is used by the application to initialize the HyParView protocol.
It also uses a Broadcast call to the gossip strategy component when it wishes
to send a message to all nodes in the system. The application layer should
also export a Deliver up-call. This call is used by the gossip strategy when a
broadcast message is received by the first time. Notice that the gossip strategy

28

3.1 Gossip-based System Architecture

Figure 3.4: Interactions between components of the system

component should not deliver the same message to the application layer more
than once.

Gossip strategies have two distinct ways to interact with the HyParView pro-
tocol. If the gossip strategy is topology independent (like the eager push proto-
col), it simply uses the GetPeer call. The signature of this call has been discussed
in section 2.2.1. If the gossip strategy is topology aware, it requires to be informed
whenever a change in the neighbors maintained by the HyParView protocol hap-
pens. To this end, the gossip strategy should support two callback methods,
NeighborUp and NeighborDown, that are used by the HyParView protocol to
notify it whenever a node is inserted or removed from its active view 1.

Finally, the HyParView protocol is responsible for handling all TCP connec-
tions by using the Connect method and handling all Close notifications. The

1In fact, the tree strategy gossip protocol also makes use of the GetPeer call. This happens
in order to support a broader set of membership protocols.

29

3. GOSSIP-BASED BROADCAST SYSTEMS

gossip strategy component is responsible to use the Send primitive and handle
the Receive1 callback of TCP to handle messages received at each node.

3.2 HyParView

3.2.1 Rationale

As stated in Chapter 1, one of the main motivations of this work is to obtain high
values of reliability using a small fanout value (i.e. in the order of log(n), where
n is the total number of nodes), while supporting high number of nodes failures,
maintaining the level of broadcast reliability as high as possible.

There are two intuitive arguments that explain why a small fanout value does
not offer high level of reliability in simple eager push gossip when using previous
membership protocols:

1. If a small fanout is used, the random selection of nodes allows the existence
of runs where some nodes in the system are never selected as gossip targets.

2. When using partial views instead of global membership information, there
are (typically) no assurances that each node is known by the same amount
of peers in the overlay (in other words, there are no assurances that every
node in the system has the same in-degree).

Notice that the combination of the two phenomena is particularly negative,
because nodes which are less popular in the system (i.e. which have a smaller
in-degree) will have less probability of being selected as gossip targets and con-
sequently will never receive some gossip messages, which in turn will affect the
global reliability of the gossip protocol.

In order to solve the first problem, one might rely on a deterministic algo-
rithm, that each node should apply in order to select gossip targets each time it
broadcasts or relays a message. This algorithm should ensure that every node in
the system is selected at least once, as a gossip target, by another node. Ideally

1To be precise, HyParView also uses the TCP layer to send and receive messages. For
simplicity these interactions were not represented in Figure 3.4.

30

3.2 HyParView

it should ensure that all nodes send the same number of messages (for load dis-
tribution and fairness) and that, in a stable environment (e.g. without any node
failure or message omission), every node receives each message the same number
of times.

The simplest deterministic algorithm consists in having each node to select all
nodes in its partial view as gossip targets. This ensures that, if all nodes in the
system have a in-degree value above 0, all nodes will be selected, at least once,
as a gossip target, as long as the overlay is connected.

To allow the selection of all nodes in the partial view, the partial views size
must be at most t, where t is the fanout value used by the above gossip protocol.
This may be a problem when one wants to use a small fanout, as the fault
tolerance level of the overlay produced by small partial views is considerably
lower. For instance, a high percentage of nodes might easily became disconnected
(i.e. with a in-degree equal to 0) in the presence of node failures.

To ensure that nodes do not became disconnected as a result of node failures
in the overlay, each node must have knowledge of more peers than those in its
partial view. This can be achieved if each node maintains a second, larger, partial
view as a backup set of nodes. The size of the backup view can be set taking in
account memory constraints and the desired level of fault tolerance, and it should
be greater than log(n) to ensure, with high probability, the connectivity of the
overlay in faulty scenarios1.

The above solution does not completely address the second problem, as there
are still no guarantees that every node will have the same in-degree. Failure to
satisfy this property has implications on the resilience of the gossip protocol in
the presence of node failures or network omissions, making some nodes - the ones
with smaller in-degree - more susceptible to be affected by these failures.

To improve in-degree distribution, and also allow each node to know and have
some measure of direct control over its own in-degree value, one might use a
symmetric membership. If all nodes in the system use partial views with the
same size, then all nodes will, eventually, converge to the same in-degree value,
as each node will try to fill its own partial view.

1See, for instance, the results published in Eugster et al. (2004).

31

3. GOSSIP-BASED BROADCAST SYSTEMS

When using symmetric partial views, nodes will always receive gossip messages
from peers belonging to their local partial view. To allow the use of a fanout of
t without sending the gossip message back to the same node from which the
message was received for the first time - which is clearly a redundant message
that will never result in a delivery - partial views should have a size of t + 1.

This model is compatible with the optimized interface procedure for a peer
sampling service that was defined in section 2.2.1.

3.2.2 Algorithm

3.2.2.1 Overview

The Hybrid Partial View, or simply, HyParView protocol maintains two distinct
views at each node. A small active view of size fanout+1. A larger passive view,
that ensures connectivity despite a large number of faults and must be larger than
log(n). Note that the overhead of the passive view is minimal, as no connections
are kept open.

The active views of all nodes create an overlay that is used for message dis-
semination. Links in the overlay are symmetric. This means that if node q is in
the active view of node p then node p is also in the active view of node q. This
architecture assumes that nodes use a reliable transport protocol to broadcast
messages in the overlay. In practice, this means that each node keeps an open
TCP connection to every other node in its active view. This is feasible because
the active view is very small, thus the extra overhead produced by TCP is not
high enough to become a problem. When a node receives a message for the first
time, it broadcasts the message to all nodes of its active view (except, obviously,
to the node that has sent the message), this operation is equivalent to use a set
of nodes as gossip targets obtained by calling the getPeer(n, peer) method of
the peer sampling service. Therefore, the gossip target selection is deterministic
in the overlay. However, the overlay itself is created at random, using the gossip
membership protocol described in this section.

A reactive strategy is used to maintain the active view. Nodes can be added
to the active view when they join the system. Also, nodes are removed from
the active view when they are suspected as failed, by leveraging on TCP as

32

3.2 HyParView

an unreliable failure detector. TCP is said to function as an unreliable failure
detector because it can generate false positives (e.g. when the network becomes
suddenly congested). Also the use of TCP simplifies the task of ensuring the
symmetry property of active views.

The reader should notice that, as each node tests its entire active view every
time it forwards a message. Therefore, the entire broadcast overlay is implicitly
tested at every broadcast, which allows a very fast failure detection.

HyParView does not owns an explicit leave mechanism, because the overlay
is able to react fast enough to node failures. Hence when a node wishes to leave
the system, it can simply be treated as if the node has simply failed.

In addition to the active view, each node maintains a larger passive view.
The passive view is not used for message dissemination. Instead, the goal of the
passive view is to maintain a repository of nodes that can be used to replace
failed members of the active view.

The passive view is maintained using a cyclic strategy. Periodically, each
node performs a shuffle operation with one random node in the overlay in order
to update its passive view.

One interesting aspect, of the shuffle mechanism of HyParView, is that the
identifiers that are exchanged in a shuffle operation are not only from the passive
view: a node also sends its own identifier and some nodes collected from its
active view to its peer. Because there are stronger guarantees of the correctness
of nodes in the active view than the passive view. By shuffling nodes from the
active view there is a increase in the probability of having nodes that are correct
in the passive views which also ensures that failed nodes are eventually expunged
from all passive views. This will be further addressed later, in Section 3.2.2.4.

3.2.2.2 Join Mechanism

When a node wishes to join the overlay, it must know another node that already
belongs to the overlay. That node is called the contact node. There are several
ways to learn about the contact node, for instance, members of the overlay could
be announced through a set of well known servers, however this is not in the
scope of this thesis and so will not be further addressed here.

33

3. GOSSIP-BASED BROADCAST SYSTEMS

In order to join the overlay, a new node n establishes a TCP connection to
the contact node c and sends to c a Join request. A node that receives a Join

request will start by adding the new node to its active view, even if it has to
drop a random node from it, in order to create a space in its active view. In
this case a Disconnect notification is sent to the dropped node. The effect
of the Disconnect message is described later in the Chapter and depicted in
Algorithm 2.

The contact node c will then send to all other nodes in its active view a
ForwardJoin request containing the new node identifier. The ForwardJoin

request is then propagated in the overlay using a random walk. Associated to
the join procedure, there are two configuration parameters, named Active Ran-
dom Walk Length, that specifies the maximum number of hops a ForwardJoin

request is propagated in the overlay, and Passive Random Walk Length, that
specifies at which point in the walk the new node identifier is inserted in a pas-
sive view. To use these parameters, the ForwardJoin request carries a “time to
live” field that is initially set to Active Random Walk Length and decreased at
every hop.

When a node p receives a ForwardJoin, it performs the following steps in
sequence:

1. If the time to live is equal to zero or if the number of nodes in p’s active
view is equal to one1, it will add the new node to its active view. This step
is performed even if a random node must be dropped from the active view
and inserted into the passive view. In the later case, the node being ejected
from the active view receives a Disconnect notification.

2. If the time to live is equal to Passive Random Walk Length, p will insert
the new node into its passive view.

3. The time to live field is decremented.
1Considering that active views are symmetric, if p’s active view only contains one node it

must be the identifier of the node who sent the ForwardJoin to p, hence p is unable to further
propagate the message on the overlay and should accept it.

34

3.2 HyParView

Algorithm 1: Join mechanism
Data:
myself: the identifier of the local node
activeView: a node active partial view
passiveView: a node passive view
contactNode: a node already present in the overlay
newNode: the node joining the overlay
ARWL: Active random walk length
PRWL: Passive random walk length

1 upon init do
2 Send(Join, contactNode, myself);

3 upon Receive(Join, newNode) do
4 call addNodeActiveView(newNode)
5 foreach n ∈ activeView and n 6= newNode do
6 Send(ForwardJoin, n, newNode, ARWL, myself)

7 upon Receive(ForwardJoin, newNode, timeToLive, sender) do
8 if timeToLive== 0‖#activeView== 1 then
9 call addNodeActiveView(newNode)
10 else
11 if timeToLive==PRWL then
12 call addNodePassiveView(newNode)
13 n←− n ∈ activeView and n 6= sender
14 Send(ForwardJoin, n, newNode, timeToLive-1, myself)

4. If, at this point, n has not been inserted in p’s active view, p will forward
the request to a random node in its active view (different from the one from
which the request was received).

Algorithm 1 depicts the pseudo-code for the join operation.

3.2.2.3 Active View Management

The active view is managed using a reactive strategy. When a node p suspects
that one of the nodes present in its active view has failed (by either disconnecting
or blocking), it selects a random node q from its passive view and attempts to
establish a TCP connection with q. If the connection fails to establish, node q is
considered failed and removed from p’s passive view; another node q′ is selected
at random from the passive view and a new attempt is made. The procedure is
repeated until a TCP connection is established with success.

When the connection is established with success, p sends to q a Neighbor

request with its own identifier and a priority level. The priority level of the

35

3. GOSSIP-BASED BROADCAST SYSTEMS

request may take two values, depending on the number of nodes present in the
active view of p: if p has no elements in its active view the priority is high; the
priority is low otherwise.

A node q that receives a high priority Neighbor request will always accept
the request, even if it has to drop a random member from its active view (again,
the member that is dropped will receive a Disconnect notification and will be
added to q’s passive view). If a node q receives a low priority Neighbor request,
it will only accept the request if it has a free slot in its active view, otherwise it
will refuse the request.

The rationale behind this priority values is simple, if a node p does not have
any element in its active view it is disconnected from the overlay, meaning that
he can not send nor receive any broadcast message. Because of this it has priority
to establish a neighbor relation with q , even if some node n has to be dropped
from the active view of q, as there are good changes that n might have some other
nodes in its active view, meaning that it will not became disconnected from the
overlay1.

If the node q accepts the Neighbor request, p will remove q’s identifier from
its passive view and add it to the active view. If q rejects the Neighbor request,
p will select a new node from its passive view and repeat the whole procedure.

3.2.2.4 Passive View Management

The passive view is maintained using a cyclic strategy. Periodically, each node
perform a shuffle operation with one other node at random. The purpose of
the shuffle operation is to update the passive views of the nodes involved in
the exchange, and eventually expunge some failed nodes from it, increasing the
passive view accuracy.

The node p that initiates the exchange creates an exchange list with the
following contents: p’s own identifier, ka nodes from its active view and kp nodes
from its passive view (where ka and kp are protocol parameters). It then sends

1Even if a node q drops from the active view a node n, that only had q in its active view,
n will always be able to rejoin the overlay. Notice that, in the worst case scenario, n will only
have q at his passive view, because it received a Disconnect message from q, hence it will be
able to contact q issuing a Neighbor request with high priority which q will have to accept
reconnecting n to the overlay.

36

3.2 HyParView

the list in a Shuffle request to a random neighbor of its active view. Shuffle

requests are propagated using a random walk and have an associated “time to live”,
just like the ForwardJoin requests (during all experiments executed so far with
this protocol, the value of this “time to live” was configured with same value used
in the Passive Random Walk Length parameter discussed in section 3.2.2.2).

A node q that receives a Shuffle request will first decrease its time to live.
If the time to live of the message is greater than zero and the number of nodes
in q’s active view is greater than 1, the node will select a random node from
its active view, different from the one he received this shuffle message from, and
simply forwards the Shuffle request. Otherwise, node q accepts the Shuffle

request and send back, using a temporary TCP connection, a ShuffleReply

message that includes a list with a number of nodes selected at random from q’s
passive view, equal to the number of nodes received in the Shuffle request.

Then, both nodes integrate the elements they received in the Shuffle/ Shuf-

fleReply message into their passive views (naturally, they exclude their own
identifier and nodes that are part of the active or passive views). If the passive
view is full, nodes have to remove other nodes to free space in order to include
the received ones. Nodes attempt first to remove identifiers that they have sent
to their peers and, if no such identifiers remains, they simply drop a random
element from their passive view.

3.2.2.5 View Update Procedures

Algorithm 2 depicts some basic manipulation primitives used to change contents
of the passive and active views. The important aspect to retain from these prim-
itives, is that nodes can be moved from the passive view to the active view in
order to assure a full active view, or in reaction to node failures. Nodes can also
be moved from the active view to the passive view whenever a correct node has
to be removed from the active view. Note that since links are symmetric, by
removing a node p from the active view of node q, q creates a “empty slot” in p’s
active view. By adding p to its passive view, node q increases the probability of
shuffling p with other nodes and, subsequently, having p be target of Neighbor

requests.

37

3. GOSSIP-BASED BROADCAST SYSTEMS

Algorithm 2: View manipulation primitives
Data:
activeView: a node active partial view
passiveView: a node passive view

1 procedure dropRandomElementFromActiveView do
2 n←− n ∈ activeView
3 Send(Disconnect, n, myself)
4 activeView ←− activeView \{n}
5 passiveView ←− passiveView ∪{n}

6 procedure addNodeActiveView(node) do
7 if node 6= myself and node /∈ activeView then
8 if isfull(activeView) then
9 call dropRandomElementFromActiveView
10 activeView ←− activeView ∪ node

11 procedure addNodePassiveView(node) do
12 if node 6= myself and node /∈ activeView and node /∈ passiveView then
13 if isfull(passiveView) then
14 n←− n ∈ passiveView
15 passiveView ←− passiveView \{n}
16 passiveView ←− passiveView ∪ node

17 upon Receive(Disconnect, peer) do
18 if peer ∈ activeView then
19 activeView ←− activeView \ {peer}
20 call addNodePassiveView(peer)

3.2.2.6 Interaction With TCP Flow Control

The use of TCP could cause the whole system to block in the presence of slow
nodes. This happens because any node that is slow in consuming messages, will
force its neighbors to block due to the flow control mechanisms of TCP (Stevens,
1997).

All nodes that became blocked will, in turn, became unable to consume the
messages they receive. Consequently, all their neighbors will also block when
trying to send messages to them and, eventually, this effect will spread to all
nodes in the overlay in an epidemic manner.

To avoid this phenomenon, one can rely in a variation of the technique pro-
posed in Pereira et al. (2003). The technique works as follows:

All nodes would buffer, at the application layer, the messages to be sent to
other nodes, in dedicated buffers. An independent buffer is maintained for each
neighbor in the active view. Furthermore, TCP is invoked using non-blocking
primitives. When a application buffer for a given neighbor becomes congested,

38

3.3 Eager Push Strategy

two different approaches can be employed:

1. The slow neighbor is expelled from the active view, without being inserted
on the passive view.

2. The node will drop some selected messages from the buffer. This selection
can be based upon any of the purging strategies presented in Pereira et al.
(2003).

With both approaches, the blocking of the entire overlay is avoided.

3.3 Eager Push Strategy

3.3.1 Rationale

The idea behind the eager push strategy is simply to flood broadcast messages
through the overlay network. This ensures that all nodes will receive broadcast
messages as long as the membership protocol is able to maintain the overlay
connected.

This strategy is only viable because HyParView produces an active view that
has a small degree1. The degree of the overlay will determine the relative message
redundancy of the protocol in stable environment, for an instance, if the overlay
has a degree of 5, the fanout of the protocol will be 4 (because the overlay has
symmetric links), hence the relative message redundancy expected by this gossip
strategy in a stable environment will be a value close to 3.

The combination of flooding with some amount of message redundancy allows
the protocol to completely mask failures of nodes better than other existing gossip
approaches (e.g. maintaining a constant reliability of 100%) for massive node
failures as high as 20%.

Furthermore, this strategy ensures that the max hop of delivery is as low as
the overlay diameter allows. Because all links between the nodes are used, it
ensures that all shortest path between nodes are used to disseminate messages
(independently of the sender).

1In fact, and as it was hinted in section 3.2.1, HyParView was originally designed to support
this specific strategy.

39

3. GOSSIP-BASED BROADCAST SYSTEMS

Another point that favors this strategy is it simplicity. It is based on a pure

eager push gossip approach, hence it does not have to buffer messages it delivers

and, as it is topology independent, it does not require the maintenance of complex

state related with its neighbors.

3.3.2 Algorithm

This strategy is implemented by a simple eager push gossip protocol and is de-

picted in Algorithm 3.

Algorithm 3: Eager push protocol
Data:
myself: the identifier of the local node
receivedMsgs: a list of received messages identifiers
f: the fanout value

1 upon event Broadcast(m) do
2 mID ←− hash(m + myself)
3 peerList ←− getPeer(f,null)
4 foreach p ∈ peerList do
5 trigger Send(Gossip, p, m, mID, myself)
6 trigger Deliver(m)
7 receivedMsgs ←− receivedMsgs ∪ {mID}

8 upon event Receive(Gossip, m, mID, sender) do
9 if mID /∈ receivedMsgs then
10 receivedMsgs ←− receivedMsgs ∪ {mID}
11 trigger Deliver(m)
12 peerList ←− getPeer(f,sender)
13 foreach p ∈ peerList do
14 trigger Send(Gossip, p, m, mID, myself)

This algorithm ensures that all links in the overlay are used at least once by

leveraging on the semantics of the getPeer() call of the HyParView protocol.

The reader should notice that the algorithm can work in the “Infect and Die”

model (Eugster et al., 2004) as it only relays messages to other nodes upon the

reception of each gossip message for the first time.

40

3.4 Tree Strategy

3.4 Tree Strategy

3.4.1 Rationale

The eager push strategy presented above allows to obtain a high reliability while
ensuring the smallest possible value of last delivery hop. Unfortunately in stable
environment it still produces a significant RMR (relative message redundancy)
value1. An intuitive approach that could help to mitigate this is is to use a struc-
tured overlay that establishes a multicast tree covering all nodes in the system.
To achieve this, we created a new gossip protocol that was named push-lazy-push
multicast tree or simply Plumtree.

Plumtree has two main components, each one answers a specific challenge of
a fault-tolerance broadcast scheme which employs spanning trees. These can be
defined as follows:

Tree construction This component is in charge of selecting which links of the
random overlay network will be used to forward the message payload using
an eager push strategy. We aim at a tree construction mechanisms that is
as simple as possible, with minimal overhead in terms of control messages.

Tree repair This component is in charge of repairing the tree when failures
occur. The process should ensure that, despite failures, all nodes remain
covered by the spanning tree. therefore, it should be able to detect and heal
partitions of the tree. The overhead imposed by this operation should also
be as low as possible.

Several broadcast applications only need to have one sender while supporting a
large number of receivers. This is the case of news dissemination services, where
a news source wants to provide information to a set of users, software update
systems where a software provider wants to push new software releases into a
large set of stations or live video broadcast where a source is sending a streaming
of video to a set of viewers.

1The reader should notice that the RMR value is still lower than those obtained with other
protocols that must use higher values of fanout to ensure a (probabilistic) high level of node
coverage.

41

3. GOSSIP-BASED BROADCAST SYSTEMS

Because of this, several applications require a single spanning tree optimized to
deliver messages from one specific source node. The source node should, evidently,
be the root of the spanning tree.

Several application-level multicast protocols (e.g. Zhuang et al. (2001) or
Liang et al. (2005)) build a tree by flooding the network with a special message
that is sent from a content distribution node, e.g. a Tree message. Whenever
this message is sent through a link, that link is marked by the sender as being a
branch on the multicast tree. Special Prune messages are then used to remove
redundant branches from the multicast tree. A similar strategy can be used to
create a spanning tree on top of the random overlay maintained by the active
views of HyParView, this would work as follows:

The eager push algorithm presented in the last section already floods a (some-
what) stable random overlay, using the active view of the HyParView protocol.
Gossip messages are sent through all links in the overlay. An intuitive remark is
that, in stable conditions1, messages that generate a delivery to the above appli-
cation layer (i.e. that are received at a node for the first time) which are sent
by the same source node, usually are received by nodes through the same overlay
link (i.e. from the same neighbor). Together these links form a spanning tree
that connects all nodes to a given source node (or root). All other links in the
overlay are redundant, and are only required to cover for node failures, therefore
redundant links can be pruned (removed) from the overlay as long as no node
failures happen.

The basic idea behind the Plumtree protocol presented here, comes from this
simple concept. The operation of Plumtree combines the basic flooding process
with a prune process. Some links between nodes are marked as being part of
the broadcast tree and payload messages are only sent to those links (neighbors).
Initially all links in a random (connected) overlay are considered as being part
of the broadcast tree. Then whenever a message is received for the second time
a Prune message is used to remove the link, used to transmit the redundant
message, from the tree.

1Stable conditions in this context concerns not only no changes in the membership protocol,
but also a network which presents a low variance.

42

3.4 Tree Strategy

Although this covers the first operation presented before, it does not addresses
the second one. Using this approach, a single node failure is able to partition the
spanning tree, disconnecting a large set of nodes from the source.

To solve the challenge of repairing the spanning tree a lazy push gossip strategy
is employed. This strategy will enable nodes that do not receive some messages,
because they have become disconnected from the sender, to retrieve those mes-
sages from neighbors whom received them and, at the same time, to add new
links to the spanning tree therefore, reconnecting themselves to the sender. This
simple operation enables the whole spanning tree to be repaired. To support this
process, nodes also announce messages they receive through the links of the over-
lay that are not part of the broadcast tree by sending IHave messages. Whenever
a node requests a message from a neighbor, by sending a Graft message, the
link between those nodes becomes a branch of the spanning tree.

The spanning tree is constructed with a node serving as root, hence it is
optimized, at least in terms of last delivery hop (latency), to messages that are
sent by that node. But considering that the links on the overlay are symmetric,
any node can use the same tree structure to broadcast his own message, although
this will result in sub-optimal routing, in terms of last delivery hop.

3.4.2 Algorithm

3.4.2.1 Overview

Briefly, the Plumtree protocol has the following relevant aspects:

• It constructs a spanning tree on top of HyParView1 that is optimized for
systems with a single sender. Nevertheless, it can be used to broadcast
messages from any node on the system.

• The construction of the tree is based on the combination of an eager push
algorithm and a pruning process. Because the paths in the tree are selected
using messages that are sent from a given root node, it can be said that the
tree construction uses a source-based strategy.

1Although Plumtree was developed to leverage on the properties of HyParView, it is not
limited to the use of this peer sampling service. This is discussed further ahead in the thesis.

43

3. GOSSIP-BASED BROADCAST SYSTEMS

Algorithm 4: Internal data structure
Data:
myself: the identifier of the local node
receivedMsgs: a list of received messages identifiers
f: the push fanout value
eagerPushPeers: a list of neighbors whom links form the spanning tree
lazyPushPeers: a list of neighbors whom links does not belong to the spanning tree
lazyQueue: a list of tuples {mID,node,round}

• The repair of the tree is based in a lazy push gossip approach. In addition to
forwarding the payload through the links that form the spanning tree, nodes
also send IHave messages on the other links. Whenever a node requests a
message he has missed from a neighbor, a new branch is added to the tree.
Because the repair process is controlled by the receiver, it can be said that
the tree repairing uses a receiver-based strategy.

• Several IHave announcements may be aggregated into a single control mes-
sage to avoid excessive control traffic in the network. This can be achieved
by applying a scheduling policy that can be designed by taking into consid-
eration application specific requirements.

3.4.2.2 Additional Data Structures

The Plumtree protocol has to maintain a more complex internal state than the
eager push gossip strategy. This is partially due to its nature being a topology
aware gossip strategy, it has to keep information concerning its neighbors. Ad-
ditionally, due to the use of an hybrid eager push/lazy push gossip approach, it
has to keep track of information concerning all IHave messages received, as well
as internal timers to trigger the request of missed messages from its neighbors.

Algorithm 4 shows the required data structures kept by the Plumtree proto-
col. The eagerPushPeers and lazyPushPeers are sets that maintain information
concerning the node’s neighbors. A nodes neighbor must be, and can only be, at
one of these sets. Hence these sets have the following properties:

eagerPushPeers ∩ lazyPushPeers = ∅

eagerPushPeers ∪ lazyPushPeers = active view

44

3.4 Tree Strategy

The lazyQueue set contains a list of received IHave messages. For each IHave

message, there is information stored concerning its sender, the advertised gossip
message identifier (mID) and the round value, which gives an indication of the
distance, in hops, to the source of the gossip message.

For simplicity, the set that contains received messages to support the recovery
mechanism and the specific method to clean up that set have been omitted from
the algorithms that will be presented next.

3.4.2.3 Peer Sampling Service And Initialization

Although Plumtree design was motivated by the special characteristics of the
HyParView protocol, it can be used with other membership protocols that also
create and maintain a random overlay network. However the overlay network
maintained by these peer sampling services should present some essential prop-
erties that must be ensured at all times. Those properties can be described as
follows.

Connectivity: The overlay should be connected, despite failures that might
occur. This has two implications. Firstly, all nodes should have in their
partial views, at least, another correct node. Secondly, all nodes should be
in the partial view of, at least, a correct node.

Scalable: The Plumtree protocol is aimed toward the support of large dis-
tributed applications. Therefore, the peer sampling service should be able
to operate correctly in such large systems (e.g. with more than 10.000

nodes).

Reactive membership: The stability of the spanning tree structure depends on
the stability of the partial views maintained by the peer sampling service.
When a node is added or removed to the partial view of a given node, it
might produce changes in the links used for the spanning tree. This changes
may not be desirable hence, the peer sampling service should employ a
reactive strategy that maintains the same elements in partial views when
operating in steady-state.

45

3. GOSSIP-BASED BROADCAST SYSTEMS

In addition to these properties, that are fundamental to the correct operation

of Plumtree, the peer sampling service may also exhibit a set of other desirable

properties, in the sense that they improve the operation of the protocol. One

such property is to maintain symmetric partial views. If the links that form the

spanning tree are symmetric, then the tree may be shared by multiple sources.

Symmetric partial views render the task of creating bidirectional trees easier, and

reduce the amount of peers that each node has to maintain.

To support a larger group of peer sampling service, in the initialization step

of Plumtree, we use the getPeer() generic interface of the service to obtain a

sample of, at most, f neighbors (where f is the eager push fanout value) that are

used to initialize the eagerPushPeers set. The reader should notice that this is not

expected from a gossip strategy that is topology aware and also it is not required

when using a membership service that maintains such a small partial view as

the HyParView protocol. However this might be useful when using membership

protocols that maintain larger passive views, to limit the number of eager push

neighbors each node has to maintain. Another aspect of this, is that with these

protocols, the coverage of the spanning tree will be probabilistic, and dependent

of the fanout value select, as specified in Eugster et al. (2004).

3.4.2.4 Tree Construction Process

After the initialization of the eagerPushPeers set described above, nodes construct

the spanning tree by moving neighbors from eagerPushPeers to lazyPushPeers,

in such a way that, after the protocol evolves, the overlay defined by the first

set becomes a tree. When a node receives a message from the first time it in-

cludes the sender in the set of eagerPushPeers (Algorithm 5, lines: 24–33). This

ensures that the link from the sender to the node is bidirectional and belongs

to the broadcast tree. When a duplicate is received, its sender is moved to the

lazyPushPeers (Algorithm 5, lines: 34–37). Furthermore, a Prune message is

sent to that sender such that, in response, it also moves the link to the lazyPush-

Peers (Algorithm 5, lines: 38–40). This procedure ensures that, when the first

broadcast is terminated, a tree has been created.

46

3.4 Tree Strategy

Algorithm 5: Spanning tree construction algorithm
1 procedure dispatch do
2 announcements ←− policy (lazyQueue) //set of IHave messages
3 trigger Send(announcements)
4 lazyQueue ←− lazyQueue \announcements

5 procedure EagerPush (m, mID, round, sender) do
6 foreach p ∈ eagerPushPeers: p 6=sender do
7 trigger Send(Gossip, p, m, mID, round, myself)

8 procedure LazyPush (m, mID, round, sender) do
9 foreach p ∈ lazyPushPeers: p 6=sender do
10 lazyQueue ←− (textscIHave(p, m, mID, round, myself)
11 call dispatch()

12 upon event Init do
13 eagerPushPeers ←− getPeer(f)
14 lazyPushPeers ←− ∅
15 lazyQueue ←− ∅
16 missing ←− ∅
17 receivedMsgs ←− ∅

18 upon event Broadcast(m) do
19 mID ←− hash(m+myself)
20 call EagerPush (m, mID, 0, myself)
21 call lazyPush (m, mID, 0, myself)
22 trigger Deliver(m)
23 receivedMsgs ←− receivedMsgs ∪ {mID}

24 upon event Receive(Gossip, m, mID, round, sender) do
25 if mID /∈ receivedMsgs then
26 trigger Deliver(m)
27 receivedMsgs ←− receivedMsgs ∪ {mID}
28 if ∃ (id,node,r) ∈ missing :id=mID then
29 cancel Timer(mID)
30 call EagerPush (m, mID, round+1, myself)
31 call lazyPush (m, mID, round+1, myself)
32 eagerPushPeers ←− eagerPushPeers ∪ {sender}
33 lazyPushPeers ←− lazyPushPeers \ {sender}
34 call Optimize (m, mID, round, sender) // optional
35 else
36 eagerPushPeers ←− eagerPushPeers \ {sender}
37 lazyPushPeers ←− lazyPushPeers ∪ {sender}
38 trigger Send(Prune, sender, myself)

39 upon event Receive(Prune, sender) do
40 eagerPushPeers ←− eagerPushPeers \ {sender}
41 lazyPushPeers ←− lazyPushPeers ∪ {sender}

47

3. GOSSIP-BASED BROADCAST SYSTEMS

One interesting aspect of this process is that, assuming a stable network (i.e.
with constant load), it will tend to generate a spanning tree that minimizes
the message latency (as it only keeps the path that generates the first message
reception at each node).

As soon as nodes are added to the lazyPushPeers set, messages start being
propagated using both eager and lazy push. Lazy push is implemented by sending
IHave messages, that only contain the broadcast message ID, to all lazyPushPeers
(Algorithm 5, lines: 5–7). Note however that, to reduce the amount of control
traffic, IHave messages do not need to be sent immediately. A scheduling policy
is used to piggyback multiple IHave announcements in a single control message.
The only requirement for the scheduling policy for IHave messages is that every
IHave message is eventually scheduled for transmission.

3.4.2.5 Announcement Policy

In the evaluation of Plumtree (which will be presented in the following chapter),
and for the sake of simplicity of the experimental model, the announcement policy
employed was the simplest one. This policy selects all pending IHave messages
in the lazyQueue whenever the Dispatch procedure of the protocol is called
(Algorithm 5, line 11) and immediately send them. This does not take any
advantage of aggregating these messages. On the other hand this strategy allows
to minimize the latency of the protocol.

3.4.2.6 Fault Tolerance And Tree Repair

The tree repair process is based on a lazy push gossip strategy.
When a failure occurs, at least one tree branch is affected. Therefore, eager

push is not enough to ensure message delivered in face of failures. The lazy push
messages exchanged through the remaining nodes of the gossip overlay are used
both to recover missing messages but also to provide a quick mechanisms to heal
the multicast tree.

When a node receives a IHave message, it simply marks the corresponding
message as missing (Algorithm 6, lines: 1–15). It then starts a timer, with a
predefined timeout value, and waits for the missing message to be received via

48

3.4 Tree Strategy

Algorithm 6: Spanning tree repair algorithm
1 upon event Receive(IHave, mID, round, sender) do
2 if mID 6∈ receivedMsgs do
3 if @ Timer(id): id=mID do
4 setup Timer(mID, timeout1)
5 missing ←− missing ∪ {(mID,sender,round)}

6 upon event Timer(mID) do
7 setup Timer(mID, timeout2)
8 (mID,node,round) ←− removeFirstAnnouncement(missing, mID)
9 eagerPushPeers ←− eagerPushPeers ∪ {node}
10 lazyPushPeers ←− lazyPushPeers \ {node}
11 trigger Send(Graft,node,mID,round,myself)

12 upon event Receive(Graft, mID, round, sender) do
13 eagerPushPeers ←− eagerPushPeers ∪ {sender}
14 lazyPushPeers ←− lazyPushPeers \ {sender}
15 if mID ∈ receivedMsgs do
16 trigger Send(Gossip, sender, m, mID, round, myself)

eager push before the timer expires. The timeout value is a protocol parameter

that should be configured considering the diameter of the overlay and a target

maximum recovery latency, defined by the application requirements.

When the timer expires at a given node, that node selects the first IHave

announcement it has received for the missing message. It then sends a Graft

message to the source of that IHave announcement (Algorithm 6, lines: 6–11).

The Graft message has a dual purpose. In first place, it triggers the transmission

of the missing message payload. In second place, it adds the corresponding link

to the broadcast tree, healing it (Algorithm 6, lines: 12–16). The reader should

notice that when a Graft message is sent, another timer is started to expire

after a certain timeout, to ensure that the message will be requested to another

neighbor if it is not received meanwhile. This second timeout value should be

smaller that the first, in the order of an average round trip time to a neighbor.

Note that several nodes may become disconnected due to a single failure, hence

it is possible that several nodes will try to heal the spanning tree degenerating into

a structure that has cycles. This is not a problem however, as the natural process

used to build the tree will remove any redundant branches produced during this

process by sending Prune messages (i.e., when a message is received by a node

more than once).

49

3. GOSSIP-BASED BROADCAST SYSTEMS

Algorithm 7: Overlay network change handlers
1 upon event NeighborDown(node) do
2 eagerPushPeers ←− eagerPushPeers \ {node}
3 lazyPushPeers ←− lazyPushPeers \ {node}
4 foreach (i,n,r) ∈missing:n=node do
5 missing ←− missing \ {(i,n,r)}

6 upon event NeighborUp(node) do
7 eagerPushPeers ←− eagerPushPeers ∪ {node}

3.4.2.7 Dynamic Membership

We now describe how Plumtree reacts to changes in the gossip overlay. These

changes are notified by the peer sampling service using the NeighborDown and

NeighborUp primitives. When a neighbor is detected to leave the overlay, it is

simple removed from either the eagerPushPeers set or the lazyPushPeers set.

Furthermore, the record of IHave messages sent from failed members is deleted

from the missing history (Algorithm 7, lines: 1–5). When a new member is

detected, it is simply added to the set of eagerPushPeers, i.e., it is considered as

a candidate to become part of the spanning tree (Algorithm 7, lines: 6–7).

An interesting aspect of the repair process is that, when “sub-trees” are gener-

ated, due to changes on the global membership, it is only required that one of the

disconnected nodes receive an IHave message, to reconnect all those nodes to the

root node (repairing the whole spanning tree). This is enough to heal the span-

ning tree as long as only a reduced number of nodes fail, generating disconnected

“sub-trees”. When larger numbers of nodes fail it is more probable to have single

nodes isolated from the tree. In such scenarios the time required to repair the

tree might be too large. To speedup the healing process, we take benefit of the

healing properties of the peer sampling service. As soon has the peer sampling

service integrates a disconnected node in the partial view of another member,

it generates a NeighborUp notification. This notification immediately puts back

the disconnected member in the broadcast tree.

50

3.4 Tree Strategy

3.4.2.8 Sender-Based Versus Shared Trees

The tree built by Plumtree is optimized for a specific sender: the source of the
first broadcast that is used to move nodes from the eagerPushPeers set to the
lazyPushPeers set. In a network with multiple senders, Plumtree can be used in
two distinct manners.

• For optimal latency, a distinct instance of Plumtree may be used for each
different sender. This however, requires an instance of the Plumtree state
to be maintained for each sender-based tree, with the associated memory
and signaling overhead.

• Alternatively, a single shared Plumtree instance may be used for multiple
senders. Clearly, the last delivery hop value may be sub-optimal for all
senders except the one whose original broadcast created the tree. On the
other hand, a single instance of the Plumtree protocols needs to be executed.

Later, in the next Chapter, results will be depicted that shows the Plumtree
performance for a single sender and for multiple senders using a shared tree, this
will allow the reader to better assess the trade-offs involved.

3.4.3 Optimization

The spanning tree produced by the algorithm is mainly defined by the path
followed by the first broadcast message exchanged in the system. Therefore, the
protocol does not take advantage of eventual new, and best, paths that can appear
in the overlay, as a result of the addition of new nodes/links. Moreover, the repair
process is influenced by the policy used to scheduled IHave messages. This two
factors may have a negative impact in the Last Delivery Hop value exhibit by the
algorithm as the system evolves.

3.4.3.1 Rationale

The main goal of the optimization is to allow nodes to change their upstream
neighbors in order to lower the distance between them and the sender node (or
sender nodes).

51

3. GOSSIP-BASED BROADCAST SYSTEMS

Algorithm 8: Optimization
1 procedure Optimization(mID, round, sender) do
2 if ∃ (id,node,r) ∈ missing: id=mID then
3 if r < round ∧ round−r >= threshold then
4 trigger Send(Graft, node, null, r, myself)
5 trigger Send(Prune, sender, myself)
6 eagerPushPeers ←− eagerPushPeers \ {sender}
7 lazyPushPeers ←− lazyPushPeers ∪ {sender}
8 lazyPushPeers ←− lazyPushPeers \ {node}
9 eagerPushPeers ←− eagerPushPeers ∪ {node}

An intuitive approach to evaluate the relative distance, in terms of hops in the

random overlay, is to compare the round value in Gossip and IHave messages

that a given node receives from neighbors. The round number is incremented in

one unit each time a message is further propagated in the overlay, meaning that

this value is an accurate measure of number of hops to the original sender of the

message.

The key idea is to compare the distance of two neighbors to the sender of

a given gossip message. If the round value is significantly lower in the IHave

message, the node should perform an action to exchange the senders of those

messages in its local view of the spanning tree. This is achieved by removing the

sender of the Gossip message from the eagerPushPeers set and replace it with

the sender of the IHave message.

Notice that the round value should be significantly lower and not simply lower.

This is motivated by the following two reasons:

1. Nodes that are closer to the sender would, eventually, become overloaded

with neighbors establishing branches with them. Because of this the load

of relaying messages would be too much concentrated in those nodes.

2. It could be difficult to have a stable spanning tree structure. Stability would

be impossible to obtain in scenarios with multiple senders, as nodes would

be constantly changing their upstream members to minimize the distance

between them and the sender of the last broadcast message.

52

3.5 Summary

3.4.3.2 Algorithm

Algorithm 8 depicts the optimization procedure developed to overcome the limita-
tions explained above. The optimization requires a new parameter called threshold
which is the minimum difference (in terms of number of hops) between a given
payload message and any IHave message received concerning that same payload
message, received by the same node, in order to trigger the optimization behavior.

The procedure in itself is very simple. A node that triggers a optimization will
simply send 2 messages. Firstly it will send a Graft message to the sender of
the IHave message, in order to establish the link to that element as a link of the
spanning tree. The reader should notice that the identifier of the payload message
in this request is set to null, this happen because the node which performs the
optimization already has the payload message, and it notifies the receiver of the
request, that no transmission of any payload is required. Secondly it will send
a Prune message to the sender of the original payload message, to remove its
link from the spanning tree. The node also updates its eagerPushPeers and
lazyPushPeers sets to reflect the change in the spanning tree structure.

This strategy will ensure that the number of links on the spanning tree is
constant and that all nodes remain connected. It only try to select links for the
spanning tree which are closer to the sender of the last broadcast message. This
optimization is also very important in systems where each participant broadcasts
messages in the overlay in bursts. As it allows the spanning tree to optimize
itself for each sender in turn. Results that show this will be presented in Chap-
ter 4.

3.5 Summary

This chapter presented a generic architecture for a gossip-based system and de-
picted the components developed and how they fit into that architecture. The
HyParView protocol, and two distinct gossip strategies, a eager push strategy
and a tree strategy, were introduced. The introduction of these protocols began
with the intuition behind their design followed by their detailed specification,
witch was presented with pseudo code when convenient. In the following chapter

53

3. GOSSIP-BASED BROADCAST SYSTEMS

HyParView and both gossip strategies are going to be evaluated through simula-
tion.

54

Chapter 4

Evaluation

This chapter presents the experimental evaluation of the protocols proposed in
the previous chapter, namely: i) the HyParView membership protocol, ii) the
eager push gossip protocol and; iii) the tree based gossip protocol. It begins
by describing the experimental setting used in the evaluation, followed by the
configuration parameters used for each protocol. Then we present and discuss
simulation results which allow to evaluate the performance of the protocols in
different scenarios of execution.

4.1 Experimental Setting

All simulations were conducted using the PeerSim Simulator1. In order to get
comparative figures, both HyParView, Cyclon and Scamp were implemented in
this simulator. In order to validate the implementations of Cyclon and Scamp,
results obtained with the PeerSim Simulator were compared with published re-
sults for these systems (these simulations are omitted from the thesis, as they do
not add to assess the merit to this work).

We have also implemented a modified version of Cyclon, that we named Cy-
clonAcked. This version adds a failure detection system to Cyclon, based on the
exchange of explicitly acknowledgments during message dissemination. Thus, Cy-
clonAcked is able to detect a failed node when it attempts to gossip to it and,

1Available at: http://peersim.sourceforge.net/

55

4. EVALUATION

therefore, is able to remove failed members from partial views, increasing the
accuracy of these views. This benchmark is used to show that the benefits of
HyParViews approach are not derived only from the use of a reliable transport
(as an unreliable failure detector), but also from the clever use of two separate
partial views.

An eager push gossip broadcast protocol for PeerSim was also implemented.
This gossip protocol is able to use any of the membership protocols referred above
as a peer sampling service (by means of the GetPeer() method). It operates in
unlimited gossip mode, such that the global reliability is not affected by the
configuration of the maximum rounds parameter (as shown in section 2.1.2).

Our eager gossip broadcast protocol was configured so that when combined
with HyParView it implements the flood gossip strategy described in Section 3.3.
For fairness, the same configuration parameter was used with all membership
protocols.

Implementations of the basic Plumtree protocol, and its optimized version,
were also developed for the PeerSim simulator. These implementations use Hy-
ParView as the underlying membership protocol, as they were designed to lever-
age on its properties, such as the symmetry and stability of the active view.

In all simulations, the overlay was created by having nodes join the network
one by one, without running any membership rounds in between. Cyclon was
initiated by having a single node to serve as contact point for all join requests.
Scamp was initiated by using a random node already in the overlay as the contact
point. These are the configurations that provide the best results for each of
these protocols. HyParView achieves similar results with either method (the
simulations use the same procedure as in Cyclon).

All simulations conducted in the PeerSim simulator used its cycle based en-
gine. Each simulation is composed of a sequence of cycles, which begin at cycle
0, and have, at most, the following steps:

Failure: In this step, some number (or a percentage) of nodes are marked as
failed (e.g their internal state is set to Down). This step might not be
required for all simulations and it usually is only executed at a predefined
cycle (or cycles) of the simulation.

56

4.2 Experimental Parameters

Broadcast: In this step a number of nodes1 send a broadcast message. The step
is only terminated when there are no more messages in transit in the overlay
(either gossip messages or any gossip strategy specific control messages).

Data retrieval: In this step, performance information is retrieved by inspecting
the internal state of protocols and components of all active nodes.

Membership: In this step, the membership protocol executes any cyclic step.
It is also in this step that any membership protocol that uses TCP becomes
aware of failures that might have happened in the last failure step.

Clean up: All data stored on nodes concerning the broadcast of messages or any
information concerning the state of the overlay in the current cycle is erased
(e.g. temporary state that is maintained at nodes or specific components
of the simulation is deleted).

The reader should notice that, although most simulations follow this structure,
some of them are conducted without performing all these steps. For instance,
when testing the behavior of a protocol in a stable environment (i.e. without the
presence of node failures), the failure step is not required. Also, when the goal
of the simulation is to evaluate properties of the overlay network, the broadcast
step does not happen.

4.2 Experimental Parameters

All experiments were conducted in a network of 10.000 nodes and results show an
aggregation from 3 independent runs of each experiment. Furthermore, member-
ship protocols and gossip based broadcast protocols were configured as follows:

• In HyParView, the active membership size was set to 5, and passive mem-
bership’s size to 30. Active Random Walk Length parameter was set to 6

and the Passive Random Walk Length was set to 3. In each shuffle message,
kp = 4 elements (at most) were sent from the passive view, while ka = 3

1The nodes that send broadcast messages can be selected at random or be predefined.

57

4. EVALUATION

elements (at most) were sent from the active view. The total size of shuffle
messages is 8, as nodes also send their own identifier in each shuffle message.

• Cyclon protocol was configured with partial views of 35 elements (this is
the sum of HyParView’s active and passive view sizes). Shuffle message
lengths were set to 14 and the time to live to random walks in the overlay
was configured to 5.

• Scamp was configured with parameter c - the parameter that is related with
fault tolerance of the protocol - to 4. The reason behind the selected value
to this parameter was because it generated partial views which size’s where
distributed around a middle point of 34, which is as near as we could be
from the value used in other protocols.

• The eager push gossip broadcast protocol was configured with a fanout
value of 4. The reader should notice that, when combined with HyParView
which was configured with active views size of 5, the protocol implements
a flood gossip strategy.

• Both the basic Plumtree protocol and its optimization protocols were also
configured with the fanout value set to 4.

• The optimized Plumtree protocol was configured with a threshold value
of 7. This value was selected because it is close to the last delivery hop
observed when using HyParView with the flood gossip strategy. Preliminary
experimental work also showed that this value provided the best results1.

4.3 HyParView And Eager Push Strategy

4.3.1 Graph Properties

As noted in Section 2.2.4, the overlays produced by membership protocols should
exhibit some good properties such as low clustering coefficient, small average

1These experiments are not shown in the thesis as they are not relevant to the main goals
of this work.

58

4.3 HyParView And Eager Push Strategy

shortest path, and balanced in-degree distribution, to allow a fast message dis-
semination and a high level of fault tolerance. In this section it is shown how the
simulated protocols perform regarding these metrics.

Average Average Last
clustering shortest delivery
coefficient path hop

Cyclon 0.006836 2.60426 10.6
Scamp 0.022476 3.35398 14.1

HyParView 0.000920 6.38542 9.0

Table 4.1: Graph properties after stabilization

Table 4.1 shows values to average clustering coefficient and average shortest
path for all protocols after a period of stabilization of 50 membership cycles1. It
can be seen that in terms of average clustering coefficient, HyParView achieves
significantly lower values than Scamp or Cyclon, which is expected considering
that HyParView’s active view is much smaller than other protocols partial views.
Nevertheless, this is an important factor, that explains the high resilience that
HyParView exhibits to node failures.

In terms of average shortest path, it is clear that HyParView falls behind
Scamp and Cyclon. This is no surprise, as HyParView only maintain a smaller
active view, which limits the number of distinct paths that exist across all nodes.
Fortunately, this has no impact on the latency of the gossip protocol. The small
level of global clustering, and the fact that all existing paths between nodes are
used to disseminate every message, makes a HyParView based gossip protocol to
deliver messages with a smaller number of hops than the other protocols. This is
depicted in Table 4.1, on the last delivery hop column.

Figure 4.1 shows the in-degree distribution of all nodes in the overlay after
the same stabilization period. Cyclon and Scamp have an in-degree distribution
across a wide range of values, which means that some nodes are extremely popular
on the overlay, while other nodes are almost totally unknown. As stated before,
because of this distribution, some nodes on the overlay have greater probability

1In fact, this stabilization time is not required by Scamp, as it stabilizes immediately after
the join period, HyParViews active view also stabilizes immediately but its passive view requires
some rounds of membership to stabilize completely.

59

4. EVALUATION

Figure 4.1: In-degree distribution

to receive redundant messages, while other nodes have a very small probability

to receive messages even once. Notice that, as some nodes are known by few

other neighbors, they have a smaller probability to be selected as gossip targets.

Also these nodes have an increased probability to become disconnected from the

overlay, as the number of nodes that are required to fail in order to disconnect

the network is smaller. This is specially obvious in Scamp, where some nodes are

only known by one other node.

Due to HyParViews symmetric active view, almost all nodes in the overlay

are known by the maximum amount of peers possible, which is the active view

length (5). This means that all nodes, with high probability, will receive each

message exactly the same amount of times. Also, there is little probability for

any node not to receive a message at least once. Finally, notice that nodes who

have the smallest in-degree have at least 2 neighbors, and that the number of

nodes in these conditions is marginal (with only 1 or 2 nodes).

60

4.3 HyParView And Eager Push Strategy

Figure 4.2: Average reliability for 1000 messages

4.3.2 Effect Of Failures

In this section, we evaluate the impact of massive failures in the reliability of the

eager gossip message broadcast, when different membership protocols are used.

In each experiment, all nodes join the overlay after which they execute 50

cycles of membership protocol to guarantee stabilization. After the stabilization

period, failures at random are induced in a percentage of all nodes in the system,

ranging from 10% to 95% of node failure. Measure of the reliability of 1.000

messages sent from random correct nodes was then taken. All these messages were

sent before the execution of another cycle of the membership protocol. However,

the membership protocols still execute all reactive steps; in particular, they can

exclude a node from their partial views if the node is detected to be failed.

The rationale for this setting is that the interval of the cyclic behavior of the

membership protocols is often long enough to allow thousands of messages to be

exchanged; the goal here is to focus on the impact of failures in the reliability of

these specific broadcasts.

61

4. EVALUATION

The average reliability for these runs of 1.000 messages is depicted in Fig-
ure 4.2. As it can be seen, massive percentage of failures have almost no visible
impact on HyParView below the threshold of 90%. Even for failure rates as high
as 95%, HyParView still manages to maintain a reliability value in the order
of deliveries to 90% of the active processes. Both Scamp and Cyclon exhibit a
constant reliability1 for failure percentages as low as 10%, and their performance
is significantly hampered with failure percentages above 40% (with reliabilities
below 50% of nodes). On the other hand, CyclonAcked manages to offer a com-
petitive performance. Although the reliability is not as high as with HyParView,
it manages to keep high reliabilities for percentage of failures up to 70%. This
behaviour highlights the importance of fast failure detection in gossip protocols
and shows the beneficts that come from the use of TCP as an unreliable failure
detector.

Figures 5a-5f shows the evolution of reliability with each message sent, after
the failures, for different failure percentages. In all figures, HyParView is the line
that offers better and faster recovery usually near the 100%. Next appear Cy-
clonAcked, Cyclon and finally Scamp in this order for every failure level depicted.
Above 80% failures all these lines appear close to the value of 0%.

From the figures, it is clear that HyParView recovers almost immediately from
the failures. This is due to the fact that all members of the active views are tested
in a single broadcast. Basic Cyclon/ Scamp gossip protocols, as they do not use a
reliable transport protocol, are unable to recover until the membership protocol
is executed again. In order to maintain reliability under massive percentage of
failures, they would have to be configured with very high fanout values (which is
a cost inefficient strategy in steady state). The figures also show that by adding
acknowledgments to the Cyclon based gossip protocol, CyclonAcked recovers a
high reliability after a small number of message exchanges (approximately 25).
Note that, in CyclonAcked, a node is only tested when it is selected at random
as a gossip target. However, for percentage of failures in the order of 80%, Cy-
clonAcked is unable to regain the reliability levels as HyParView. This is due to
the following phenomenon: given that the Cyclon overlay is asymmetric, some
nodes may have outgoing links and no incoming link; therefore, some nodes are

1Although their reliability is unable to reach 100% with a fanout of 4.

62

4.3 HyParView And Eager Push Strategy

(a) 20% (b) 40%

(c) 60% (d) 70%

(e) 80% (f) 95%

Figure 4.3: Reliability after failures

63

4. EVALUATION

Figure 4.4: Membership convergence

still able to broadcast messages but are unable to receive any message. On the
other hand, in HyParView, the active membership is symmetric, which means
that if a node is able to reach another correct node in the overlay, it is neces-
sarily reachable by messages sent by other nodes hence, it is easier to maintain
the overlay connected. This feature and a very low clustering coefficient (see
Section 2.2.4) explains the high resilience of HyParView.

4.3.3 Healing Time

Figure 4.4 shows how many membership cycles are required to achieve the same
reliability in the message dissemination after a massive node failure (for different
percentage of node failures). These results were obtained as follows: in each
simulation, after the stabilization period, failures are induced. Subsequently,
multiple membership protocol cycles are executed. In each cycle, 10 random
nodes are selected to execute a broadcast. Then the average reliability of these
messages were calculated, and the number of cycles required for each protocol to
regain a reliability equal or bigger than the one exhibit by that same protocol

64

4.4 Plumtree

before failures were induced was counted1.
As expected, after the results presented before, HyParView recovers in few

rounds for all percentages below 80%, usually in only 1 to 2 cycles. Cyclon
requires a significant number of membership cycles, that grows almost linearly
with the percentage of failed nodes to achieve this goal. Values for Scamp are not
presented, as the total time for Scamp to regain it’s levels of reliability depends
on the Lease Time (as explained in section 2.5.1), which is typically high enough
to preserve some stability in the membership protocol.

4.4 Plumtree

In this section the Plumtree gossip protocol is evaluated. This evaluation covers
the basic tree algorithm (as depicted in section 3.4.2) and also its optimization
(as shown in section 3.4.3.2). In order to have comparative figures, experimental
results of these strategies are shown together with those obtained by the eager
push strategy in the same scenarios.

The Plumtree protocol performs better in scenarios with only one (fixed)
sender. Nevertheless, this protocol, and its optimization, were evaluated in two
distinct modes of operation:

One sender (labeled as s–s) mode in which a single node is the source of all
broadcast messages.

Multiple senders (labeled as m–s) mode in which each broadcast message is
sent by a random correct node.

4.4.1 Stable Environment

To evaluate the protocols in a stable environment simulations were conducted in
the following manner: First all nodes join the overlay by using the HyParView join
mechanism. As in the evaluation of the HyParView protocol, this is achieved by

1This constraint was relaxed for 90% failure percentage as all protocols were unable to
regain their reliability level. Nevertheless all protocols were able to stabilize with reliability
values slightly below the values exhibited before the failure. For this reason, the number of
cycles to stabilization were counted instead.

65

4. EVALUATION

using one single node that serves as contact for all other nodes. No membership
cycles are executed during the join process. Simulations are run for a total of 250

cycles. The first 50 cycles of each run are used to ensure the stabilization of the
simulation and hence, are usually not depicted in the results. In each simulation
cycle, in the broadcast step, a single node sends a message. The reliability, last
delivery hop and relative message redundancy of the broadcast protocols are
evaluated for each message disseminated.

4.4.1.1 Reliability

Simulations show that all gossip protocols achieve and maintain a reliability of
100% in stable conditions. This is expected, given the properties, specially from
the connectivity point of view, of the HyParView protocol. HyParView ensures
the connectivity of the overlay, and both approaches (either the eager push based
or the tree based) ensure that all nodes in the overlay receive each broadcast
message as long as the overlay remains connected. Still, measurement of reliability
in stable conditions serve as a validation for the design of the Plumtree protocol.

4.4.1.2 Relative Message Redundancy

The RMR value (relative message redundancy, as defined in Section 2.3) is of
paramount importance when evaluating the Plumtree protocol, as this is the
metric aimed for optimization by this approach.

Figure 4.5 shows aggregated values of relative message redundancy for all
gossip protocols in the last 200 cycles of several simulations. Notice that, as
expected, the eager protocol has a relative message redundancy close to 3. This
derives directly from the fanout value used (4), as explained in Section 2.3.

In Plumtree, after the stabilization of the protocol, payload messages are only
propagated through links that belong to the spanning tree. The natural evolu-
tion of Plumtree (and its optimization) ensures that the tree does not contains
redundant branches. Therefore, it does not generate any redundant message. Be-
cause of this, the RMR value for the Plumtree protocol and its optimization is
constantly 0 and is not visible on the graph.

66

4.4 Plumtree

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200

re
la

tiv
e

m
es

sa
ge

 r
ed

un
da

nc
y

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

Figure 4.5: Relative message redundancy in stable environment

Payload Control Total
Eager 39984.00 0.00 39984.00

Plumtree (s-s) 9999.00 29987.33 39986.33
Plumtree (m-s) 9999.00 29990.00 39989.00

Plumtree Opt. (s-s) 9999.00 29989.33 39988.33
Plumtree Opt. (m-s) 9999.00 38976.00 48975.00

Table 4.2: Number of messages received

Table 4.2 shows the number of messages received by each strategy 150 cycles
after the start of the simulation. The extra control messages received when using
the Plumtree are essentially due to IHave messages. However, the reader should
consider that: i) usually IHave messages are smaller than payload message,
hence these messages will contribute less to the exhaustion of network resources
and ii) IHave messages may be aggregated, by delaying the transmission of these
messages and sending several message identifiers in a single IHave message. No-
tice that aggregation will not have a significant impact in reliability, as messages
are sent anyway only with a delay. Therefore, aggregation would only affect the
time required to repair the spanning tree after failures, and the overall latency of

67

4. EVALUATION

the system.
The reader should also notice that the Plumtree protocol optimization with

multiple senders generates close to 10.000 extra control messages than the same
protocol with a single sender or than the basic Plumtree protocol with multiple
senders. This represents a 22.5% increase in signaling cost. This happens due
to the following phenomena. Because each message is sent by a different node,
the protocol will trigger many times its optimization routine. This requires the
exchange of 2 extra messages with neighbors, which explains the higher amount
of control messages in this case.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10

re
la

tiv
e

m
es

sa
ge

 r
ed

un
da

nc
y

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

Figure 4.6: Relative message redundancy during bootstrap process

The Plumtree protocol relies on a prune technique to construct the spanning
tree. Because of this, it is expected that during the dissemination of the first
broadcast message a number of extra messages is produced. In order to evaluate
the overhead of the tree building process, the relative message redundancy for the
first 10 cycles of simulation are presented in Figure 4.6. All tree based approaches
have similar values, and all of them only take 2 membership cycles to stabilize.
It’s also shown that only the first message broadcast produces a visible overhead
concerning messages exchanged in the overlay.

68

4.4 Plumtree

The relative message redundancy value of 2 observed for all instances of the
Plumtree protocol in the cycle 0 can be explained as follows: When the first
message is broadcast in the system, each node has all its neighbors in the ea-
gerPushPeers set, therefore, the behavior of all nodes degenerate into a flood
approach. This is the reason why the RMR value for both the Plumtree protocol
and the eager push protocol, is the same is cycle 0.

The reason why the RMR value is sightly above 0 in cycle 1 is due to a dif-
ferent reason. In the membership step of the first cycle, the HyParView protocol
uses information from passive views to fill the active views of several nodes. This
generates several NeighborUp notifications that are received by Plumtree; these
neighbors are added to the eagerPushPeers set in each node. This process gen-
erates some redundant messages in this cycle. These messages however, serve to
connect nodes to the spanning tree and moreover, are used to optimize the tree
in a scenario with a single sender. This happens because a node which receive
the same payload message from two links in the overlay, will only keep the link
from which it received the message for the first time.

4.4.1.3 Last Delivery Hop

Figure 4.7 presents the values for LDH (last delivery hop, as defined in Section 2.3)
for all protocols. The eager protocol and Plumtree with a single sender offer
the best performance. Notice that the eager protocol uses all available links to
disseminate messages, which ensures that all shortest paths of the overlay are
used. This shows that with a single sender Plumtree is able to select the links
that provide faster delivery.

With multiple senders the basic Plumtree protocol values are very high. This
happens because the spanning tree is optimized to the node who broadcasts
the first message. Therefore, when messages are sent by nodes located at leaf
positions of the tree, they require to perform more hops in the overlay to reach
all other nodes. On the other hand, the optimization of the protocol is able to
lower significantly the value of LDH. The reader should notice that because the
optimization triggers for different senders, in fact it will better distribute the links
that form the spanning tree through the overlay, effectively removing the bias of
the tree to the sender of the first message.

69

4. EVALUATION

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200

la
st

 d
el

iv
er

y
ho

p

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

Figure 4.7: Last delivery hop in stable environment

4.4.2 Effect Of Bursty Behavior

Many systems exhibit a behavior where nodes communicate through bursts of
messages. We assume that in such a system, nodes will broadcast a number
of messages, and while a node is broadcasting its messages, all other are only
receiving. One example are conferencing systems with floor control (Dommel &
Garcia-Luna-Aceves, 1997).

To evaluate the behavior of Plumtree in such an environment we run experi-
ments where we use multiple senders but, where the source remains the same for
a certain number of cycles. As in the previous experiments, in each simulation
cycle only one node broadcasts a message. The number of simulation cycles where
the source remains unchanged is therefore the length of the message burst used
by nodes. Experiments were conducted for 3 distinct burst lengths namely: 10

message burst, 25 message burst and 50 message burst.

All experiments were run in stable environments (i.e. no node failures where
induced in the system). The reader should notice that, because this experiments
were conducted in stable environments, results obtained for reliability and RMR

70

4.4 Plumtree

are similar to those presented above. Therefore those results will not be depicted
here. Each experiment uses 3 different values for the threshold parameter of
the Plumtree optimization. Values used were 1, 3 and 7, in order to show the
impact of this parameter in the time required by the protocol to obtain the best
performance in terms of LDH.

(a) 10 messages burst (b) 25 messages burst (c) 50 messages burst

Figure 4.8: Last delivery hop with bursts of messages

Figure 4.8 shows the evolution of the LDH value and for each protocol for
each burst size. Because the source is the same for a number of messages, the
optimization is able to improve the spanning tree.

First, as expected, the Plumtree optimization is able to improve the per-
formance to values that match the values obtained by the eager push strategy.
Moreover, the number of messages1 required to ensure that that protocol con-
verges to the (best) optimized tree for a sender is always the same and it is
independent of the threshold parameter. The number of messages required is 8,
and this value is dependent of the overlay diameter which is also 8.

One could think that smaller threshold parameter would reduce the number of
messages required. This however does not happen due to the following phenom-
ena. When a source starts sending its burst, the tree has been optimized for other
source. The optimization propagates trough the tree in a cascade, because nodes
send IHave messages with the round value of the payload message they received
first, even if the node took measures to improve its distance in the spanning tree
to the source. Therefore, with each message sent, a new set of nodes become
aware that some of its neighbors have optimized their distance to the sender. In

1Remember that in each simulation cycle, only a single message is sent therefore, the number
of simulation cycles are equal to the number of messages sent.

71

4. EVALUATION

fact, the optimization of the spanning tree is propagated in the random overlay
as an epidemic process, whereas each round of the process is equivalent to each
message sent by the same source.

This raises one interesting observation, the Plumtree optimization will only
be effective for message bursts whose length is larger than the diameter of the
random overlay. Moreover, the gain obtained by the optimized Plumtree protocol
is proportional to the length of message bursts sent by nodes.

Finally, the reader should notice that the optimized Plumtree protocol is able
to obtain better values for LHD than the eager push protocol, what at a first
glance should be impossible, as this strategy floods the overlay and therefore
should ensure the smallest possible values for LDH. The explanation for this comes
from the following phenomena. In fact, and because the eager push protocol
uses a fixed fanout, that protocol uses all links available in the overlay except
one, which is directly connected to the sender of each message. Remember that
the overlay maintained by HyParView has a degree of fanout+1. On the other
hand, Plumtree only employs the fanout value to initialize its eagerPushPeers
set. Due to NeighborUp notifications the number of nodes in this set might rise
to a maximum of fanout+1 peers. In practice, the source of a message employs
an eager push strategy in all its links. Notice that the use of an extra link which
is connected directly to the source will have a high probability to improve the
LDH in one unit. Which explains the better values obtained by the Plumtree
protocol.

4.4.3 Effect Of Failures

In this section the properties of gossip strategies are tested in faulty scenarios
where nodes can crash. Two distinct scenarios were experimented.

In the first scenario, small number of node failures were induced for 100 con-
secutive cycles. These experiments aim to show the impact of a very unstable
environment in the properties of each gossip strategy. In the second scenario the
impact of massive failures (as evaluated ins Section 4.3.2) was tested. The aim
of these experiments is to show the implications of tree based gossip strategies in
scenarios were large percentages, ranging from 10% to 95% of all nodes, can fail

72

4.4 Plumtree

simultaneoulsy (e.g. on the event of a natural catastrophy like an earthquake or
a tsunami).

4.4.3.1 Sequential Failures

In this scenario, simulations were conducted in the following way: In each simu-
lation cycle one message was broadcasted by one node. The first 50 cycles were
used to ensure stabilization of the experiment. After the stabilization period, a
constant failure rate was induced in the system for 100 simulation cycles. After
that, the simulations continued for more 100 cycles.

Two distinct failure rates were used: 25 and 50 nodes per cycle. The nodes
that fail are selected at random, except when running the one sender mode of
operation, where the sender never fails. The reader should notice that, in the
multiple sender mode of operation, this exception does not exist, and the sender
of the first broadcast message (the node that served as root in the construction
of the spanning tree) can also fail. This also shows that the tree based gossip
strategy can tolerate failures of the root node of the spanning tree.

(a) 25 nodes per cycle (b) 50 nodes per cycle

Figure 4.9: Reliability with sequential failures

Figures 4.9a and 4.9b show reliability for each gossip strategy in the last 200

cycles of simulation for both failures rates (4.9a for a failure rate of 25 nodes per
cycle and 4.9b for 50 nodes per cycle). For both failure rates, all protocols are
able to maintain a reliability of 100%. This comes from the natural resilence of
HyParView for such small failures.

73

4. EVALUATION

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200

la
st

 d
el

iv
er

y
ho

p

cycle

Flood
Plumtree (1s)
Plumtree (ms)

Plumtree Opt. (1s)
Plumtree Opt. (ms)

(a) 25 nodes per cycle

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200

la
st

 d
el

iv
er

y
ho

p

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(b) 50 nodes per cycle

Figure 4.10: Last delivery hop with sequential failures

.
The LDH value of all protocols is slightly affected by failures. Figure 4.10

presents the LDH for the same 200 simulation cycles for both failure rates. It
shows that LDH values become unstable for all protocols in cycles where failures
are induced. This is expected, as these failures may remove links that were part
of the optimal paths between nodes. Results also show that, when failures are no
longer induced, all protocols are able to regain a more constant value. Also the
original Plumtree protocol with multiple senders is the case where the impact of
failures is more visible, as the LDH value is significantly lower during this period.
This happens because of the following phenomena. The addition of new links as
a reaction to failures will produce some redundant paths in the spanning tree.
This allows the protocol to optimize the tree by selecting links which reduce the
distance to the sender of the first message broadcasted hence, reducing the LDH
for those messages.

Finally, Figure 4.11 shows the RMR values for all protocols. The eager proto-
col presents values slightly lower than 3 in the first 100 cycles while the Plumtree
protocol (in all cases) presents values slightly above 0. Notice that failures will
remove some links from the overlay therefore, there will be less payload mes-
sages being received by nodes with the eager protocol, on the other hand, the
membership protocol will add new links to replace the lost ones. This will trig-
ger NeighborUp events in some nodes, which will add new neighbors to their

74

4.4 Plumtree

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200

re
la

tiv
e

m
es

sa
ge

 r
ed

un
da

nc
y

cycle

Flood
Plumtree (1s)
Plumtree (ms)

Plumtree Opt. (1s)
Plumtree Opt. (ms)

(a) 25 nodes per cycle

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200

re
la

tiv
e

m
es

sa
ge

 r
ed

un
da

nc
y

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(b) 50 nodes per cycle

Figure 4.11: Relative message redundancy with sequential failures

LazyPushPeers set hence, more payload messages will be sent and therefore, the
number of redundant payload messages received by nodes will increase.

4.4.3.2 Massive Failures

In this section the effect of massive failure for all gossip strategies is evaluated.
This evaluation was conducted by using a similar technique as the one employed
in Section 4.3.2 and can be summarized as follows: After a stabilization period of
50 cycles in each simulation, node failures are induced at random with different
percentages of the total number of nodes in the system, ranging from 10% to
95% in the failure step. After that 200 simulation cycles were executed. In each
cycle, in the broadcast step, one node broadcasts a message. Values concerning
reliability, last delivery hop and relative message redundancy are again evaluated
and presented next.

Figures 4.12a-4.12f show the evolution of global reliability for each gossip
strategy in the 10 cycles after failures were induced1. It shows that all strategies
are able to regain their reliability values of 100% after a small amount of mem-
bership cycles, which is expected, as this resilience to failures and fast healing
capacity comes from the use of the HyParView protocol as the underlying peer
sampling service, by all these gossip protocols.

1Only 10 cycles are depicted instead of 200 because the reliability values stabilized hence,
there was no significance to the values.

75

4. EVALUATION

 99.9

 100

 100.1

 100.2

 100.3

 100.4

 100.5

 0 5 10 15 20

re
lia

bi
lit

y
(%

)

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(a) 20%

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 0 5 10 15 20

re
lia

bi
lit

y
(%

)

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(b) 40%

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20

re
lia

bi
lit

y
(%

)

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(c) 60%

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

re
lia

bi
lit

y
(%

)

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(d) 70%

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

re
lia

bi
lit

y
(%

)

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(e) 80%

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

re
lia

bi
lit

y
(%

)

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(f) 95%

Figure 4.12: Reliability after failures

76

4.4 Plumtree

Figure 4.13: Reliability of gossip immediately after failures

Figure 4.13 depicts the reliability of each protocol immediately after failures.
The reader should notice that for failure percentages above 70%, reliability drops
to values close to 0 for all protocols. This happens because the overlay becomes
disconnected after such large percentage of node failures.

4.4.4 Healing Time

Similar to the results presented in Section 4.3.3, Figure 4.14 depicts the number
of simulation cycles required by the each gossip strategy to regain its reliability
level after a massive node failure (for different percentages of node failures). The
results were obtained by running simulations in which, after a stabilization period,
failures were induced. The simulation then continues running, and in each cycle
one node sends a broadcast message. The number of cycles to the broadcast
protocol to regain a reliability value equal or higher than the one exhibited before
the failures were counted1.

1Similar to what was done in section 4.3.3, these constraints were relaxed for the values
concerning 90% of failures

77

4. EVALUATION

Figure 4.14: Healing time

The time to regain reliability, in number of simulation cycles, is not signifi-
cantly different. This clearly shows that Plumtree retains the reliability of the
eager push gossip protocol, given that the spanning tree embedding is only used
to select which links are used for eager/lazy push.

Figures 4.15a-4.15f show the LDH for all protocols after failures for 6 different
failure percentages. As expected, it confirms the results presented above. All
protocols are able to maintain a, somewhat, constant value for LDH. Whereas
the eager protocol and Plumtree (and its optimization) with a single sender have
the best performance, followed by the optimized Plumtree with multiple senders
and finally the original Plumtree with multiple senders.

Finally the RMR value exhibited by each gossip strategy is also evaluated in
faulty scenarios. The results are depicted in Figures 4.16a-4.16f. The important
aspect to retain from these figures is that all protocols are able to regain their
RMR levels before failures in only a couple of cycles. After failures all protocols
exhibit a low level of redundancy. For all failure percentages, all versions of the
Plumtree protocol show an increase of redundant messages after failures. This
is due to the transmission of extra payload messages as a result of the healing

78

4.4 Plumtree

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200

la
st

 d
el

iv
er

y
ho

p

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(a) 20%

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200

la
st

 d
el

iv
er

y
ho

p

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(b) 40%

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200

la
st

 d
el

iv
er

y
ho

p

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(c) 60%

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200

la
st

 d
el

iv
er

y
ho

p

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(d) 70%

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200

la
st

 d
el

iv
er

y
ho

p

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(e) 80%

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200

la
st

 d
el

iv
er

y
ho

p

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(f) 95%

Figure 4.15: Last delivery hop after failures

79

4. EVALUATION

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

re
la

tiv
e

m
es

sa
ge

 r
ed

un
da

nc
y

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(a) 20%

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

re
la

tiv
e

m
es

sa
ge

 r
ed

un
da

nc
y

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(b) 40%

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

re
la

tiv
e

m
es

sa
ge

 r
ed

un
da

nc
y

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(c) 60%

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

re
la

tiv
e

m
es

sa
ge

 r
ed

un
da

nc
y

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(d) 70%

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

re
la

tiv
e

m
es

sa
ge

 r
ed

un
da

nc
y

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(e) 80%

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20

re
la

tiv
e

m
es

sa
ge

 r
ed

un
da

nc
y

cycle

Eager
Plumtree (s-s)

Plumtree (m-s)
Plumtree Opt. (s-s)

Plumtree Opt. (m-s)

(f) 95%

Figure 4.16: Relative message redundancy after failures

80

4.5 Summary

process of the overlay, which adds new links to compensate those lost due to
failures. The same effect justifies the rise of the RMR value, after failures, for
the eager protocol.

4.5 Summary

This chapter presented the evaluation results, obtained through simulation, of the
HyParView protocol and all gossip strategies developed. All these strategies use
HyParView as underlying membership protocol. Evaluation covered reliability,
last delivery hop and relative message redundancy of these gossip strategies in
stable environments and also in two distinct faulty scenarios.

The next chapter presents final remarks concerning the protocols developed
and the experimental results presented in this chapter, and will also point direc-
tions for future work.

81

Chapter 5

Conclusion And Future Work

5.1 Conclusions

Gossip protocols are appealing because they work on overlays that have very
small maintenance cost. On the other hand, a broadcast protocol based on a
minimum cost spanning tree may be very effective in stable networks, but may
be impractical to use on systems with large number of nodes where failures are
common (due to the cost of reconfiguring the tree). Therefore, gossip protocols
seem obvious candidates to applications that require extremely high resilience to
failures of large percentage of nodes. Such massive failures can happen due to
attacks (for instance, a worm that shuts down all the machines of a particular
make) or in catastrophic natural disasters (such as earthquakes).

In the thesis two distinct gossip strategies were presented, which combine de-
terministic and gossip approaches. This is achieved by using an overlay topology
that is created by a probabilistic (partial) membership protocol, and then use dif-
ferent deterministic broadcast strategies on top of this overlay. The membership
protocol, called HyParView, maintains a small active view and a larger passive
view for fault-tolerance. It was shown that the HyParView protocol, when com-
bined with eager push gossip protocol, allows the broadcast protocol, to provide
and preserve very high values of reliability, with a small fanout, in faulty scenarios
where the percentage of failed nodes can be as high as 80%.

It is possible to extract the following lessons from the results presented in the
thesis. To start with, the speed of failure detection is of paramount importance to

83

5. CONCLUSION AND FUTURE WORK

sustain high reliability in the presence of massive percentage of faults. A gossip
strategy that relies on the use of a reliable transport over stable overlay (built
using a probabilistic membership protocol), offers the best performance possible
in this regard, given that the reliable transport also serves as an unreliable failure
detector. Also, by using all the links of the overlay, it is possible to aim at
100% reliability as long as the overlay remains connected. Furthermore, it allows
the use of smaller fanout values than protocols that have to mask failures and
network omissions with the redundancy of gossip. The use of small fanout values
is what makes possible to use all the links of the overlay with small overhead.
Additionally, the maintenance of a passive view, with candidates to replace failed
nodes in the active view, offers high resilience to massive failures. Therefore, the
use of an hybrid approach that contains a small active view and a larger (low
cost) passive view offers a better resilience and better resource usage than using
a single (large) view with a higher fanout.

The thesis also presented two gossip strategies that leverage on the properties
of HyParView.

• An eager push gossip strategy (which was used when evaluating HyParView
performance against other membership protocols), that works by flooding
the overlay maintained by HyParView’s (small) active view.

• A tree based gossip protocol, which we named Plumtree, was also intro-
duced. This in a rather more complex strategy that relies in the combination
of eager push and lazy push approaches. The algorithm explicitly builds
a spanning tree (i.e. the protocol maintains state concerning the struc-
ture of the tree) which enables it to apply eager push of payload messages
in the tree branches without generating any redundant message reception.
A lazy push gossip phase is used to efficiently detect nodes that have be-
come disconnected from the spanning tree due to node failures. This phase
automatically repairs the tree, while ensuring that nodes receive as many
broadcast messages as possible.

• An optimization of the Plumtree protocol was also suggested. This op-
timization is able to make adjustments on the spanning tree structure in

84

5.1 Conclusions

order to ensure a constant number of hops required to disseminate messages
to all participants, which is achieved by sacrificing a bit of the stability in
the structure of the tree.

Experimental results show that, the embedded spanning tree employed by
Plumtree, on top of a low cost random overlay network, allows to disseminate
messages in a reliable manner with considerably less traffic on the overlay than
a simple gossip protocol. Moreover, by exploiting links of the random overlay
that are not part of the spanning tree, one can efficiently detect partitions and
repair the tree. One interesting aspect of the Plumtree approach, is that it can
be easily used to provide optimized results for a small number of source nodes,
by maintaining state for one spanning tree for each source. This is feasible as our
approach does not require the maintenance of complex state.

In terms of latency, the Plumtree protocol is more effective for building sender
based trees but, with the optimizations proposed, it can also be used to support
shared trees, with a penalty in terms of overall system latency which presents
twice that value. This can be achieved by relaxing the constraints on the stability
of the spanning tree. In such a way, one can improve the latency of the system
and provide better results when the spanning tree is shared by several nodes to
disseminate messages. It was also showed that the same strategy used to detect
and repair the spanning tree can easily be extended to optimize the tree for these
conditions. We defend that this is of paramount importance in order to avoid the
negative impact in terms of latency when sharing the tree but also to support
communication models which are based on message bursts from single nodes, with
several senders.

Concerning the application of these gossip strategies, one can conclude that,
for large systems with high safety requirements or with low latency requirements
as for an instance, a national coordination response system for emergencies, the
eager push gossip strategy presents itself as the best approach, as it gives the best
results concerning these specific requirements. For non-critical systems, as for
instance a large-scale news or software update system, which do not present such
demanding safety requirements, but where a high reliability is still expected while
consuming as few resources as possible (notice that these should be background
applications), the tree gossip strategy is possibly the better approach to use.

85

5. CONCLUSION AND FUTURE WORK

5.2 Future Work

The HyParView membership protocol, and both gossip strategies, presented in
the thesis should be further experimented and evaluated in more complex and
realistic scenarios. Further evaluation should specially focus on the impact of the
underlying network topology and its implications on the performance of these
protocols. For instance, it is of interesting to understand the amount of overhead
imposed by the use of TCP (instead of UDP), as well as to evaluate the latency
of broadcast protocols that rely on HyParView and gossip strategies presented
here. To assess these aspects, different techniques and platforms from the ones
employed in the thesis, need to be used.

At the time of the writing of this thesis, a java1 implementation of HyParView,
and of the broadcast protocols, are being developed and validated. These im-
plementations, will be used to conduct further experiments with two additional
testbeds. First, the ModelNet large-scale emulation infrastructure2 (Vahdat et al.,
2002), that will enable us to run simulations in realistic large-scale network topolo-
gies with large numbers of nodes. The PlanetLab testbed3 (Chun et al., 2003)
will also be employed in future experiments, as it will provide information and
insight on a real world application of these protocols.

HyParView is a novel membership protocol whose properties should be further
analysed from a theoretical point of view. For instance, the relation between the
size of passive views and the resilience of the membership protocol to node failures
must be more clearly defined.

Other gossip strategies may provide interesting results if combined with Hy-
ParView. For instance, recent work presented in Carvalho et al. (2007), tries to
improve broadcast protocols based on gossip, by reducing unnecessary redundant
messages, using an approach that also combines eager push and lazy push gossip
and information about the execution environment of each node that is obtained
by special components named monitors. The authors show that their approach
enables them to produce probabilistic emergent data paths (i.e. without explic-
itly coordinating nodes to organize themselves in such a structure), that resembles

1http://java.sun.com
2http://modelnet.ucsd.edu/
3http://www.planet-lab.org/

86

5.2 Future Work

an optimized spanning tree, where more powerful nodes contribute more to the
information dissemination. It would be interesting to evaluate the implications
of combining this strategy with the HyParView membership protocol. Hopefully,
this will result in a gossip based gossip protocol that exhibits high reliability using
a small fanout, being highly resilient to node failures while reducing redundant
traffic in the network.

Finally, it would also be interesting to experiment an eager push gossip on top
of HyParViews with adaptive fanout, by taking into account the heterogeneity
of nodes, in order to maximize the use of available resources, like bandwidth. To
do this, and maintain the deterministic selection of gossip targets, nodes would
also require to adapt their degree (and in-degree), which might prove an effective
approach to produce optimized and adaptive emergent overlays.

87

Bibliography

Carvalho, N., Pereira, J., Oliveira, R. & Rodrigues, L. (2007). Emer-
gent structure in unstructured epidemic multicast. In Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works , (to appear), Edinburgh, UK. 86

Castro, M., Druschel, P., Kermarrec, A. & Rowstron, A. (2002).
SCRIBE: A large-scale and decentralized application-level multicast infrastruc-
ture. IEEE Journal on Selected Areas in communications (JSAC), 20, 1489–
1499. 15, 22

Chu, Y.H., Rao, S.G. & Zhang, H. (2000). A case for end system multicast.
In Measurement and Modeling of Computer Systems , 1–12. 14

Chu, Y.H., Rao, S., Seshan, S. & Zhang, H. (2002). A case for end system
multicast. IEEE Journal on Selected Areas in Communications , 20, 1456–1471.
20

Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzo-

niak, M. & Bowman, M. (2003). Planetlab: an overlay testbed for broad-
coverage services. SIGCOMM Comput. Commun. Rev., 33, 3–12. 86

Deering, S.E. & Cheriton, D.R. (1990). Multicast routing in datagram in-
ternetworks and extended lans. ACM Trans. Comput. Syst., 8, 85–110. 8, 14

Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker,

S., Sturgis, H., Swinehart, D. & Terry, D. (1987). Epidemic algorithms
for replicated database maintenance. In PODC ’87: Proceedings of the sixth

89

BIBLIOGRAPHY

annual ACM Symposium on Principles of distributed computing , 1–12, ACM
Press, New York, NY, USA. 6

Deshpande, M., Xing, B., Lazardis, I., Hore, B., Venkatasubrama-

nian, N. & Mehrotra, S. (2005). Crew: A gossip-based flash-dissemination
system. 20

Deshpande, M., Xing, B., Lazardis, I., Hore, B., Venkatasubrama-

nian, N. & Mehrotra, S. (2006). Crew: A gossip-based flash-dissemination
system. In ICDCS ’06: Proceedings of the 26th IEEE International Conference
on Distributed Computing Systems , 45, IEEE Computer Society, Washington,
DC, USA. 20

Diot, C., Levine, B.N., Lyles, B., Kassem, H. & Balensiefen, D. (2000).
Deployment issues for the IP multicast service and architecture. IEEE Network ,
14, 78–88. 14

Dommel, H.P. & Garcia-Luna-Aceves, J.J. (1997). Floor control for mul-
timedia conferencing and collaboration. Multimedia Syst., 5, 23–38. 70

Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kouznetsov,

P. & Kermarrec, A.M. (2003). Lightweight probabilistic broadcast. ACM
Trans. Comput. Syst., 21, 341–374. 6

Eugster, P.T., Guerraoui, R., Kermarrec, A.M. & Massoulie, L.

(2004). From Epidemics to Distributed Computing. IEEE Computer , 37, 60–
67. 31, 40, 46

Ganesh, A.J., Kermarrec, A.M. & Massoulie, L. (2001). SCAMP: Peer-
to-peer lightweight membership service for large-scale group communication.
In Networked Group Communication, 44–55. 6, 10, 17

Ganesh, A.J., Kermarrec, A.M. & Massoulié, L. (2003). Peer-to-
peer membership management for gossip-based protocols. IEEE Trans. Com-
put., 52, 139–149. 10, 17

90

BIBLIOGRAPHY

Jelasity, M., Guerraoui, R., Kermarrec, A.M. & van Steen, M. (2004).
The peer sampling service: experimental evaluation of unstructured gossip-
based implementations. In Middleware ’04: Proceedings of the 5th ACM/I-
FIP/USENIX international conference on Middleware, 79–98, Springer-Verlag
New York, Inc., New York, NY, USA. 9

Kermarrec, A.M., Massoulié, L. & Ganesh, A.J. (2003). Proba-
bilistic reliable dissemination in large-scale systems. IEEE Trans. Parallel Dis-
trib. Syst., 14, 248–258. 1, 7, 13

Koldehofe, B. (2003). Buffer management in probabilistic peer-to-peer com-
munication protocols. In Proceedings of the 22th IEEE Symposium on Reliable
Distributed Systems (SRDS’03), 76–87, Florence,Italy. 6

Liang, J., Ko, S.Y., Gupta, I. & Nahrstedt, K. (2005). MON: On-demand
overlays for distributed system management. In 2nd USENIX Workshop on
Real, Large Distributed Systems (WORLDS’05). 23, 42

Pereira, J., Rodrigues, L., Monteiro, M.J., Oliveira, R. & Kermar-

rec, A.M. (2003). Neem: Network-friendly epidemic multicast. In Proceedings
of the 22th IEEE Symposium on Reliable Distributed Systems (SRDS’03), 15–
24, Florence,Italy. 19, 38, 39

Ratnasamy, S., Handley, M., Karp, R.M. & Shenker, S. (2001).
Application-level multicast using content-addressable networks. In NGC ’01:
Proceedings of the Third International COST264 Workshop on Networked
Group Communication, 14–29, Springer-Verlag, London, UK. 14

Renesse, R.V., Minsky, Y. & Hayden, M. (1998). A gossip-style failure
detection service. Tech. Rep. TR98-1687, Dept. of Computer Science, Cornell
University. 6

Rowstron, A.I.T. & Druschel, P. (2001). Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In Middleware
’01: Proceedings of the IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg , 329–350, Springer-Verlag, London, UK. 22

91

BIBLIOGRAPHY

Rowstron, A.I.T., Kermarrec, A.M., Castro, M. & Druschel, P.

(2001). SCRIBE: The design of a large-scale event notification infrastructure.
In Networked Group Communication, 30–43. 14, 15, 22

Stavrou, A., Rubenstein, D. & Sahu, S. (2002). A lightweight, robust p2p
system to handle flash crowds. Tech. Rep. EE020321-1, Columbia University,
New York, NY. 11

Stevens, W. (1997). RFC 2001: TCP slow start, congestion avoidance, fast
retransmit, and fast recovery algorithms. Status: PROPOSED STANDARD.
38

Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostic, D., Chase,

J. & Becker, D. (2002). Scalability and accuracy in a large-scale network
emulator. SIGOPS Oper. Syst. Rev., 36, 271–284. 86

Voulgaris, S., Gavidia, D. & Steen, M. (2005). Cyclon: Inexpensive mem-
bership management for unstructured p2p overlays. Journal of Network and
Systems Management , 13, 197–217. 6, 11, 18

Zhao, B.Y., Kubiatowicz, J.D. & Joseph, A.D. (2001). Tapestry: An
infrastructure for fault-tolerant wide-area location and routing. Tech. Rep.
UCB/CSD-01-1141, UC Berkeley. 21

Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H. & Kubiatowicz,

J.D. (2001). Bayeux: An architecture for scalable and fault-tolerant wide-area
data dissemination. In Proceedings of NOSSDAV . 14, 16, 21, 42

92

	1 Introduction
	2 Related Work
	2.1 Gossip Protocols
	2.1.1 Gossip Overview
	2.1.2 Parameters
	2.1.3 Strategies

	2.2 Membership
	2.2.1 Peer Sampling Service
	2.2.2 Partial View
	2.2.3 Strategies To Maintain Partial Views
	2.2.4 Partial View Properties

	2.3 Gossip Metrics
	2.4 Application-level Multicast
	2.4.1 Tree Construction
	2.4.2 Tree Repairing

	2.5 Existing Protocols
	2.5.1 Scamp
	2.5.2 Cyclon
	2.5.3 NeEM
	2.5.4 CREW
	2.5.5 Narada
	2.5.6 Bayeux
	2.5.7 Scribe
	2.5.8 MON

	2.6 Summary

	3 Gossip-based Broadcast Systems
	3.1 Gossip-based System Architecture
	3.1.1 Proposed Gossip-based System Architecture
	3.1.2 Components Interactions

	3.2 HyParView
	3.2.1 Rationale
	3.2.2 Algorithm
	3.2.2.1 Overview
	3.2.2.2 Join Mechanism
	3.2.2.3 Active View Management
	3.2.2.4 Passive View Management
	3.2.2.5 View Update Procedures
	3.2.2.6 Interaction With TCP Flow Control

	3.3 Eager Push Strategy
	3.3.1 Rationale
	3.3.2 Algorithm

	3.4 Tree Strategy
	3.4.1 Rationale
	3.4.2 Algorithm
	3.4.2.1 Overview
	3.4.2.2 Additional Data Structures
	3.4.2.3 Peer Sampling Service And Initialization
	3.4.2.4 Tree Construction Process
	3.4.2.5 Announcement Policy
	3.4.2.6 Fault Tolerance And Tree Repair
	3.4.2.7 Dynamic Membership
	3.4.2.8 Sender-Based Versus Shared Trees

	3.4.3 Optimization
	3.4.3.1 Rationale
	3.4.3.2 Algorithm

	3.5 Summary

	4 Evaluation
	4.1 Experimental Setting
	4.2 Experimental Parameters
	4.3 HyParView And Eager Push Strategy
	4.3.1 Graph Properties
	4.3.2 Effect Of Failures
	4.3.3 Healing Time

	4.4 Plumtree
	4.4.1 Stable Environment
	4.4.1.1 Reliability
	4.4.1.2 Relative Message Redundancy
	4.4.1.3 Last Delivery Hop

	4.4.2 Effect Of Bursty Behavior
	4.4.3 Effect Of Failures
	4.4.3.1 Sequential Failures
	4.4.3.2 Massive Failures

	4.4.4 Healing Time

	4.5 Summary

	5 Conclusion And Future Work
	5.1 Conclusions
	5.2 Future Work

	Bibliography

