
Anonymous Authentication With Pseudonyms

Guilherme José Silva Santos

Thesis to obtain the Master of Science Degree in

Telecommunications and Informatics Engineering

Supervisor: Prof. Luı́s Rodrigues

Examination Committee

Chairperson: Prof. Fernando Manuel Valente Ramos
Supervisor: Prof. Luı́s Rodrigues

Member of the Committee: Prof. Bernardo Luı́s Da Silva Ferreira

May 2025

Declaration
I declare that this document is an original work of my own authorship and that
it fulfills all the requirements of the Code of Conduct and Good Practices of
the Universidade de Lisboa.

Acknowledgments

This work has been supervised by Prof. Luı́s Rodrigues in cooperation with Claúdio Correia. I would

like to thank them for their guidance and patience.

Secondly, I would like to thank my family, girlfriend and all my friends for safeguarding my mental

sanity, over several months thinking about pseudonyms.

Thank you.

i

Abstract

The problem of anonymous authentication, which is key to preserving the privacy of users, has an

increased relevance given the proliferation of applications that use components deployed in the network,

that cannot be fully trusted. A possible strategy to preserve user privacy is to implement authentication

using pseudonyms. In this thesis, we survey how pseudonyms have been used to protect privacy in

different application areas and discuss the advantages and limitations of the different approaches to

managing pseudonyms. Based on the limitations of previous work, we design, implement, and evaluate

novel techniques to enhance the performance of systems that use pseudonyms.

Keywords

Privacy, Anonymous Authentication; Pseudonyms.

iii

Resumo

O problema da autenticação anónima, uma funcionalidade chave para preservar a privacidade dos

utilizadores, tem ganho importância com o aumento de aplicações que recorrem a equipamentos insta-

lados na periferia da rede e nos quais não é possı́vel depositar total confiança. Uma estratégia possı́vel

para preservar a privacidade dos utilizadores consiste em usar esquemas de autenticação baseados

em pseudónimos. Nesta dissertação, fazemos um levantamento de como os pseudónimos têm sido

utilizados para preservar a privacidade em diferentes áreas de aplicação e discutimos as vantagens e

limitações das diferentes abordagens para a gestão de pseudónimos. Com base nas limitações dos tra-

balhos anteriores, propomos, desenvolvemos e avaliamos novas técnicas para melhorar a performance

dos sistemas que utilizam pseudónimos.

Palavras Chave

Privacidade; Autenticação Anónima; Pseudónimos.

v

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Results . 3

1.4 Research History . 3

1.5 Organization of the Document . 4

2 Background 5

2.1 Authentication . 6

2.2 Pseudonyms . 6

2.3 Pseudonym Schemes . 6

2.4 Abstractions Used in Pseudonym Based Authentication 8

2.4.1 Cryptographic Hash Functions . 8

2.4.2 Asymmetric Cryptography . 8

A – Encryption with Asymmetric Cryptography 9

B – Digital Signatures with Asymmetric Cryptography 9

C – Authentication with Asymmetric Cryptography 9

D – Ensuring Integrity with Asymmetric Cryptography 9

E – Ensuring Non-Repudiation with Asymmetric Cryptography . . . 10

2.4.3 Blind Signatures . 10

2.4.4 Zero-Knowledge Proofs . 10

2.4.5 Accumulators . 10

2.5 Bloom Filters . 11

2.6 Hierarchical Bloom filter Arrays . 11

2.7 Redactable Signatures . 12

3 Related Work 13

3.1 Anonymous Authentication Systems with Pseudonyms . 14

3.1.1 Approaches based on Epochs and Time Slots . 15

vii

3.1.1.A Haas et al. 16

3.1.1.B EDGAR . 17

3.1.1.C NYMBLE . 19

3.1.1.D IFAL . 22

3.1.2 Other Approaches . 24

3.1.2.A V-token. 24

3.1.2.B PEREA . 25

3.1.2.C Privacy Keeper . 26

3.1.3 Comparison of Pseudonym Schemes . 28

3.2 Techniques for Optimizing Bloom Filter Transfer Efficiency 29

3.2.1 Compressed Bloom Filters . 30

3.2.2 Compacted Bloom Filters . 31

3.2.3 Comparison of Bloom Filter Optimizating Techniques 32

4 Proposed Techniques 35

4.1 Technique based on Hierarchical Bloom Filter Arrays . 36

4.1.1 Pseudonym Revocation . 36

4.1.2 Access Control . 36

4.2 Technique based on Redactable Signatures . 37

4.2.1 Pseudonym Revocation . 37

4.2.2 Access Control . 38

5 Evaluation 41

5.1 Experimental Setup . 42

5.2 Individual Performance . 42

5.2.1 Technique based on Hierarchical Bloom Filter Arrays 42

5.2.2 Technique based on Redactable Signatures . 44

5.3 Comparative Performance . 45

5.3.1 Evaluation Based on Revocation List Size . 45

5.3.2 Evaluation Based on System Scale . 46

5.4 Additional Time to Generate a RL . 47

5.4.0.A Technique based on Hierarchical Bloom Filter Arrays 48

5.4.0.B Technique based on Redactable Signatures 49

6 Conclusion 51

6.1 Conclusions . 52

Bibliography 52

viii

List of Figures

1.1 Customer profiling through the authentication process. 2

2.1 Linkability problem when revoking a user. 7

3.1 Anonymous Authentication Systems Overview. 14

3.2 Epochs and Time Slots Approach. 16

3.3 Hash Chain. 17

3.4 Latchkeys and Capabilities. 18

3.5 Creation of Nymble Tickets. 21

3.6 Authentication in Privacy Keeper. 27

3.7 Compressed Bloom Filters Decompression . 31

4.1 Authentication with Hierarchical Bloom Filter Arrays. 37

4.2 Redactable Signature Creation. 38

4.3 Authentication with Redactable Signatures. 39

5.1 Variation of Parameters using Hierarchical Bloom Filters Arrays 43

5.2 Variation of Parameters using Redactable Signatures . 44

5.3 Variation of Parameters using Redactable Signatures using proposed Optimization 44

5.4 Authentication Latency . 46

5.5 Data Transferred during Authentication vs Number of Revoked Users 48

5.6 HBFA’s Overhead . 48

5.7 Redactable Signature Overhead. 49

ix

x

List of Tables

3.1 Comparison of the different systems . 29

xi

xii

Acronyms

BF Bloom Filter

RL Revocation List

ZKP Zero-Knowledge Proof

BSig Blind Signature

MT Merkle Tree

HBFA Hierarchical Bloom Filter Array

RSig Redactable Signature

xiii

xiv

1
Introduction

Contents

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Results . 3

1.4 Research History . 3

1.5 Organization of the Document . 4

1

This thesis addresses the problem of performing anonymous authentication using pseudonyms to

ensure the privacy of clients. In particular, we propose novel techniques that improve the efficiency of

existing privacy-preserving authentication schemes.

1.1 Motivation

Alice Verifier

Alice

Ok!
Alice

ID

Alice Lisbon

Lisbon 20:57

12:38

AccessCity

Figure 1.1: Customer profiling through the authentication process.

We motivate our work using smart retail as an example. Smart retail is a general term that captures

the use of technologies in retail, in particular digital technologies, to improve customer experience and

the efficiency of operations for retailers. Most smart retail applications require customers to authenticate

using their identities while shopping. Customers’ identities can be used to profile the user behaviour,

as shown in Figure 1.1. Customer profiling may bring some advantages to the customer, such as

having access to personalized recommendations or promotions but also poses a serious threat to the

customer privacy. Information regarding the customer behaviour may disclose personal information,

such as health conditions, drinking habits, food regime, etc, that can be used later, against the client

interests, for instance, when defining the price of insurance policies, which raises deep ethical concerns.

A possible strategy to preserve customer privacy in smart retail applications is the use of anonymous

authentication systems where customers authenticate using different pseudonyms, every time they ac-

cess the system.

Several anonymous authentication systems with pseudonyms have been proposed for several other

applications areas, such as smart vehicles, where similar concerns are raised.

These systems generally involve a central authority, trusted by both clients and application providers,

responsible for issuing pseudonyms to clients. Many of these systems offer relevant properties in

the context of anonymous authentication with pseudonyms. These properties include, among others:

pseudonym unlinkability, that guarantee that two different pseudonyms from the same client should

be impossible to relate between each other; revocability, such that misbehaving customers must be

prevented from using previously acquired pseudonyms, usually achieved by revoking the pseudonyms

previously issued to the misbehaved client; backward unlikability, ensuring that the revocation of

pseudonyms does not disclose information about the past use of non-revoked pseudonyms; and re-

2

vocation auditability, that allows clients to verify if a pseudonym has been revoked or not, before using

it.

Although many proposed systems offer relevant properties, securing the privacy of clients, these type

of systems are inefficient, and suffer from high latencies during the process of authentication, that can

take several dozens of seconds, making them unfeasible to be applied in many scenarios, in particular,

in smart retail applications.

1.2 Contributions

In this thesis, we survey the main anonymous authentication systems that have been proposed to pre-

serve customers’ privacy in multiple applications, that ensure some of the desired privacy properties in

the smart retail domain. We propose two techniques that can be applied to anonymous authentication

systems, to increase their performace, by reducing the amount of information exchanged during authen-

tication, leveraging Redactable Signatures (RSigs) and Hierarchical Bloom Filter Array (HBFAs) in order

to keep the same desired properties when reducing the amount of information exchanged.

1.3 Results

This thesis has produced the following results:

• An implementation of the techniques proposed to reduce the latencies of the authentication, in two

different anonymous authentication systems.

• An extensive experimental evaluation of the proposed techniques, covering the latencies of the

authentication process and the amount of transferred information during authentication.

1.4 Research History

This work has been performed at INESC-ID, as part of a research effort to improve privacy-preserving

authentication in the edge. In my work I have benefited from the collaboration with Cláudio Correia, a

PhD student (that has now graduated) working in this field.

Parts of the work described in this thesis have been published as:

• Santos, Guilherme, Cláudio Correia, and Luı́s Rodrigues. ”PickyFilters: Uma Abordagem Prática

e Eficiente para Autenticação Anónima com Pseudónimos.” Actas do décimo quinto Simpósio de

Informática (Inforum), Lisboa, Portugal, Sep. 2024.

3

This work has been partially funded by the Fundação para a Ciência e a Tecnologia (FCT) via project

INESC-ID UIDB/50021/2020 and by the project SmartRetail (funded by IAPMEI with ref. C6632206063-

00466847).

1.5 Organization of the Document

The rest of this thesis is organized as follows: Chapter 2 introduces the main concepts relevant to

our work. Chapter 3 describes some important anonymous authentication systems proposed for several

applications areas, discussing the advantages and disadvantages of each one. Chapter 3 also examines

several existing strategies for efficiently transferring Bloom Filters (BFs), which could be valuable for our

work. Chapter 4 describes the techniques proposed in this thesis. Chapter 5 shows an evaluation of the

proposed techniques. Finally, Chapter 6 concludes the thesis.

4

2
Background

Contents

2.1 Authentication . 6

2.2 Pseudonyms . 6

2.3 Pseudonym Schemes . 6

2.4 Abstractions Used in Pseudonym Based Authentication 8

2.5 Bloom Filters . 11

2.6 Hierarchical Bloom filter Arrays . 11

2.7 Redactable Signatures . 12

5

In this chapter, we introduce the most relevant concepts for our work.

2.1 Authentication

Authentication is the process of an entity proving to be what it claims to be. This process is usually done

when an entity wants to access a protected system or when decides to do a sensitive operation. There

are two entities in an authentication process: the entity that tries to authenticate and the verifier that

controls this process. The system verifier ensures that the claimed identity is valid by verifying informa-

tion provided by the entity proving its identity, such as credentials or biometric data. This introduces the

issue of a system administrator being able to track and access information about all past authentications

and activities of every entity that has authenticated into the system. This is particularly concerning for

applications such as smart retail, where customers need to authenticate to acquire goods, and retail-

ers can trace the consumer history. The use of pseudonyms during authentication can circumvent this

threat.

2.2 Pseudonyms

Pseudonyms are aliases that clients can use to hide their unique identity. They can be applied to

a wide range of privacy-sensitive applications. In information systems, pseudonyms can be used for

authentication, replacing the clients’ unique identity. Pseudonyms need to be used properly to ensure

privacy preservation. In particular, the use of the same pseudonym for multiple authentications raises

privacy risks. A system administrator with access to authentication records is able to link authentications

that use the same pseudonym, and this may be enough to link the pseudonym to a concrete user. For

this reason, users should avoid using the same pseudonym in different authentications. Ideally, users

should use a different pseudonym for each authentication.

Changing pseudonyms can only prevent a user’s activity from being tracked if the pseudonyms are

unlinkable. The property of unlinkability ensures that two pseudonyms cannot be connected, even if

they are used by the same individual.

2.3 Pseudonym Schemes

In this chapter, we discuss some problems that pseudonym schemes must overcome and some proper-

ties that these schemes must provide.

The first challenge a pseudonym scheme must overcome is the need for systems to have enough

trust to let customers authenticate with pseudonyms without knowing their real identity. Most of the exist-

6

ing pseudonym schemes have the pseudonyms used by the clients being issued by a central authority, a

pseudonym provider, trusted by both the clients and the verifiers, with the verifiers trusting that the cen-

tral authority will only provide valid pseudonyms to legitimate clients and with the clients, trusting that the

central authority will not disclose the information of mapping between the clients and their pseudonyms.

Alice Verifier

P 2

Ok!
P 2

ID

P 1 Lisbon

Lisbon 20:57

12:38

AccessCity RL

P 1
P 2
P 3

Same
Client

Figure 2.1: Linkability problem when revoking a user. RL is Revocation List. P is Pseudonym.

In many systems, if a client misbehaves or for any other reason, should be removed from the sys-

tem and should not be allowed to further authenticate in the system. To achieve this requirement, the

pseudonym scheme must allow revocability, which is the ability to revoke pseudonyms previously is-

sued to a client. Revoking a client in a way that preserves the client’s may be challenging. For instance,

assume that a pseudonym is revoked by including it in a Revocation List (RL) that is sent to verifiers.

If, when a client misbehaves, all pseudonyms of that client are included in the same RL, verifiers may

infer that the pseudonyms in the list belong to the same client. If some of these pseudonyms have been

used in the past, the verifiers can link the corresponding authentications, as illustrated in Figure 2.1. To

avoid this problem, a pseudonym scheme should guarantee backward unlinkability and revocation

auditability.

Revocation auditability states that a client should be able to see his revocation status, before each

authentication, avoiding the situation where a client tries to authenticate with a pseudonym that has been

revoked without being aware of that fact.

Backward unlinkability states that past authentications must remain private when a client is re-

voked. Many existing pseudonym systems achieve this property by having the pseudonym providers

issuing pseudonyms divided by periods of time, denoted time slots, they should be used in. When a

client chooses a pseudonym to use, they use a pseudonym associated with the current time slot. When

a client is revoked, only the pseudonyms associated with future time slots are distributed to the verifiers.

This solution has one problem, which is, it cannot guarantee perfect backward unlinkability. If a client

is revoked in a given time slot and the pseudonyms associated to that time slot are distributed to verifiers,

if the client has already authenticated in the system in that given time slot, then those authentications’

privacy is compromised. If the pseudonyms of the current time slot are not distributed, then the client

can authenticate using those pseudonyms until the end of the time slot, when they should be revoked

and not authenticating anymore. In order to alleviate this problem, one could consider increasing the

7

granularity of the time slots, making each time slot really small. This solution has the drawback of in-

creasing substantially, the number of pseudonyms that need to be issued to each client. In systems that

use this approach, the number of pseudonyms issued increases linearly with the time slots’ granular-

ity, providing the clients with many more pseudonyms than they actually need, increasing the memory

needed to store them.

Pseudonym systems should also include the property of accountability, which states that it must

be possible to trace the actions of a user using a pseudonym back to their real identity. This property is

usually assured by maintaining a map between user-pseudonyms in a central trusted authority.

Additionally, a pseudonym scheme must also be efficient, namely, it should be possible to authen-

ticate with low latency, the amount of information distributed in RLs should not be large, the memory

space required to execute the protocol should be small, etc.

2.4 Abstractions Used in Pseudonym Based Authentication

In this chapter, we provide some key concepts that are used in existing pseudonym schemes or that we

use in our proposed architecture.

2.4.1 Cryptographic Hash Functions

A hash function is a mathematical algorithm that transforms an input (or ”message”) into a fixed-size

string of bytes, typically called a hash. A cryptographic hash function extends this by adding essential

security properties:

• One-way: It is computationally infeasible to reverse-engineer the original input from its hash,

ensuring tamper-proof integrity checks.

• Collision-resistant: It is highly unlikely to find two different inputs producing the same hash,

preventing substitution attacks.

• Avalanche effect: A small change on the input drastically alters the output hash, making even

minor modifications detectable.

The fact that hash functions are deterministic with these properties make cryptographic hash func-

tions perfect for verifying data integrity.

2.4.2 Asymmetric Cryptography

Asymmetric cryptography is a cryptographic system based on a pair of keys: a private key and a public

key. This type of system states that each entity involved must have a pair of keys, publish the public key

8

and keep the private key, private. Each key works as the decryption key of its pair. Asymmetric cryptog-

raphy can be used to achieve important properties in information security such as: authenticity, integrity,

and non-repudiation. For this reason, asymmetric cryptography is used in most existing pseudonym

schemes, using public keys as pseudonyms.

A – Encryption with Asymmetric Cryptography

The encryption is done by encrypting the message with the public key and decrypting it with the

private key. Since anyone can use the public key, but only the owner has access to the private key, only

the owner can decrypt the message.

B – Digital Signatures with Asymmetric Cryptography

Asymmetric encryption allows the creation of digital signatures that are a cryptographic technique

that allows a digital message or document to be verified. The verification of digital signatures ensures

that the content has not been altered and prove the identity of the sender. Digital signatures are usually

created, simply, by passing the message through a cryptographic hash function and encrypting the

resulting digest with the private key. They are sent attached to the messages. The receivers can check

a signature by decrypting it with the public key of the sender, passing the message through the same

hash function and comparing the results. The integrity property comes from the properties of hash

functions, that it is infeasible to find two messages with the same digest. The authenticity property

comes from the fact that only the owner of the pair of keys has access to the private key, so that no one

else has the ability to create such digital signature.

C – Authentication with Asymmetric Cryptography

As explained before, authentication is the process of an entity proving to be what it claims to be. In

the context of using public keys as pseudonyms, this corresponds to an entity proving that it is the owner

of a pseudonym (public key) that it is presenting to the system verifier. This is achieved by creating a

digital signature and attaching it to the messages sent using the private key associated to the public key

in the pseudonym. The receiver, the system verifier, can then verify the digital signature and check if the

authenticating entity is who it claims to be.

D – Ensuring Integrity with Asymmetric Cryptography

Integrity ensures that messages have not been altered during their transmission, by man-in-the-

middle attacks for instance. This property is vital for sensitive applications, where users’ actions must not

be changed by an attacker. Asymmetric encryption can also be useful to provide this property. Having

public keys as pseudonyms allow the users to use the corresponding private keys in order to create

9

digital signatures that enable the system to check if the messages sent by the users were altered during

their transmission.

E – Ensuring Non-Repudiation with Asymmetric Cryptography

Non-repudiation is achieved when a sender cannot deny the authenticity of the messages sent and

operations made. This property is also accomplished using digital signatures. Since digital signatures

are only created using the private key and only the owner of the pair of keys has access to it, it is

impossible for the senders to deny the authenticity of the messages they sent. This property is closely

related to the property of accountability of pseudonym schemes, and these two properties together,

make it possible to hold an authenticated user accountable for their actions.

2.4.3 Blind Signatures

Blind Signatures (BSigs) are a cryptographic technique that is a form of digital signature in which the

content of the digital message or document being signed, is hidden during the process of signing. Differ-

ent parties are still able to verify the signature when they receive the digital message and its signature,

if they have access to the signer’s public key. The signer is not privy to what he signed. BSigs can

be useful in pseudonym schemes where a signer must not know what they signed. For example, in

V-token [1], during the process of pseudonym issuance, the scheme uses BSigs to prevent the central

authority of storing pseudonym-identity maps.

2.4.4 Zero-Knowledge Proofs

Zero-Knowledge Proofs (ZKPs) are cryptographic protocols that allow a given entity to prove knowledge

about a certain information or statement to another entity wihout revealing the content of that infor-

mation. ZKPs can be used in pseudonym schemes, during authentications where the clients prove to

the system verifiers that none of their previous used pseudonyms are revoked, without revealing which

pseudonyms they used before, preventing a system administrator from relating different past authenti-

cations. ZKPs have the obvious advantage of privacy and preventing the system verifiers of knowing

which pseudonyms, clients used before. On the other side, ZKPs are computationally expensive.

2.4.5 Accumulators

Dynamic accumulators [2] are a constant-size cryptographic construct that represents a set membership.

It is possible to add or remove elements from the accumulator. Besides that, accumulators allow anyone

to prove in zero knowledge that some element is in that accumulator if and only if, the element is in the

accumulator. It is possible to use these accumulators as a ”whitelist” of valid pseudonyms. Universal

10

accumulators [3], allow users to prove instead that an element is not in the accumulator. Universal

accumulators can be used as a ”blacklist” of revoked pseudonyms.

2.5 Bloom Filters

BFs [4] are a probabilistic structure designed to store members of a set and to determine if a given

element is member. In pseudonym systems, verifiers often use BFs for the storage of the revoked

pseudonyms. BFs are very eficient and have constant computation costs O(1) for storing and searching

elements. The filter is made up of N addressable bits, with addresses from 0 to N-1, being N its size.

Besides, its size, a filter also has another paramenter which is the number of hash functions, k. When

an element is to be inserted in the filter, it is hash coded using the hash functions, obtaining k hash

codes, that will be used as addresses inside the filter. After that, the bits of the filter with that addresses,

are set to 1. To test whether an element belongs to the filter, the element is hash coded using the hash

functions obtaining k addresses, if and only if the bits in the filter with that addresses are all set to 1,

the element is considered to be in the filter. When searching for an element, BFs may indicate that the

element is in the filter when it is not, allowing false positives to happen. On the contrary, false negatives

are not possible. The rate of false positives depends on the size of the filter, N, the number of elements

inserted, m, and the number of hash functions used, k. The rate of false positives can be calculated

using the following formula:

P = (1− (1− 1

m
)kn)k (2.1)

BFs also provide an efficient operation to merge different filters of the same size into one. If the

BFs have the same characteristics, as hash functions and size, it is possible to merge different filters by

simply performing a bitwise OR operation.

2.6 Hierarchical Bloom filter Arrays

HBFAs [5] are a data structure based on BFs that aim to increase the scalability of the original BFs.

These filters use a hierarchical structure composed of multiple BFs of different sizes (with the filters

in the higher positions of the hierarchy being smaller than the filters in the lower positions), where the

registration/test of presence is done by utilizing multiple filters. Typically, a membership test in the data

structure requires performing sequential presence tests across the various filters until a conclusion is

reached.

11

2.7 Redactable Signatures

RSigs [6] enable the sending of a digitally signed message, with the ability to delete certain parts of

it, while still allowing the recipient to verify the security properties of the message, such as integrity

and authenticity. The process of creating a redactable signature begins by dividing the message into

removable parts. A Merkle Tree (MT) is constructed by associating each part of the message with a leaf

node of the tree, calculating its cryptographic hash, and then recursively building the tree up to the root

node, where each node’s value is the hash of the concatenation of its child nodes’ hashes. After that,

the sender digitally signs the root node.

When sending the message, the sender deletes the parts they wish to omit and sends the remaining

parts to the recipient. Along with the message, they also send the hashes of the leaf nodes correspond-

ing to the deleted parts. These hashes can be compressed using the tree structure by sending the

hashes of internal nodes. The recipient uses the received information to reconstruct the hash of the root

node and verify the sender’s digital signature on that node.

RSigs also incorporate a random component during the signature creation process, which prevents

the recipient from recovering the deleted parts through brute force attacks.

Summary

In this chapter, we provided the main background for our work. In the next chapter, we will describe

how these abstractions have been applied to implement pseudonym-based authentication protocols,

detailing the design and functionality of these protocols in addressing privacy and security challenges in

authentication systems.

12

3
Related Work

Contents

3.1 Anonymous Authentication Systems with Pseudonyms 14

3.2 Techniques for Optimizing Bloom Filter Transfer Efficiency 29

13

This chapter is divided in two sub chapters, where we discuss some relevant work in the field. In

Chapter 3.1, we explain some existing pseudonym systems detailing their characteristics, which prop-

erties they achieve and how, while discussing their flaws. In the Chapter 3.2, we discuss two different

strategies to transfer BFs efficiently, that could be used to transfer RLs if they are implemented using

BFs.

3.1 Anonymous Authentication Systems with Pseudonyms

We start by explaining the general structure that almost every pseudonym system follows. Generally,

this kind of systems are usually composed by 3 entities: 1) the clients, 2) the verifiers that control

the authentication process and, 3) a central authority trusted by both clients and verifiers which is a

pseudonym provider, that provides clients with enough pseudonyms for their authentications, keeps

a map between users’ real identities and the pseudonyms issued, and handles clients’ revocations,

distributing the revoked pseudonyms to the system verifiers using RLs, as shown in Figure 3.1.

Client Verifier

Central Authority

1)
Pse

ud
on

ym

Iss
ua

nc
e

3) Pseudonym

Revocation

2) Access Control

Figure 3.1: Anonymous Authentication Systems Overview.

The pseudonyms issued have normally an asymmetric key pair associated and are made up of

the public key and the pseudonym provider’s signature. When a client is authenticating in the system,

he uses a pseudonym as his digital identity and sends a different one to the system verifier in each

authentication. The purpose of the pseudonym’s signature is to prove to the verifier the authenticity

and integrity of the pseudonym showing that the pseudonym was, indeed, created by the pseudonym

provider. This scheme takes advantage of the asymmetric encryption properties to prove that the client is

the real owner of a given pseudonym, by using the associated private key. So, the messages exchanged

between the system verifier and a client are usually appended with the pseudonym and a signature

made by the client using the private key associated to that pseudonym.

These systems also follow similar steps, as shown in Figure 3.1. These steps are usually divided in 3

14

phases: 1) Pseudonym Issuance, 2) Access Control and, 3) Pseudonym Revocation. Whenever a client

joins the system, must start by asking the pseudonym provider for pseudonyms for his authentications.

After acquiring his pseudonyms, a client is ready to authenticate in the system with a verifier. The

authentication is divided in three phases: the verifier sends to the client, information about his revocation

status, the client checks this information and if he is not revoked, sends a pseudonym to the verifier,

the verifier checks the validity and authenticity of this pseudonym and if everything is correct the user

accesses the system. If an authenticated client misbehaves, the system generates a complaint, inserting

the pseudonym the client used, and sends it to the pseudonym provider. The pseudonym provider

links the pseudonym inserted in the complaint to the real identity of a client and then revokes all the

pseudonyms issued before to that client and distributes them in a RL to the system verifiers.

This is just a general approach followed by most systems, but some other systems may present some

radical approaches or simply do not implement some steps of this approach. In the next chapters we

take a deeper look at existing pseudonym systems and discuss them.

3.1.1 Approaches based on Epochs and Time Slots

As mentioned before, some pseudonym systems have a similar approach to achieve backward unlinka-

bility, Figure 3.2. They divide the time into large periods of time denoted as epochs and these are divided

into smaller intervals denoted as time slots. The pseudonyms issued to a given client are divided into

groups and each group is associated to one of the slots and the pseudonyms cannot be used outside

of their slot. When revoking a client, only pseudonyms associated to future slots are inserted in the RL

and distributed to the verifiers.

As explained in chapter 2.3, this type of approach does not achieve perfect backward unlinkability,

due to the fact that revoking a client in a given time slot has the problem of exposing the user’s authen-

tications in that given time slot or the problem of letting a misbehaving user continue to authenticate in

the system until the end of that time slot. This can be alleviated augmenting the granularity of the time

slot which would increase linearly the number of pseudonyms issued. This type of schemes have the

challenge of finding a good trade-off between the size of the slots, that should be as small as possible,

and the number of pseudonyms issued.

Another disadvantage is the fact that this approach forces to provide the client with pseudonyms for all

the time slots that the client can possibly authenticate in the system, even if the client only authenticates

in the system in one time slot, providing the client many more pseudonyms than he actually needs. An

ideal solution would be to provide the client as many pseudonyms as the number of authentications he

performs.

Next, we present some pseudonym systems that use this notion of epochs and time slots.

15

Time
Epoch Time Slot

Complaint

Possible slots with pseudonyms
revoked

Linkable
Authentications

Misbehaving client
continues accessing

Figure 3.2: Epochs and Time Slots Approach.

3.1.1.A Haas et al.

Haas et al. [7] proposes a lightweight mechanism to revoke pseudonyms in an anonymous scheme

developed for the authentication of messages exchanged between vehicles in VANETs.

The pseudonyms are issued by a central authority, being also responsible for revoking the pseudonyms

of misbehaving vehicles. This work uses the concept of epochs, a large period of time for which the

pseudonyms are issued, and each epoch is divided in multiple time slots. The pseudonyms that are

issued for a given vehicle and epochs are divided in groups, and each group is assigned a time slot

where the pseudonyms of the group must be used. The system achieves partly the property of back-

ward unlinkability keeping the past authentications of the client private, by revoking only pseudonyms

of future time slots.

Pseudonym Issuance For the Pseudonym Issuance phase, this work developed an algorithm for

the creation of the pseudonyms to achieve an efficient way of generating and revoking the pseudonyms.

Whenever the certificate authority receives a registration request from a client, it creates a nonce which

will be used to create a hash chain as long as the number of time slots in the epoch. Each element

of the chain is associated to a time slot and is created hashing the previous element, being the first

one obtained hashing the nonce created for that client, as illustrated in Figure 3.3. After generating the

chain, the certificate authority generates the groups of pseudonyms to be sent to the client. For each

time slot, it generates a sequence of values from 1 to R, being R the size of the pseudonym group, and

encrypts each of these values using the associated element of the hash chain as the key of a cipher.

Each of these ciphertexts is the identifier of a pseudonym and is inserted on it. The certificate authority

generates pairs of asymmetric keys, ⟨K+,K−⟩, and include one of these pairs in each pseudonym,

finishing their creation by adding its digital signature generated from the identifier and the public key of

the pseudonym, with its private key, K−
CA. After all these steps, the certificate authority replies to the

16

client sending the pseudonyms it just created. Being each pseudonym p = ⟨id,K+
p , {id,K+

p }K
−
AC ⟩

...Nonce Element 1

Time slots

Element 2 Element 3 Element Lh hh h h

Figure 3.3: Hash Chain.

Access Control In order to authenticate himself, a client sends his message along with a pseudonym

of a group associated with the current time slot. Whenever a client receives a message, it checks the

pseudonym that comes with it, verifying the digital signature and checking that its identifier is not in

its ”blacklist” of revoked pseudonyms. This work also includes a way to improve the efficiency of the

memory necessary to store the revoked clients’ information and the look-ups in the RL, which is the

usage of BFs to store the revoked pseudonyms.

Pseudonym Revocation To revoke a client, the certificate authority publishes and distributes the

element of the hash chain associated to the current time slot. With this information, all the vehicles

perform the same steps used in the creation of the pseudonyms and obtain the identifiers of the revoked

client’s pseudonyms for the current time slot and the future ones. The privacy of the revoked client’s past

authentications is assured by the irreversibility property of hash functions which guarantees that given

an element of the chain, it is not possible to calculate the previous elements.

This approach has several advantages such as the minimal information necessary for the certificate

authority to store about each customer which is just the nonce associated to the client’s registration, the

amount of information necessary for the certificate authority to revoke a client which is just the element

of the hash chain associated with the time slot when the client was revoked.

On the other hand, this scheme is based in epochs and time slots, which does not allow to achieve

revocation with perfect backward unlinkability. It is possible to argue that it would be possible to shorten

the time slots in order to make it infeasible to revoke a client in a time slot that the client has already

authenticated in, but this would increase the number of pseudonyms necessary to be issued to each

client linearly with the granularity of the time slots, leading to a huge number of pseudonyms issued and

not used by the clients. It must be found a good trade-off between the size of time slots and number of

pseudonyms issued.

3.1.1.B EDGAR

EDGAR [8] introduces a new class of pseudonyms known as ”Range-Revocable Pseudonyms” that can

be revoked for any time range within its original period. This scheme, also constructed with the concept

of epochs and time slots, tries to overcome some flaws of Haas et al. [7]. This scheme has a pseudonym

17

manager issuing clients’ pseudonyms, and each pseudonym has an associated key pair, used by the

clients to authenticate themselves. The proposed scheme solves the problem of issuing many more

pseudonyms than the client actually needs, permitting to issue only as many pseudonyms as the number

of authentications done by the client. This is achieved because the information distributed when revoking

a given pseudonym cannot be linked with its usage outside of the revoked time range. This paper also

improves the perfect backward unlinkability problem, but does not achieve it completely.

This work uses the concepts of pseudonyms and capabilities. In the beginning of each epoch, a tree

is constructed with as many leaf nodes as the number of slots in an epoch, and each slot is associated

with a leaf node, as shown in Figure 3.4. Each node is assigned a label that the clients later use to

create capabilities and authenticate in the system.

Slot 1

Time

= [L, L0, L00]

L

L0 L1

L00 L01 L10 L11

Required Latcheys for
a Capability in Slot 1

Figure 3.4: Latchkeys and Capabilities.

Pseudonym Issuance When joining the system, the client asks the pseudonym provider for pseudonyms

and receives a bunch of these, valid for the current epoch, each with an associated asymmetric key pair.

The pseudonym manager signs the pseudonym to ensure its integrity and authenticity.

Access Control Capabilities are used for authenticating with the system verifiers. When authenti-

cating, the clients must generate a capability using one of their pseudonyms, for the specific time slot

they are authenticating in. To generate a capability, the user signs the label of each node that form the

path between the root node and the leaf node associated to that specific time slot, using the chosen

pseudonym’s private key. These signatures are denoted latchkeys and a capability is defined as the set

of these latchkeys, the public key and the signature of the pseudonym provider of the pseudonym which

originated this capability. After creating the capability, the client sends the capability and the pseudonym

to the system verifier. When a verifier receives a capability, verifies the pseudonym manager’s signature,

with the public key, verifies if the latchkeys were originated using the private key of the pseudonym and

18

if they were originated from the labels of the tree’s nodes associated with that time slot. Then it checks,

if any of the latchkeys is in the RL. If none of them is, the client is authenticated.

Pseudonym Revocation To revoke a pseudonym, the pseudonym manager must revoke the capa-

bilities of that pseudonym for future time slots. A capability is valid only when none of its latchkeys is

revoked. In order to revoke a capability associated to a given time slot, the pseudonym manager can

revoke the latchkey of the leaf node. If the pseudonym manager wants to revoke capabilities of several

time slots, it can revoke inner nodes’ latchkeys of the tree, revoking all the capabilities associated with

leaf nodes of the sub-tree that has those inner nodes as root. The pseudonym provider then calculates

the latchkeys for the pseudonym being revoked, using its private key, and distributes them to the veri-

fiers. The capabilities generated from the same pseudonym have intersecting information, so the user

must never use the same pseudonym twice, as the two authentications could be linked. When revok-

ing a client, the pseudonym manager must not revoke latchkeys which may have already been used in

capabilities of previous time slots.

This work allows to increase the granularity of the time slots, without increasing the number of

pseudonyms used, but at the cost of incresing the revocation information to be distributed to the verifiers,

because all the future possible capabilities have to be revoked and the number of capabilities increase

with the granularity. Despite this increase, the tree system allows to alleviate this problem, revoking

latchkeys of inner nodes.

This aproach has the advantage of the amount of information necessary for the pseudonym manager

to store about each client, which is just the clients’ identifiers. This work uses a pseudorandom function

with a seed composed of the client identifier, epoch and time slot, in order to create the pseudonyms

for a given client. With these client identifiers, when revoking a client, the pseudonym manager can

reconstruct the seeds, generate the pseudonyms again and distribute them to the verifiers.

When compared with Haas et al. [7], this work allows to increase the granularity of time slots, in order

to attenuate the perfect backward unlinkability problem, at the expense of having much bigger RLs.

3.1.1.C NYMBLE

This work [9] designed a pseudonym scheme for anonymizing networks such as Tor. Clients use this

kind of networks, when accessing websites, to hide their IP addresses through a set of nodes belonging

to the network. Since website administrators can’t block a misbehaving user by blocking his IP address,

they usually block the IP address of the exit node, blocking not only the misbehaving user but also all

the other legitimate users. The presented scheme tries to solve this problem.

The scheme is composed by four entities: user, pseudonym manager, nymble manager and server.

The users start by asking the pseudonym manager for pseudonyms and then use those pseudonyms to

get a credential from the nymble manager. With this credential the user is able to authenticate in a given

19

server keeping their privacy. The detailed process is explained below.

Pseudonym Issuance Like in the previous systems, time in this system is divided into epochs, and

each epoch is further divided into slots. When a client joins the system, they begin by requesting a

pseudonym from the pseudonym manager.

After obtaining the pseudonym, the client can access servers by using this pseudonym to acquire

a credential from the nymble manager. Each credential is specific to a single server; thus, if the client

intends to access multiple servers, they must obtain a separate credential for each server.

A credential consists of a sequence of nymble tickets, one for each slot of the epoch. Each nymble

ticket is valid only for the corresponding slot and must be used within it. When authenticating with a

server, the client presents the appropriate nymble ticket.

In the first step, the pseudonym manager processes a request from the client and returns a pseudonym

valid for the current epoch. This pseudonym consists of two Message Authentication Codes (MACs):

1. The first MAC is computed using the client’s identifier, the epoch, and a secret key known only to

the pseudonym manager.

2. The second MAC is computed using the first MAC, the epoch, and a secret key shared between

the pseudonym manager and the nymble manager.

When a client presents their pseudonym to the nymble manager, the nymble manager begins by

verifying that the pseudonym is legitimate by checking the second MAC. If the MAC is valid, the nymble

manager proceeds to create the credential.

First, it generates a seed associated with the pseudonym presented by the client. Using this seed,

the nymble manager creates a hash chain with a length equal to the number of slots per epoch plus

one, utilizing an irreversible hash function f . Each element of this chain, except for the initial element,

is associated with a specific slot. The second element corresponds to the first slot, the third element to

the second slot, and so on.

Using this hash chain, the nymble manager creates the credential. First, it applies another irreversible

hash function g to the first element of the chain to produce the credential identifier, denoted as nymble*.

Then, the manager iterates through the hash chain, passing each element through the hash function g

to create the identifiers for the nymble tickets.

To construct each nymble ticket, the nymble manager generates two MACs and a ciphertext:

• The first MAC is computed using the server’s identifier, the slot associated with the nymble ticket,

the epoch, the nymble ticket’s identifier, and a secret key known only by the nymble manager.

• The second MAC is computed using all the information used in the first MAC, along with the first

MAC itself, but employing a secret key shared between the server where the client will use this

credential and the nymble manager.

20

• The ciphertext is created by encrypting the concatenation of the credential identifier (nymble*) with

the element of the hash chain associated with the slot for which the nymble ticket is being created.

Each nymble ticket is represented as a tuple consisting of the slot in which it must be used, the

nymble ticket’s identifier, the two MACs, and the ciphertext.

After completing the construction of all the tickets, they are grouped together and inserted into the

credential, which is then sent to the client.

Seed 0 Seed 1

Nymble 1

Seed 2 Seed 3 ...f fff

g g g g g

Seed L

Nymble 3Nymble 2Nymble * Nymble L

f

Figure 3.5: Creation of Nymble Tickets.

Access Control With the credential, a client can authenticate in a server, sending the ticket associ-

ated with the current slot. When the server receives a ticket, it verifies the ticket, checking if the ticket

was indeed created by the nymble manager using the second MAC of the ticket and checking if the

nymble ticket is not revoked, by verifying if it is present in the server’s ”blacklist”. The server allows the

authentication if this verification is successful.

As mentioned before, this scheme provides the clients with revocation auditability, by allowing them

to verify their revocation status before authenticating in the system. In the beginning of each authentica-

tion, the server sends its ”blacklist” to the user and the user only proceeds with the authentication if his

revocation status is negative.

This method could raise some problems, such as, the server sending an outdated ”blacklist” to the

client. The authors present a solution, that allows the clients to check the integrity and freshness of the

”blacklist”. This is accomplished by having the nymble manager signing the ”blacklist” for every server

in the beginning of each time slot. When a client receives the ”blacklist” from a given server, he checks

the nymble manager’s signature and verifies that the ”blacklist” corresponds to that time slot and it is

complete.

Pseudonym Revocation When a client misbehaves at a given server, the server has the capability

of revoking that client by generating a complaint and sending it to the nymble manager, including the

nymble ticket that was used by the client when connecting. Receiving a complaint, the nymble manager

checks the authenticity of that nymble ticket using the first MAC inserted in it, decrypts the ciphertext

and gets the nymble* which is the identifier of the credential where that nymble ticket* is inserted. The

nymble manager returns the element of the chain created when creating that credential, associated to

21

the next time slot. With this element, the server is capable of generating the nymble ticket’s identifiers

for the future time slots and revoke them, inserting them in its ”blacklist”.

Comparing this system with the previous ones, Nymble, obviously, provides revocation auditability

which is the biggest improvement. Besides that, the pseudonym issuing is divided by 2 central authori-

ties and none of them, has the ability to resolve, nymble tickets or pseudonyms to a real identity, which

increases the privacy of user that is not exposed to a single central authority. Despite of these improve-

ments, the nymble manager keeps some of the flaws of the previous works. It is a scheme based in

epochs and time slots, which does not allow to achieve revocation with perfect backward unlinkability.

This problem is aggravated by the mechanism used to achieve revocation auditability. The need of

having the nymble manager signing the ”blacklists” in the beginning of each time slot, forcing the nymble

manager to sign all the ”blacklists” in the beginning of each slot, forces the nymble manager to store

these ”blacklists”, or to generate them in the beginning of each slot, increasing the memory space used

or the computation necessary. This problem, makes impossible to reduce the time slots to alleviate the

perfect revocation problem, since, once reducing them, this signing process would be repeated more

often.

3.1.1.D IFAL

IFAL [10] proposes a pseudonym scheme for the authentication of messages exchanged between vehi-

cles in VANETs. This work presents an original approach. While other existing pseudonym schemes is-

sue pseudonyms to clients, that are able to authenticate in the system right after receiving the pseudonyms,

IFAL has the approach of pre-issuing the pseudonyms to clients and activate them later by sending ac-

tivation codes. These activation codes allow the vehicle, to generate the private keys associated to the

pseudonyms.

This work has the advantage of not needing to revoke the pseudonyms and distribute them to the

verifiers in RLs, unlike other systems. Instead of revocating the pseudonyms of a misbehaving client,

IFAL stops sending activation codes to a revoked client and this client runs out of valid pseudonyms

and is prevented from authenticating again. This system has the following entities: Enrollment Authority,

EA, responsible for the vehicles’ registration in the system, Authorization Authority, AA, responsible for

issuing the vehicles’ pseudonyms.

Pseudonym Issuance In this model, the vehicle starts by generating a registration request and

sending it to the Enrollment Authority. The EA assigns a unique uid to the vehicle, signs the request

together with the uid and sends it back to the vehicle. Next, the vehicle sends the information, it received

from the EA, to the AA in a request for pseudonyms. The AA checks the information received and

generates a certificate file with multiple pseudonyms, and the activation codes for the pseudonyms. The

certificate file is returned to the vehicle and the activation codes are stored together with the vehicle’s

22

uid.

Time is divided in epochs and the pseudonyms inserted in the certificate file are divided into groups

and each group is associated to a given epoch. Pseudonyms cannot be used outside of the epoch they

are associated to.

Activation Phase In the activation phase, the AA distributes activation codes to vehicles and an

activation code permits to generate the private keys for all pseudonyms associated to a given epoch.

The AA maintains in its storage, a mapping between uids and activation codes generated for each uid.

The AA iterates through this list and sends the activation code for the next epoch to the client, through the

EA. The EA maintains in its storage, a mapping between uids and the canonical identities of the vehicles.

The EA receives the activation codes from the AA and sends them to the vehicle corresponding the uid

indicated by the AA.

When a vehicle receives an activation code, it calculates the private keys for the pseudonyms of that

epoch, and once it gets the keys, the vehicle is ready to authenticate its messages.

Pseudonym Revocation In order to revoke a vehicle, there are two possible ways. The first way is

that the EA receives a request to revoke a vehicle with its canonical identity. In this case, the EA gets

the vehicle’s uid and sends it to the AA informing the AA to stop issuing activation codes to the vehicle

with this uid. In the second mechanism, the AA receives a complaint about a misbehaving vehicle with

the pseudonym used during the authentication. The AA uses this pseudonym to recover the uid of the

vehicle and stops sending activation codes for this vehicle.

This system does not achieve immediate revocation, as it is necessary to wait for the beginning of

the new epoch for the revoked client to run out of pseudonyms. This is as problematic as the size of the

epochs and reducing them would not be a solution, since it would increase the number of pseudonyms

used and the number of activation codes sent.

This work has a good improvement which is the replacement of distribution of RLs by the the distri-

bution of activation codes. The distribution of activation codes would be a lot more efficient since the

activation codes are much smaller than the RLs. This would be good in a scenario where the number of

verifiers are similar to the number of clients as a VANET, where all vehicles work as verifier and client,

but not in a scenario where there are very few verifiers comparing to the number of clients as in smart

retail applications. The last scenario, would be a scenario where the overhead caused by RLs distri-

bution would not be so high and there would be much more activation codes circulating if we used this

approach, than RLs if we used the previous approaches. Even if the activation codes are more efficient,

this would be a downgrade overall.

23

3.1.2 Other Approaches

Some schemes present different strategies, other than the notion of epochs and time slots. This is the

case of V-tokens [1], PEREA [11] and Privacy Keeper [12].

3.1.2.A V-token.

V-token [1] is a pseudonym scheme developed for VANETs where vehicles need to authenticate their

messages. While most of other similar works rely the resolvability of pseudonyms to issuance author-

ities that assure this by storing pseudonym-identity mappings, this work argues that these mappings

are too privacy sensitive and present a pseudonym issuance protocol that satisfies the resolvability of

pseudonyms while preventing the issuance authorities from storing pseudonym-identity mappings.

There are 4 entities in this scheme: vehicles, certificate authorities, CA, pseudonym providers, PP

and resolution authorities, RA. When a vehicle joins the system, it is given a long term identifier, id-

V, which is a certificate and the corresponding pair of keys, by a certificate authority. A vehicle can

obtain pseudonyms from pseudonym providers and before the pseudonyms are issued, it is verified if

the vehicle has been revoked. The resolution authorities take part in the resolution process. This work

achieves its purpose of preventing the issuance authorities from storing pseudonym-identity mappings

by inserting the resolution information directly in the pseudonym. This piece of information is known as

V-token.

The protocol of issuance is divided in two phases: Authentication Phase and Acquisition Phase.

Authentication Phase In the Authentication Phase the vehicle starts by sending the certificate au-

thority a request in order to receive V-tokens, including his id-V and a signature using his long term

certificate. The CA checks the vehicle is not revoked and sends back an id which is the concatenation

between id-V and id-CA, being id-CA the identifier of this CA, the public key of the resolution authorities

and requests N commitments. After this, the vehicle creates N V-tokens, by generating N unique random

number for each and appending them to the id it just received, and encrypting this concatenation with

the public key of the resolution authority. After generating the V-tokens, the vehicle chooses N random

distinct blinding factors and blinds each commitment using one of these factors. The client stores the

used factors and the unique random numbers used when creating the V-tokens and sends the set of

blinded V-tokens to the CA. The vehicle must prove probabilistically that it has created the V-tokens

correctly, using the id provided by the CA. This is achieved by having the CA requesting some blinded

V-tokens for the vehicle to reveal. The client then sends the blinding factors and the unique random

numbers used when created each of the V-tokens that he must reveal now. With this information the CA,

unblinds the V-tokens and check if they were well constructed. At the end of this phase, the CA signs

the remaining blinded V-tokens and sends these signatures to the vehicle. The certificate authorities are

not able to understand which V-tokens they signed because of the BSigs, so, they won’t be able to trace

24

the pseudonyms to a given vehicle.

Acquisition Phase During the Acquisition phase, the vehicle gets pseudonyms from a pseudonym

provider. Once a vehicle has in its possession signed V-tokens, it contacts a pseudonym provider to

get a pseudonym for each V-token. To generate a pseudonym, the vehicle starts by generating a key

pair and generates a request to the pseudonym provider, that includes the public key generated and

one V-token and signs the request with the private key, showing its ownership of the key pair. When the

pseudonym provider receives such request, it starts by verifying the vehicle’s signature and checks the

validity of the V-token, by checking the CA’s signature using the CA’s public key. If everything is good,

the PP creates a pseudonym, inserting the public key and the V-token received in the request, signs it

and sends it to the vehicle.

The process of mapping a pseudonym to a real identity, corresponds to decrypt the V-token inserted

in the pseudonym with the private key of the Resolution Authority, in order, to obtain the id-V and the id-

CA. With this information would be possible to map the id-V of the vehicle to a real identity, by contacting

the Certificate Authority that registered the vehicle and created its V-tokens.

This work does not provide any process for the revocation of already issued V-tokens.

The main purpose of not having a central authority storing pseudonym-identity mappings is achieved.

Another good advantage of this scheme, is that the vehicles only need to generate as many pseudonyms

as the number of authentications they perform, unlike other schemes. On the other side, the process

of generating V-tokens and pseudonyms is complex and perhaps, it creates a little overhead on the

vehicles’ system. Also, it would be possible for a lucky vehicle to generate invalid V-tokens during the

Authentication Phase. For a revoked vehicle, it would be necessary to wait until the client runs out of

valid V-tokens before he loses the ability to authenticate in the system, which is also a disadvantage.

3.1.2.B PEREA

PEREA [11] presents a pseudonym scheme designed for websites, that provides perfect backward un-

linkability and revocation auditability, without the use of third trusted parties. It uses an accumulator

as ”blacklist” for revoked pseudonyms, kept by the website system. The property of revocation au-

ditability is achieved by having the website sending the ”blacklist” to the user in the beginning of each

authentication. The property of backward unlinkability is achieved by never letting the website system

know a set of pseudonyms used by a client.

Pseudonym Issuance The clients start by authenticating themselves with the website system and

obtain a credential that allows them to generate future pseudonyms to authenticate in the system. When-

ever a client authenticates, the client generates a new ”ticket” himself and authenticates in the system

with that ”ticket” that serves as a pseudonym.

Access Control In order to authenticate successfully, the client also needs to prove that none of

25

his k last ”tickets” is in the ”blacklist” of the website system. The key feature of this work, is the use of

ZKPs to generate a non-membership proof for all the k last ”tickets” the client used, proving that the k last

”tickets” are not inserted in the accumulator. The use of ZKPs prevents the website system of relating the

set of the last k ”tickets” to the user and gain information about his last k authentications. Furthermore,

the client also sends another ZKPs in order to prove that he didn’t replace any of the last legitimate k

”tickets”. The variable ”k” is application dependent, it must be a reasonable value slightly higher than the

number of expected authentications before the website system recognizes a misbehavior.

This pseudonym scheme has the advantages of providing perfect backward unlinkability and re-

vocation auditability. The number of pseudonyms created for each user is equal to the number of

authentications performed. On the other side, this scheme uses ZKPs to a very large extent, techniques

that are very resource intensive. Moreover, the number of ZKPs used in each authentication depends

on the value of k. This scheme may be impractical for applications with a large ”k”. This pseudonym

scheme also has the disadvantage that if a user is able to authenticate more than k times, after he has

misbehaved, and before the system notices this misbehavior, he will continue being able to authenti-

cate in the system, even after the system has ”blacklisted” his pseudonym used during the misbehavior.

The authors argue that it would be possible to limit the clients’ authentications. This measure would be

a disadvantage by itself and would be impossible to implement in a physical system, like smart retail

applications.

3.1.2.C Privacy Keeper

This work [12], illustrated in Figure 3.6, presents a totally different approach to achieve perfect backward

unlinkability when revoking a client, assuring at the same time revocation auditability to the clients.

This work presents an approach where the client sends a pseudonym and a proof of non revocation in

order to authenticate in the system. Instead of revoking the pseudonyms and distributing them directly to

the verifiers, the central authority distributes the proofs used by the clients to authenticate, in RLs. The

fact that the verifiers never get to know which pseudonyms are revoked, makes it impossible for them to

associate a bunch of pseudonyms to the same user as in other anonymous schemes. Also, this work is

not based in epochs and time slots which permits the central authority to provide the client with only as

many pseudonyms as authentications done by the client.

Pseudonym Issuance The pseudonyms are created by the central authority and sent to the clients.

The pseudonyms have an asymmetric key associated and are formed by the public key and a digital

signature made by the central authority to prove the pseudonym’s validity. The non revocation proofs

are digital signatures of a seed created with the private key associated to a pseudonym.

Access Control When revoking a misbehaving client, the central authority starts by creating a new

RL, a new seed associated to that RL, generated randomly, and then generates the non-revocation

26

proofs for the pseudonyms of the client revoked using the seed it just created and the proofs of non

revocation for all the previous revoked pseudonyms. The central authority keeps track of pseudonyms

issued to each user. Finally, gets all the proofs together in the RL, signs the concatenation between the

list and its seed and distributes these elements to the verifiers.

Pseudonym Revocation When a client is authenticating, the verifier sends him the last RL it re-

ceived from the central authority, the seed and the signature of the central authority. The client verifies

the signature, chooses one of his pseudonyms and calculates the non-revocation proof with the seed

received for that pseudonym. If this proof is not in the RL received, then it means that the client is

not revoked and if he is not, he finishes his authentication sending the pseudonym and proof to the

verifier, otherwise, he aborts immediately. The verifier, checks the authenticity of the proof using the

pseudonym’s public key and checks if the proof is in the RL, if it is not, the client is authenticated.

The property of revocation auditability is achieved because the client can see if is revoked before

sending any information to the verifier. The perfect backward unlinkability is achieved because the

verifiers never get to know the revoked pseudonyms, only their non revocation proofs. The verifier has

the ability of associating a bunch of proofs to the same client, but the client will never send one of this

proofs because he checks if his proofs are in the RL sent by the verifier before sending them. Even if

the verifier sends an outdated RL to a revoked client, of a time where he was not revoked yet, the client

will calculate the proofs based on the seed associated to this RL and they will be different of his proofs

that are present in the updated RL. This is assured by always having a different seed for each RL. Of

course, the verifier can’t also forge RLs because their integrity and authenticity is protected by the digital

signature of the central authority.

RL

+ SeedClient Verifier

RL + Seed

Pseudonym + Proof

RL + Seed

Central
Authority

RL

+ Seed

3
2

1

Figure 3.6: Authentication in Privacy Keeper. RL is Revocation List.

This work has 2 disadvantages, which are the total amount of time and computation for the central

authority to revoke a client, because it has to calculate the non-revocation proofs for all the pseudonyms

revoked until that moment using digital signatures, and the latency of clients’ authentications, because of

the need of sending the RL to the client in the beginning of each authentication. The authors present two

possible optimizations: usage of BFs for RLs decreasing their size and pre-computed non revocation

proofs for pseudonyms already revoked to be inserted in future RLs. Even if the BFs are used to

27

implement RLs the problem of authentications’ latency will still happen due to the size of BFs that are

usually very big to reduce the amount of false positives.

3.1.3 Comparison of Pseudonym Schemes

We now summarize and discuss the main differences and accomplishments of existing pseudonym

schemes presented in the previous chapters. Table 3.1 summarizes the properties offered by each

scheme and the costs of the respective operations.

Analyzing Table 3.1 it is possible to notice that in all pseudonym schemes, the information required

for storage in the pseudonym providers is dependent only on the number of clients registered. This

is achieved by using pseudo random functions [8, 12], or by using a hash chain [7, 9], to generate

pseudonyms, using seeds constructed from a user identifier. The fact that the pseudonyms issued to

a client can be generated from the seed associated to that client, removes the need to store all the

pseudonyms issued, as the pseudonym provider can generate them again, when revoking a client, and

distribute them to the verifiers.

All the schemes based on epochs and time slots [7–9], have the number of pseudonyms issued

dependent on the number of time slots and on the pseudonyms used per time slot. This situation is

not ideal, because it forces the user to store many more pseudonyms than he will ever need. Also, this

is problematic because of the number of pseudonyms that need to be revoked when a given client is

revoked, increasing the size of RLs and the size of the ”blacklists” of revoked pseudonyms in the verifiers.

It is also possible to notice the impossibility of schemes that are based on the notion of epochs and

time slots [7–9], to provide perfect backward unlinkability. EDGAR improves this, by making it possible to

reduce the size of the time slots, at the expense of having much bigger RLs. The growth of the size of the

RLs is mitigated by the fact that this scheme allows to provide the clients only with as many pseudonyms

as the number of their authentications, and by the latchkeys tree, as explained in Chapter 3.1.1.B, but

it still does not achieve backward unlinkability perfectly. Although IFAL is a scheme based in epochs

and time slots, it achieves the property by presenting a radical approach of issuing certificates to clients

and activate them later by sending activation codes to the clients, every time slot, for the pseudonyms of

that time slot. This scheme revokes clients by stop sending them the activation codes and waiting until

the next time slot, for the client to run out of activating pseudonyms, which leads to the disadvantage

of letting misbehaving users keep authenticating in the system until the end of the revocation time slot.

This work has the advantage of swapping the distribution of revocation to the verifiers by the distribution

of smaller activation codes to the users. This advantage is only an advantage in systems where the

number of clients is similar to the number of verifiers. This does not happen in smart retail applications,

where the number of customers is much higher than the number of verifiers. Despite of also achieving

perfect backward unlinkability, V-token has a similar problem, it can’t revoke a client right away after a

28

complaint, as it needs to let the revoked user run out of V-tokens.

Concerning the property of revocation auditability, it is observed that only Nymble, PEREA and Pri-

vacy Keeper provide it. Nymble and Privacy Keeper provide it by having the RL sent to the client in the

beginning of each authentication. This RL is signed by the trusted central authority in order to prove its

freshness and authenticity. This type of approach has the disadvantage of having high latencies in each

authentication, due to the need of sending the RL to the user.

Only PEREA and Privacy Keeper achieve perfect backward unlinkability and revocation auditability

simultaneously. PEREA achieves this using ZKPs and the scheme is impractical for physical systems,

where users’ authentications cannot be limited, such as smart retail applications. In this type of appli-

cations, users usually authenticate using a smart card or their smartphones, that have limited compu-

tational power and are not suitable for generating resource intensive ZKPs. Privacy Keeper achieves

the properties solely, by asymmetric encryption, but does not achieve them efficiently. It has the dis-

advantages of high latencies in authentications and the high quantity of computation needed for the

central authority to revoke a client. Although some anonymous authentication systems already provide

the necessary properties, they do so in a highly inefficient manner, especially those that implement the

property of revocation auditability, which requires transferring the RL to the client; a list that can grow to

considerable sizes.

The substantial latency introduced by this process makes these systems unsuitable for many real-

world applications, including smart retail environments.

Provider Pseudonyms Revocation Backward Revocation
Pseudonym Systems Storage Issued List Size Unlinkability Auditability
Haas et al. [7] O(N) O(p*T) O(R) Limited No
EDGAR [8] O(N) O(A) O(R*A*log(T)) Limited No
Nymble [9] O(N) O(p*T) O(R) Limited Yes
IFAL [10] O(N) O(p*T) - Full No
V-token [1] O(N) O(A) - Full No
PEREA [11] - O(A) - Full Yes
Privacy Keeper [12] O(N) O(A) O(E*A) Full Yes

Table 3.1: Comparison of the different systems. (N) Number of clients registered. (p) Pseudonyms per time slot.
(T) Number of time slots in an epoch. (R) Number of revoked clients. (A) Number of authentications
performed by a client. (E) Clients revoked since the beginning of the epoch.

3.2 Techniques for Optimizing Bloom Filter Transfer Efficiency

As mentioned before, some existing pseudonym systems implement the RLs as a BF, where revoked

pseudonyms are stored. The RL is transferred multiple times, either for distributing the RL to all the

verifiers, or during the authentication process, in systems that provide the property of Revocation Au-

ditability, where the verifiers send the RL to the clients, so they can check their revocation status before

29

authenticating in the system.

BFs can grow to massive sizes, reaching several gigabytes, especially in highly dynamic systems,

making their transfer really painful, particularly in the authentication process, making this process reach

several seconds, making these systems absolutely infeasible and impossible of being applied to a real

scenario. Therefore, we investigate two proposed techniques to improve the efficiency of the transfer

process and evaluate their suitability for use in this context.

3.2.1 Compressed Bloom Filters

Compressed Bloom Filters [13] are a variation of the classic BFs designed to optimize their size for

transmission. This work introduces a novel perspective on BFs, proposing that they can serve a dual

purpose. Traditionally, a BF is treated as a data structure, optimized to minimize the probability of false

positives given constraints like memory size and the number of items. However, when a BF is also

utilized as a message for transmission, another key metric emerges: transmission size.

Reducing transmission size is critical in scenarios where minimizing network traffic is a priority, even

if sufficient memory is available at the endpoint machines. Compression techniques can effectively

decrease the number of bits transmitted, leading to improved efficiency. This work demonstrates how

applying compression to BFs can enhance performance by reducing the volume of data sent over the

network.

Nevertheless, this approach comes with certain trade-offs, particularly the additional computational

overhead required for compression and decompression. The algorithm arithmetic coding [14] is recom-

mended as a suitable solution in this context, as it offers a straightforward and efficient compression

method tailored to such application.

This work proposes optimizing BF parameters with a focus not on minimizing the false positive rate

but on achieving a specific probability of bits being set to 1, so they can be effectively compressed later.

This approach aims to minimize the transmission size, enabling more efficient data transfer.

We consider the use of this technique to lower authentication latencies, in systems that support the

revocation auditability property, considering verifiers to compressed BFs, sending less information on

the network, and clients decompressing them to verify their revocation status.

To evaluate the applicability of this approach in the context of anonymous authentication using

pseudonyms, we conducted a series of tests to measure the time required to decompress a BF. These

tests varied the size of the original BF, that was compressed, being decompressed.

As illustrated in Figure 3.7 the decompression time increases significantly as the size of the com-

pressed BF grows. In an authentication process, the client must receive the RL, the compressed BF,

decompressing it each time authentication occurs. This substantial increase in decompression time

renders this solution impractical for such use cases.

30

1 KB 10 KB 100 KB 1 MB 10 MB 100 MB 1 GB
Original Bloom Filter Size

10 2

10 1

100

101

102

103
Ti

m
e

(s
ec

on
ds

)

Decompression Time vs Original Bloom Filter Size
Decompression Time

Figure 3.7: Compressed Bloom Filters Decompression

3.2.2 Compacted Bloom Filters

Compacted Bloom Filters [15] are another alternative design to the traditional BFs, aimed at optimizing

their memory representation for storage and operational efficiency.

Compacted BFs need less memory than a BF to achieve the same false positive rate. Thus, when it is

used in a network and distributed application, it reduces the transmission cost and the memory capacity

needed at the endpoints. In contrast to Compressed BFs, the idea of using compression/decompression

techniques is abandoned and it is proposed a new pattern to condense the bit vector.

For the creation of a Compacted BF, the original BF is divided in n multiple blocks, of b bits each. After

the original BF is divided, it is translated as an array of n indices, each with m bits. Index i corresponds

to the ith value of block1, block2, ..., blockn. For example the first index of the Compacted BFs, has

information pertaining the first bit of each block of the splitted original BF.

The rules for populating each index of the compacted BF (CmBFV) are based on the bit patterns in the

standard BF. Let Si represent the set of ith bits across all blocks in the BF. The process for determining

the value of CmBFV[i] is as follows:

1. All bits in Si are ”0”: If no ”1” exists in Si, the i-th bit in CmBF is set to 0:

CmBFV[i] = 0.

31

2. Exactly one ”1” in Si: If Si contains exactly one ”1”, located in block r, we assign:

CmBFV[i] = r.

3. All bits in Si are ”1”: If every bit in Si is ”1”, the value is set to the maximum index value:

CmBFV[i] = 2m − 1.

4. More than half of the bits in Si are ”1”: If at least half of the bits in Si are ”1” (but not all), the

value is also set to:

CmBFV[i] = 2m − 1.

This may cause some bits originally set to ”0” to be interpreted as ”1”, leading to an increased false

positive rate.

5. Less than half of the bits in Si are ”1”: In this case, one block containing a ”1” in the ith position

is randomly selected (e.g., block s), and we assign:

CmBFV[i] = s.

This results in all other blocks containing ”1” at the ith position being interpreted as ”0”, which

introduces the existence of false negatives.

To mitigate false positives and false negatives, all 2m possible index values can be utilized to repre-

sent more unique bit patterns. This approach minimizes the number of bits misinterpreted as ”1” or ”0”,

reducing the overall error rates.

While this work provides an efficient method for compressing a BF, it introduces the occurrence of

false negatives. This compromises its suitability for implementing RLs in authentication systems, as

false negatives would enable revoked users to authenticate successfully.

3.2.3 Comparison of Bloom Filter Optimizating Techniques

Compressed Bloom Filters and Compacted Bloom Filters both reduce the size of traditional Bloom Filters

but with different methods and trade-offs. Compressed BFs use compression techniques to minimize

transmission size, which is beneficial in bandwidth-limited environments. However, the decompression

process introduces computational overhead, making them less suitable for low-latency applications like

authentication, where performance can be significantly impacted as the filter size grows.

32

In contrast, Compacted BFs optimize memory usage by reorganizing the Bloom Filter’s bit array,

dividing it in blocks and compressing them into smaller blocks. However, Compacted BFs introduce the

possibility of false negatives, which can be problematic in systems like RL verification, where it is vital to

accurately reject revoked users.

The above stated problems, make neither of the presented techniques suitable for this use case.

Summary

In this chapter we have presented the most relevant authentication schemes based on pseudonyms.

Several of these schemes use Bloom Filter to encode lists of pseudonyms. We have also discussed a

number of techniques that can be used to reduce the size of the filters exchanged during authentication.

33

34

4
Proposed Techniques

Contents

4.1 Technique based on Hierarchical Bloom Filter Arrays 36

4.2 Technique based on Redactable Signatures . 37

35

A disadvantage of pseudonym systems that provide the property of revocation auditability is that

they require the transfer of the RL to the client, which, given its potentially large size for very dynamic

systems, can introduce a significant latency in the process of authentication. Our work focuses on this

problem, proposing techniques that aim to reduce the amount of information that clients and verifiers

exchange during each authentication process, while maintaining all the security properties inherent to

the RL, namely its integrity and authenticity. Considering that most of the pseudonym systems use

BFs to implement the RL, we propose two techniques to achieve this: 1) a technique based on HBFAs,

and 2) a technique inspired by Redactable Signatures. In both techniques proposed in this work, we

assume the same entities as in most systems discussed in Chapter 3.1: clients, verifiers, and the

central authority, as well as the same phases: pseudonym issuance, pseudonym revocation and access

control, with substantial changes in the following phases: pseudonym revocation and access control.

4.1 Technique based on Hierarchical Bloom Filter Arrays

In this technique, we propose that the RL be composed of multiple BFs of different sizes, in addition to

the original filter, each containing exactly the same elements. These filters are organized sequentially

and in ascending order of their size.

4.1.1 Pseudonym Revocation

During the revocation of a client, the certification authority creates a set of n new BFs FBnη to form the

new RL. All the elements used to revoke the pseudonyms to be inserted in that list, being the elements

the pseudonyms themselves or non-revocation proofs constructed for each revoked pseudonym, are

inserted into all the BFs created. Finally, the central authority signs each of these filters with its private

key, protecting the authenticity and integrity of each filter.

Subsequently, these filters and their respective digital signatures are aggregated into a RL, RLnew =

⟨[BF1, ...,BFn], [BF1K−
CA , ...,BFnK−

CA]⟩, which is sent to the verifiers.

4.1.2 Access Control

During the authentication process, represented in Figure 4.1, the client starts by downloading the first

BF from the RL, which is the one with the smallest size, as well as, other relevant information for the

pseudonym system, such as the random parameter η associated with the RL in Privacy Keeper. Then,

they choose a pseudonym p and checks if this pseudonym is marked as revoked in the previously

received filter. Since the false positive rate of a BF varies with its size, and the client begins by receiving

the smallest filter, it is not unlikely that the client encounters a false positive at this step. In that case,

36

the client will then download the remaining filters from the RL in increasing order of size until they

reach a filter where the pseudonym is not marked as revoked. If they reach the last filter and the

pseudonym is marked as revoked in that filter, the client assumes that it has indeed been revoked and

cancels the authentication. The authenticity of each filter is verified by the client using the certification

authority’s signature. If the client concludes that they have not been revoked, they can then complete

the authentication by sending the pseudonym p and the corresponding proof to the verifier.

RL

Client Verifier

BF

RL

Central
Authority

RL

Next BF
Next BF

1

2

4

3

5

Pseudonym

Figure 4.1: Authentication with Hierarchical Bloom Filter Arrays. BF is Bloom Filter. RL is Revocation List.

This technique is advantageous in cases where the client can confirm that the pseudonym has not

been revoked by checking the first few filters (ideally, relying only on the smallest filter in most cases);

however, it may worsen the original solution if the client has to download several filters. In most cases,

the client would be able to authenticate using the first pseudonyms by checking only the smaller filters,

making this an efficient solution overall.

4.2 Technique based on Redactable Signatures

In this technique, we take advantage of the fact that the client can know in advance the characteristics of

the Bloom filter encoding the RL, such as its size, the number of hash functions. Using this information,

the client can calculate their non-revocation proof and determine which entries in the vector they need

to check to see if a given pseudonym has been revoked. We then propose that the client, instead of

downloading the entire filter, only downloads segments of the filter in order to obtain all the necessary

entries from the vector.

4.2.1 Pseudonym Revocation

By transferring only parts of the RL, the client is unable to verify the integrity of the list using a standard

digital signature, as proposed in Privacy Keeper. To overcome this issue, we suggest that the central

entity signs the RL using a technique inspired by redactable signatures.

In our solution, after creating the RL, RLnew = ⟨BF⟩, the BF is divided into multiple segments of

configurable size, and the cryptographic hash of each segment is associated with the child nodes of a

37

MT. The remaining nodes of the tree are then generated recursively by hashing the concatenation of the

hashes of the child nodes. Finally, the central authority generates a digital signature σ, by concatenating

the root hash with the parameter η associated with the RL (unique value in Privacy Keeper or time slot

in Nymble), as illustrated in Figure 4.2. The generated elements form the new RL, RLnew = ⟨BF, σ⟩,

which is distributed to the verifiers, who then reconstruct the MT using the same process.

1011101100010001000101100110011101001001110

Hash01

Hash001 Hash011Hash010Hash000

Hash00

Hash0

Filter:

σ = ⟨Hash0 || η⟩
K-

Figure 4.2: Redactable Signature Creation.

4.2.2 Access Control

In the access control phase, shown in Figure 4.3, the verifier begins by sending the information about the

RL, such as: the characteristics of the BF, or the unique value η in the case of the anonymous system

Privacy Keeper.

With this information, the client selects a pseudonym p that they have not used yet and with that

pseudonym p, calculates the exact positions of the BF that needs to verify to test their revocation status,

(in the case of the system Privacy Keeper, the client would first need to calculate the non-revocation

proof), and requests these positions. The verifier responds by sending the filter segments that have the

bits requested along with the necessary hashes for the client to reconstruct the path from the leaf nodes

associated with the requested segments to the root node.

Upon receiving this information, the client ensures they are not revoked using the BF segments they

received, checks the signature σ from the certifying entity, and then calculates the root hash recursively

using the information sent by the verifier. The integrity of the BF segments received by the client is safe-

guarded by the structure of the binary tree. If a malicious verifier were to modify any part, that change

would reflect in some higher node of the tree due to the properties of the MT. The alteration would

38

necessarily affect the root hash, allowing the client to notice the change when verifying the signature

from the certifying authority at that same node. If the client concludes that they are not revoked, they

complete the authentication process by sending their pseudonym p and the corresponding proof to the

verifier.

RL

Client Verifier

Pseudonym

RL

Central
Authority

RL

Bits
Asked Bits

4 3

2

1

Figure 4.3: Authentication with Redactable Signatures. RL is Revocation List.

We propose an optimization to this technique specifically for cases where the client attempting to

authenticate is not revoked, further reducing the amount of information propagated through the network.

For non-revoked clients, it is sufficient to ensure that at least one bit of the bits needed to verify their

pseudonym’s validity, is set to zero in the BF. Accordingly, we introduce this optimization, having the

verifier send only a single segment of the BF containing a bit requested by the client, that is set to ”0”,

rather than transmitting all segments corresponding to the client’s requested bits.

It is important to note that this optimization does not apply to revoked clients. Revoked clients must

receive all the bits required to validate their pseudonym and confirm that each bit is set to ”1”, thereby

verifying their revoked status.

Summary

In this chapter we have presented our proposed techniques to overcome the efficiency problem inherent

to anonymous authentication protocols that transfer revocation lists. In the next chapter, we provide an

extensive evaluation of these techniques, applying them to two already discussed anonymous authenti-

cation systems and comparing them between each other.

39

40

5
Evaluation

Contents

5.1 Experimental Setup . 42

5.2 Individual Performance . 42

5.3 Comparative Performance . 45

5.4 Additional Time to Generate a RL . 47

41

This chapter presents an experimental evaluation of the techniques proposed in Chapter 4. We

star by describing some experiments that provide insights on the performance of each of the proposed

techniques. Then we describe some experiments that allow to assess the relative performance of these

techniques when compared with each other.

5.1 Experimental Setup

We have implemented both techniques in the Privacy Keeper system [12] and the Nymble system [9],

programming each technique in C++. We developed a client and a verifier using two Intel NUC10i7FNB

machines. The machines are equipped with an Intel i7-10710U processor, 16 GB of RAM, and Ubuntu

22.04 LTS. We used the Ed25519 algorithm [16] to generate deterministic digital signatures.

We analyze the impact of varying different parameters in both solutions on the amount of information

transmitted during authentication. Furthermore, we evaluated both techniques by measuring the average

latency of the authentication process while varying the size of the RL, comparing the results with the

average latency of the original Privacy Keeper.

Furthermore, we assessed the effectiveness of both techniques by implementing them in the Privacy

Keeper and Nymble systems and measuring the amount of information transferred during authentication

across varying system scales and numbers of revoked clients. These results were then compared

with the data transfer metrics in the original systems, providing an evaluation of the suitability of these

techniques for real-world scenarios on different scales and across different anonymous authentication

systems.

5.2 Individual Performance

5.2.1 Technique based on Hierarchical Bloom Filter Arrays

As previously described, our technique based on HBFA uses multiple filters of different sizes, with several

parameters that directly influence the amount of information to be transferred during authentication.

Thus, we evaluated the following parameters: 1) reduction factor between each filter, starting from the

largest/original filter down to the smallest one. 2) the number of filters with different sizes used in

the hierarchy, that is, how many times we reduce the largest filter by the chosen factor. 3) The false

positive rate that we accept in the largest filter of the hierarchy. In Figure 5.1, we vary these parameters

and calculate the expected amount of information related to BFs that needs to be transferred during

authentication for each of these configurations, keeping the size of the largest filter fixed at 1GB.

It is worth noting that calculating the expected amount of transferred information is not trivial, as it

42

Factor = 1.25
Factor = 1.5

Factor = 1.75
Factor = 2

Factor = 2.25
Factor = 2.5

Factor = 2.75
Factor = 3

2.5 5.0 7.5 10
.0

12
.5

15
.0

17
.5

20
.0

Number of Filters

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
an

sf
er

re
d

In
fo

rm
at

io
n

(G
B)

((a)) False Positive Rate = 0.1%

2.5 5.0 7.5 10
.0

12
.5

15
.0

17
.5

20
.0

Number of Filters

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

re
d

In
fo

rm
at

io
n

(G
B)

((b)) False Positive Rate = 0.01%

2.5 5.0 7.5 10
.0

12
.5

15
.0

17
.5

20
.0

Number of Filters

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

re
d

In
fo

rm
at

io
n

(G
B)

((c)) False Positive Rate = 0.001%

Figure 5.1: Variation of Parameters using Hierarchical Bloom Filters Arrays

depends on the number of filters the client needs to transfer before authenticating. To evaluate each set

of parameters, we calculated the amount of information transferred for each scenario (in each scenario,

the client needs to download a different number of filters before completing the audit process), and

we calculated the expected value of the amount of information transferred by the client using the false

positive rates of each BF to compute the probability of each scenario.

It can be observed that, when there is only one filter, the information required to transfer is always

1GB, representing the original filter. However, when we create more filters, the average amount of

information transmitted quickly decreases to less than half with more than 5 filters. Furthermore, we

observed that the smaller the reduction factor, the lower the expected amount of information transmitted

during each authentication. However, it is necessary to increase the number of filters used to reach the

minimum amount of information transmitted.

We also observed that the transferred information decreases when we reduce the false positive rate.

This is due to the fact that reducing the rate also affects the smaller filters, as all filters will have lower

false positive rates and a greater number of clients will authenticate using the first filters. Note that, in

order to reduce the false positive rate while keeping the filter size fixed, it is necessary to reduce the

number of items in the filter.

A good configuration for a false positive rate of 0.001% would be to choose a factor of 2 with 4 filters,

as this is a point that minimizes the information to be transmitted over the network while maintaining a

reasonable number of filters. Our technique drastically reduces the amount of information transferred,

in particular, transferring only about 10% of the original amount of information on average.

43

Size of Bloom Filter = 0.1 MB
Size of Bloom Filter = 1.2 MB

Size of Bloom Filter = 12.5 MB
Size of Bloom Filter = 125.0 MB

0 500 1000 1500 2000 2500 3000
Size of Segments (bits)

2
3
4
5
6
7
8
9

10

Tr
an

sf
er

re
d

In
fo

rm
at

io
n

(K
B)

((a)) Number of hash functions = 5

0 500 1000 1500 2000 2500 3000
Size of Segments (bits)

2
3
4
5
6
7
8
9

10

Tr
an

sf
er

re
d

In
fo

rm
at

io
n

(K
B)

((b)) Number of hash functions = 10

Figure 5.2: Variation of Parameters using Redactable Signatures

Size of Bloom Filter = 0.1 MB
Size of Bloom Filter = 1.2 MB

Size of Bloom Filter = 12.5 MB
Size of Bloom Filter = 125.0 MB

0 500 1000 1500 2000 2500 3000
Size of Segments (bits)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Tr
an

sf
er

re
d

In
fo

rm
at

io
n

(K
B)

((a)) Number of hash functions = 5

0 500 1000 1500 2000 2500 3000
Size of Segments (bits)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Tr
an

sf
er

re
d

In
fo

rm
at

io
n

(K
B)

((b)) Number of hash functions = 10

Figure 5.3: Variation of Parameters using Redactable Signatures using proposed Optimization

5.2.2 Technique based on Redactable Signatures

Our technique based on RSigs has two main structures: the BF and a MT, which is constructed from

the filter. The information transferred during authentication consists mainly of segments of the BF and

various hashes from the MT.

Several parameters of the solution impact the amount of information transferred during authentica-

tion. These parameters include: 1) the number of hash functions, which directly influences the number

of filter segments sent to the client, and 2) the size of the segments into which the filter is divided, since

the segment size determines the number of filter segments that will be associated with the Merkle tree’s

leaf nodes, affecting the size of the MT and the number of hashes sent to the client.

In Figure 5.2, we varied these parameters and measured the average amount of information that the

verifier sends to the client during authentication.

It is noticeable that increasing the number of hash functions in the filter increases the amount of

information transmitted over the network. This is because the client receives more segments as the

44

number of hash functions increases and it also requires more hashes to compute the paths from the leaf

nodes to the root node recursively.

The amount of information transferred during authentication reaches its minimum, considering the

filter sizes and the number of hash functions studied, when the segment size is 500 binary digits. It

becomes clear that with shorter segments, the associated MT will be larger and more hashes will be

sent to the client. However, with larger segments, more information regarding these segments will be

sent to the client. The 500 binary digits represent the optimal value between these two parameters.

From this experiment, we conclude that a good configuration would be to divide the BF into seg-

ments of 500 binary digits. In the worst-case scenario, if the filter had 10 hash functions, the solution

would reduce the amount of information sent to the client from 125MB to 7KB. It should be noted that

this represents a significant reduction in the original amount of information (specifically, 0.006% of the

original size).

In order to evaluate the optimization proposed in Chapter 4.2.2, where non-revoked clients check

their revocation status by checking only 1 bit set to ”0”, we set up a series of tests. In Figure 5.3 we

varied the parameters exactly as in the Figure 5.2, to understand how much this optimization would

improve the original technique based on RSigs.

It is possible to notice that with this optimization, the increase in the number of hash functions used

does not increase the amount of information transferred during the authentication, this being a big ad-

vantage of this optimization. It allows one to increase the number of hash functions of the BF, thus,

reducing the false positive rate, without increasing the amount of information transferred.

From this second experiment, we can conclude that the optimal configuration would still be to divide

the BF into segments of 500 binary digits. With the proposed optimization, the solution would reduce

the amount of information sent to the client from 125MB to 1KB, a reduction in the original amount of

information (specifically 0. 0009% of the original size).

5.3 Comparative Performance

5.3.1 Evaluation Based on Revocation List Size

In this chapter, we evaluate the authentication latency of both proposed techniques implemented in

Privacy Keeper and compare them with the authentication latency of the original Privacy Keeper. To

ensure a fair comparison between the techniques, we chose configurations that minimize the amount

of information exchanged during authentication between verifiers and clients, based on the analysis

presented earlier.

For the evaluation of all systems, we developed a set of tests in which we measured the average

authentication latency of a client, varying the size of the BF that implements the RL. In the case of the

45

1.2
5 M

B

12
.5

MB

12
5.0

 MB

1.2
5 G

B

Size of Last Bloom Filter

101

102

103

104

La
te

nc
y

(m
s)

Latency to download 1 Bloom filter
Latency to download 2 Bloom filters
Latency to download 3 Bloom filters
Latency to download 4 Bloom filters
Expected Latency

((a)) Latency using Hierarchical Bloom Filter Arrays

12
.50

 KB

0.1
2 M

B

1.2
5 M

B

12
.50

 MB

12
5.0

0 M
B

1.2
5 G

B

Size of Bloom Filter

100

101

102

103

104

La
te

nc
y

(m
s)

Privacy Keeper
Redactable Signatures
Hierarchical Bloom Filter Arrays

((b)) Average Latency

Figure 5.4: Authentication Latency

HBFAs technique, this size corresponds to the size of the last and largest filter. For the evaluation of

the technique with HBFAs, we used the following configuration: a reduction factor of 2, which means

that each filter is half the size of the next filter, with the number of filters in the set fixed at 4, and 5

hash functions in each filter. By varying the latency of the last filter, we measured the authentication

latency in each of the 4 possible scenarios (in each scenario, the client downloads a different number of

filters). With these 4 latencies, we calculated the expected latency for each authentication, considering

the latency for each of the 4 scenarios and the false positive rate of each filter, as shown in Figure 5.4(a).

For the expected latency calculation, we considered a false positive rate of 0.01% for the last BF, which

we used to calculate the false positive rates for the other filters. Note that only this technique has

its efficiency dependent on the acceptable false positive rate in the RL. We used the expected latency

obtained for comparison with the other two techniques. For the evaluation of the RSigs-based technique,

we fixed the segment size at 500 binary digits and the number of hash functions at 5, measuring the

authentication latency.

In Figure 5.4(b), we compare the expected latencies (and their evolution with the increasing size of

the BF) using the two proposed techniques and the original Privacy Keeper (which always transfers the

entire RL). Our experimental evaluation shows that, for BFs of 1.25GB, the authentication latency is, on

average, ±17 seconds with the original Privacy Keeper, ±3 seconds with hierarchical Bloom filters, and

±2 milliseconds with Redactable Signatures.

Therefore, the technique with RSigs demonstrates the best performance, significantly reducing the

authentication latency by approximately 99.99% compared to the original Privacy Keeper.

5.3.2 Evaluation Based on System Scale

In this chapter, we evaluate the effectiveness of both proposed techniques implementing them in Privacy

Keeper and Nymble, by measure the amount of information the verifier needs to send to the client during

46

the process of authentication, varying the number of revoked users in the systems, and comparing

the techniques with the original systems. To ensure a fair comparison between the techniques, we

selected configurations that minimize the information exchanged during authentication between verifiers

and clients, as outlined in the earlier analysis.

As explained in Chapter 3.1, the number of revoked users affects the size of the revocation lists

differently. In Privacy Keeper, a non-revocation proof for each revoked pseudonym is added to the

revocation list. Consequently, the number of elements in the revocation list is equal to the number

of revoked users multiplied by the average number of pseudonyms per revoked user. In Nymble, which

operates using epochs and slots where each user is assigned a pseudonym for each time slot, revocation

lists can be generated at the start of each slot independently. As a result, the number of elements in

each revocation list corresponds exactly to the number of revoked users.

For both techniques, we used exactly the same configuration as in the evaluation of Chapter 5.3.1.

For the evaluation of the technique with HBFAs, we used the following configuration: a reduction factor

of 2, which means that each filter is half the size of the next filter, with the number of filters in the set fixed

at 4, and 5 hash functions in each filter. For the evaluation of the RSigs-based technique, we fixed the

segment size at 500 binary digits and the number of hash functions at 5. We consider a false positive

rate of 0.01% for revocation lists. We consider, as well, 300 pseudonyms per revoked user, in Privacy

Keeper.

We calculated the amount of transferred information for the HBFAs technique using the same ap-

proach described in Chapter 5.3.1. Specifically, we measured the information transferred in each of the

four possible scenarios, where the client downloads a varying number of filters in each case. Using

these four values, we determined the expected amount of transferred information per authentication by

accounting for the information transferred in each scenario and the false positive rate of each filter, being

0.01% the rate of the last filter.

In Figure 5.5, we compare both techniques with the original systems. Our study shows, that both

our proposed techniques are effective for both systems, allowing the systems to scale up without losing

performance during the authentication protocol, being absolutely critical for the Privacy Keeper and

its applicability and a huge improvement for Nymble. In particular, in a system with 1 million of revoked

users, our technique based on RSigs, allows to lower the amount of transferred information from 1.09GB

to 1.2KB, in the case of Privacy Keeper, and from 3.6MB to 0.9KB, in the case of Nymble.

5.4 Additional Time to Generate a RL

Both of our proposed techniques introduce additional time to the revocation list generation process. To

evaluate the practicality of these techniques, we conducted a series of experiments aimed at assessing

47

50
 00

0

20
0 0

00

40
0 0

00

60
0 0

00

80
0 0

00

1 0
00

 00
0

Number of Revoked Users

100

101

102

103

104

105

106

Da
ta

 Tr
an

sf
er

re
d

du
rin

g
Au

th
en

tic
at

io
n(

KB
)

Nymble
Nymble with Hierarchical Bloom Filters
Nymble with Redactable Signatures
Nymble with Optimized Redactable Signatures

Privacy Keeper
Privacy Keeper with Hierarchical Bloom Filters
Privacy Keeper with Redactable Signatures
Privacy Keeper with Optimized Redactable Signatures

Figure 5.5: Data Transferred during Authentication vs Number of Revoked Users

their impact on generation time. The goal was to determine whether the overhead introduced remains

within acceptable limits—ensuring that the delay does not become prohibitively high or hinder the timely

revocation of misbehaving clients. These tests help us understand the trade-offs involved and confirm

the feasibility of implementing the proposed approaches in real-world scenarios.

5.4.0.A Technique based on Hierarchical Bloom Filter Arrays

5 Filters, 100.00 KB
10 Filters, 100.00 KB

5 Filters, 1.00 MB
10 Filters, 1.00 MB

5 Filters, 10.00 MB
10 Filters, 10.00 MB

5 Filters, 100.00 MB
10 Filters, 100.00 MB

50 thousand
(1000 revoked users,

50 pseudonyms
/user)

500 thousand
(1000 revoked users,

500 pseudonyms
/user)

5 million
(1000 revoked users,

5k pseudonyms
/user)

50 million
(1000 revoked users,

5k pseudonyms
/user)

Number of Tokens in Each Filter

0

1.0 * 10

2.0 * 10

3.0 * 10

4.0 * 10

5.0 * 10

6.0 * 10

RL
 G

en
er

at
io

n
Ti

m
e

(m
s)

(a) 5 hash functions

50 thousand
(1000 revoked users,

50 pseudonyms
/user)

500 thousand
(1000 revoked users,

500 pseudonyms
/user)

5 million
(1000 revoked users,

5k pseudonyms
/user)

50 million
(1000 revoked users,

5k pseudonyms
/user)

Number of Tokens in Each Filter

0

2.0 * 10

4.0 * 10

6.0 * 10

8.0 * 10

RL
 G

en
er

at
io

n
Ti

m
e

(m
s)

(b) 10 hash functions

Figure 5.6: HBFA’s Overhead

Figure 5.6 illustrates the results of a series of tests we conducted to assess the additional overhead

involved in generating the revocation list using the Hierarchical Bloom Filter Arrays technique, as well as

48

its impact on the latency required to generate a revocation with this approach.

There are several factors that may impact the necessary additional overhead in generating a revoca-

tion list with multiple Bloom filters, instead of just one. We have conducted a series of tests to measure

the additional latency this would take, varying parameters such as: the number of filters that our revo-

cation list was composed of, the number of hash functions of each filter, the size of those filters and the

number of tokens to be inserted in each filter.

By analyzing our results it is possible to notice that the number of hashes, the number of tokens

to be inserted and the number of filters, have a linear impact in the additional overheard, doubling the

latency when doubling the number of hashes or the number of tokens, due to the number of bits that are

necessary to set to ”1” also double. We can also conclude that the size of the Bloom filters do not have

a significant impact on this metric, due to the nature of Bloom filters being highly efficient and constant

with respect to their operations.

Also, we can conclude that, depending on the system scale, the additional overhead can be negli-

gible, being only a few milliseconds for most cases until 5 million tokens, starting to impose a serious

overhead when we hit the scale of 50 million tokens, reaching the magnitude of 60 seconds or more.

5.4.0.B Technique based on Redactable Signatures

100KB
(1000 revoked users,
50 pseudonyms/user)

1MB
(1000 revoked users,

500 pseudonyms/user)

10MB
(1000 revoked users,
5k pseudonyms/user)

100MB
(1000 revoked users,

50k pseudonyms/user)
Revocation List Size

100

101

102

103

RL
 G

en
er

at
io

n
Ti

m
e

(m
s)

1000 bits
2000 bits
4000 bits
8000 bits

Figure 5.7: Redactable Signature Overhead.

To quantify the overhead introduced by our Redactable Signature technique, we conducted experi-

ments measuring the time required to generate a signature over a revocation list, varying both the size

of the Bloom filter and the size of the chunks into which it was divided.

As shown in Figure 5.7, the signature generation time increases linearly with the Bloom filter size,

49

as expected. Additionally, using smaller chunks results in longer generation times due to the larger

number of leaf nodes in the Merkle tree, which increases the number of required hash computations. In

contrast, larger chunks yield smaller trees and thus lower computational overhead. The latency required

to generate a redactable signature ranges from just 1 millisecond or less for Bloom filters of 100KB to

hundreds of milliseconds for filters as large as 100MB.

This highlights a trade-off between redaction granularity and efficiency. As discussed before, (see

Figures 5.2 and 5.3), larger chunks reduce signature generation time but require more data transfer dur-

ing authentication. This trade-off becomes particularly relevant for Bloom filters exceeding 100MB. For

smaller filters, generation time remains below one second across all chunk sizes, making the overhead

negligible in practice.

Summary

In this chapter we have presented the experimental evaluation of our work. We run several tests, im-

plementing both techniques on different anonymous authentication systems, comparing the efficacy of

both techniques between each other and between the original systems, showing that both techniques

can be applied to this type of systems improving their efficiency, being the techniques absolutely crucial

for the adoption of these systems in the future. In the next chapter, we conclude our work and dis-

cuss the limitations of our work and what can be done for future work, to further improve anonymous

authentication.

50

6
Conclusion

Contents

6.1 Conclusions . 52

51

In this chapter we present some conclusions.

6.1 Conclusions

Applications such as smart retail have seen an enormous growth in recent years, with the increasingly

popular use of technologies in retail, in particular digital technologies. While these technologies can be

used to improve customer experience, they also enable smart retail providers to profile user behaviour,

not preserving customer privacy. Pseudonyms can be a solution for this problem, allowing customers to

authenticate in these smart retail systems using identities other than their real identities.

Several pseudonym schemes have been proposed for several applications, but most of them do not

achieve all the properties that we consider relevant for smart retail applications, such as perfect back-

ward unlinkability and revocation auditability. The systems that achieve them, do so at the expense

of high latencies in the authentication procedure, making these systems impossible to be applied in a

real case scenario.

In this work, we introduce two distinct techniques designed to minimize the amount of information

exchanged during the authentication process in anonymous authentication systems, thereby reducing

authentication latency, keeping all the desired security and privacy properties.

We experimentally demonstrate that one of the techniques significantly reduces the authentication

time from several tens of seconds to just a few milliseconds. This makes anonymous authentication

systems feasible in the smart retail domain and in other areas of interest where privacy concerns are

raised.

52

Bibliography

[1] F. Schaub, F. Kargl, Z. Ma, and M. Weber, “V-tokens for conditional pseudonymity in vanets,” in

2010 IEEE Wireless Communication and Networking Conference. IEEE, 2010, pp. 1–6.

[2] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and application to efficient revoca-

tion of anonymous credentials,” in Advances in Cryptology—CRYPTO 2002: 22nd Annual Interna-

tional Cryptology Conference Santa Barbara, California, USA, August 18–22, 2002 Proceedings

22. Springer, 2002, pp. 61–76.

[3] J. Li, N. Li, and R. Xue, “Universal accumulators with efficient nonmembership proofs,” in Applied

Cryptography and Network Security: 5th International Conference, ACNS 2007, Zhuhai, China,

June 5-8, 2007. Proceedings 5. Springer, 2007, pp. 253–269.

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Communications of the

ACM, vol. 13, no. 7, pp. 422–426, 1970.

[5] Y. Zhu, H. Jiang, and J. Wang, “Hierarchical Bloom filter Arrays (HBA): a novel, scalable metadata

management system for large cluster-based storage,” in Proceedings of the IEEE International

Conference on Cluster Computing, San Diego (CA), USA, 2004, pp. 165–174.

[6] R. Johnson, D. Molnar, D. Song, and D. Wagner, “Homomorphic signature schemes,” in Cryptogra-

phers’ track at the RSA conference. Springer, 2002, pp. 244–262.

[7] J. J. Haas, Y.-C. Hu, and K. P. Laberteaux, “Efficient certificate revocation list organization and

distribution,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 3, pp. 595–604,

2011.

[8] C. Correia, M. Correia, and L. Rodrigues, “Using range-revocable pseudonyms to provide backward

unlinkability in the edge,” in Proceedings of the ACM Conference on Computer and Communications

Security. Copenhagen, Denmark, 2023.

53

[9] P. P. Tsang, A. Kapadia, C. Cornelius, and S. W. Smith, “Nymble: Blocking misbehaving users in

anonymizing networks,” IEEE Transactions on Dependable and Secure Computing, vol. 8, no. 2,

pp. 256–269, 2009.

[10] E. Verheul, C. Hicks, and F. D. Garcia, “Ifal: Issue first activate later certificates for v2x,” in 2019

IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 2019, pp. 279–293.

[11] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith, “Perea: Towards practical ttp-free revoca-

tion in anonymous authentication,” in Proceedings of the 15th ACM conference on Computer and

communications security, 2008, pp. 333–344.

[12] C. Correia, “Low-latency privacy-preserving access to edge storage,” Ph.D. dissertation, Instituto

Superior Tecnico, Universidade de Lisboa, Jul. 2024.

[13] M. Mitzenmacher, “Compressed bloom filters,” in Proceedings of the twentieth annual ACM sympo-

sium on Principles of distributed computing, 2001, pp. 144–150.

[14] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding revisited,” ACM Transactions on Informa-

tion Systems (TOIS), vol. 16, no. 3, pp. 256–294, 1998.

[15] N. Mosharraf, A. P. Jayasumana, and I. Ray, “Compacted bloom filter,” in 2016 IEEE 2nd Interna-

tional Conference on Collaboration and Internet Computing (CIC), 2016, pp. 304–311.

[16] D. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed high-security signatures,”

Journal of cryptographic engineering, vol. 2, no. 2, pp. 77–89, 2012.

54

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms
	Glossary

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Results
	1.4 Research History
	1.5 Organization of the Document

	2 Background
	2.1 Authentication
	2.2 Pseudonyms
	2.3 Pseudonym Schemes
	2.4 Abstractions Used in Pseudonym Based Authentication
	2.4.1 Cryptographic Hash Functions
	2.4.2 Asymmetric Cryptography
	A – Encryption with Asymmetric Cryptography
	B – Digital Signatures with Asymmetric Cryptography
	C – Authentication with Asymmetric Cryptography
	D – Ensuring Integrity with Asymmetric Cryptography
	E – Ensuring Non-Repudiation with Asymmetric Cryptography

	2.4.3 Blind Signatures
	2.4.4 Zero-Knowledge Proofs
	2.4.5 Accumulators

	2.5 Bloom Filters
	2.6 Hierarchical Bloom filter Arrays
	2.7 Redactable Signatures

	3 Related Work
	3.1 Anonymous Authentication Systems with Pseudonyms
	3.1.1 Approaches based on Epochs and Time Slots
	3.1.1.A Haas et al.
	3.1.1.B EDGAR
	3.1.1.C NYMBLE
	3.1.1.D IFAL

	3.1.2 Other Approaches
	3.1.2.A V-token.
	3.1.2.B PEREA
	3.1.2.C Privacy Keeper

	3.1.3 Comparison of Pseudonym Schemes

	3.2 Techniques for Optimizing Bloom Filter Transfer Efficiency
	3.2.1 Compressed Bloom Filters
	3.2.2 Compacted Bloom Filters
	3.2.3 Comparison of Bloom Filter Optimizating Techniques

	4 Proposed Techniques
	4.1 Technique based on Hierarchical Bloom Filter Arrays
	4.1.1 Pseudonym Revocation
	4.1.2 Access Control

	4.2 Technique based on Redactable Signatures
	4.2.1 Pseudonym Revocation
	4.2.2 Access Control

	5 Evaluation
	5.1 Experimental Setup
	5.2 Individual Performance
	5.2.1 Technique based on Hierarchical Bloom Filter Arrays
	5.2.2 Technique based on Redactable Signatures

	5.3 Comparative Performance
	5.3.1 Evaluation Based on Revocation List Size
	5.3.2 Evaluation Based on System Scale

	5.4 Additional Time to Generate a RL
	5.4.0.A Technique based on Hierarchical Bloom Filter Arrays
	5.4.0.B Technique based on Redactable Signatures

	6 Conclusion
	6.1 Conclusions

	Bibliography

