
Anonymous Authentication With Pseudonyms
(Extended Abstract of the MSc Dissertation)

GUILHERME SANTOS, Instituto Superior Técnico, Universidade de Lisboa, Portugal
SUPERVISOR: PROFESSOR LUÍS RODRIGUES, Instituto Superior Técnico, Universidade de Lisboa, Portugal

The problem of anonymous authentication, which is key to preserve the
privacy of users, has an increased relevance given the proliferation of appli-
cations that use components deployed in the network, that cannot be fully
trusted. A possible strategy to preserve user privacy is to implement au-
thentication using pseudonyms. In this thesis, we survey how pseudonyms
have been used to preserve privacy in different application areas and dis-
cuss the advantages and limitations of the different approaches to manage
pseudonyms. Based on the limitations of previous work, we design, imple-
ment and evaluate novel techniques to enhance the performance of systems
that use pseudonyms.

Additional Key Words and Phrases: Privacy, Anonymous Authentication,
Pseudonyms

1 Introduction
Client authentication is a requirement for many applications, as it
is common for certain resources or functionalities to be accessible
only to authorized users. Unfortunately, the need for authentication
creates opportunities for the collection of data related to clients’
usage profiles, which can be used against their interests (for example,
to inflate the price of a service based on user habits).

One way to preserve user privacy in applications where authen-
tication occurs frequently is through what is known as anony-
mous authentication, where customers authenticate using different
pseudonyms, every time they access the system.
If a client violates the service usage rules, it may be necessary

to prevent them from accessing the application, which requires the
revocation of previously issued pseudonyms. One of the challenges
of anonymous authentication is to preserve client privacy during
the revocation process. In particular, the fact that two pseudonyms
appear on a revoked pseudonym list may indicate that they belong to
the same client, potentially violating the client’s privacy, especially
if these pseudonyms have already been used or will be used by the
client in the future.
In this context, two relevant properties of the authentication

process are backward unlinkability, which ensures that an adver-
sary cannot determine whether two distinct authentications were
performed by the same client, and revocation auditability, which
allows the client to verify whether a given pseudonym has been
revoked before using it. Revocation auditability is typically achieved
by transferring the updated revocation list to the client during the
authentication process.
Although many proposed systems offer relevant properties, se-

curing the privacy of clients, these type of systems are inefficient,
and suffer from high latencies during the authentication process,
due to the revocation list transfer, which can take several dozens of
seconds, making them unfeasible to be applied in many scenarios.
In this work, we propose and evaluate a new set of tools to

improve the performance of anonymous authentication systems.
Specifically, we develop techniques that allow a client to verify

Alice Verifier

Alice

Ok!
Alice

ID

Alice Lisbon

Lisbon 20:57

12:38

AccessCity

Fig. 1. Customer profiling through the authentication process.

Alice Verifier

P 2

Ok!
P 2

ID

P 1 Lisbon

Lisbon 20:57

12:38

AccessCity RL

P 1
P 2
P 3

Same
Client

Fig. 2. Linkability problem when revoking a user. RL is Revocation List. P is
Pseudonym.

that they have not been revoked without having to download the
entire revocation list. Many of these systems implement their revo-
cation lists using Bloom Filters. We propose two different solutions
that enable the client to transfer less data: i) a technique based on
Redactable Signatures [7], which allows a client to request only
specific entries from a Bloom Filter; ii) a technique based on Hier-
archical Bloom Filters [12], which enables a client to sequentially
download smaller filters instead of the original one.

Both techniques preserve all necessary security properties, such
as the integrity and authenticity of the filters, a particularly inter-
esting challenge for the first technique. Our component allows the
client to receive only reduced portions of the filters for authentica-
tion.

Through the experimental evaluation of our solution, we demon-
strate that it reduces the time required to perform authentication, in
a specific system, from 17 seconds to approximately 2 milliseconds,
considering a revocation list of 1.25GB.

2 Background
In the following paragraphs, we begin by introducing Bloom filters,
one of the most commonly used data structures in authentication
schemes, as well as an extension of them, known as hierarchical
Bloom filters. Finally, we present redactable signatures, which ensure
integrity and authenticity over partial messages.

2.1 Bloom Filters
Bloom filters [2] are a probabilistic data structure designed to store
information about the membership of objects in a set and efficiently
test whether a given object belongs to the set. A Bloom filter consists
of a vector of binary digits (bits). To record the presence of an object
in the set, multiple hash functions are applied to the object, each
function computing a position in the vector that must be set to "1."
To test whether an object belongs to the set, the same process is

, , .

applied, checking if the bits indicated by the hash functions are set
to "1." If they are, the object is considered to be part of the set.
Since Bloom filters are a probabilistic structure, they allow false

positives (but prevent false negatives), meaning that an object may
be incorrectly identified as belonging to the set when it does not.
The false positive rate depends on several factors, such as the size
of the filter, the number of elements in the set, and the number of
hash functions used. A larger filter can store more elements while
maintaining the same false positive rate.
In pseudonym-based authentication systems, Bloom filters are

commonly used to encode the revocation list and track which
pseudonyms have been revoked. In large-scale systems, due to the
number of pseudonyms to be revoked and the need to keep the false
positive rate low, the size of Bloom filters can become quite large,
making frequent transmission costly. It is important to note that the
false positive rate is chosen a priori, based on system requirements,
and the filter’s characteristics are then determined accordingly.

2.2 Hierarchical Bloom Filters
Hierarchical Bloom filters [12] are a data structure based on Bloom
filters that aim to improve the scalability of the original Bloom
filters. These filters use a hierarchical structure composed ofmultiple
Bloom filters of different sizes, where filters at higher positions in the
hierarchy are smaller than those at lower positions. The insertion
and membership testing operations are performed across multiple
filters.
Typically, a membership test in this data structure requires per-

forming sequential presence checks in the various filters until a
conclusion is reached.

2.3 Redactable Signatures
Redactable signatures [7] enable the sending of a digitally signed
message, while removing certain parts of it, maintaining the recipi-
ent’s ability to verify the security properties of the message, such
as integrity and authenticity. The process of creating a redactable
signature starts by dividing the message into removable parts. A
Merkle tree is constructed, associating each part of the message with
each leaf node of the tree by calculating its cryptographic digest,
then recursively building the tree up to the root node, where the
value of each node is the digest of the concatenation of its children’s
digests. After this, the message sender digitally signs the root node.
When sending the message, the sender removes the parts of the

message they wish to exclude and sends the remaining parts to the
recipient. In addition to these, they also send the digests of the leaf
nodes associated with the removed parts, which can be compressed
using the tree structure by sending the digests of the internal nodes.
The recipient uses the information received to reconstruct the digest
of the root node and verify the sender’s digital signature on that
node.
Redactable signatures also use a random component during the

signature creation, which prevents the client from recovering the
removed parts through brute-force attacks.

3 Related Work
Several anonymous authentication systems have been proposed
based on pseudonyms.
We start by explaining the general structure that almost every

pseudonym system follows. Generally, this kind of systems are
usually composed by 3 entities: 1) the clients, 2) the verifiers that
control the authentication process and, 3) a central authority trusted
by both clients and verifiers which is a pseudonym provider, that
provides clients with enough pseudonyms for their authentications,
keeps a map between users’ real identities and the pseudonyms
issued, and handles clients’ revocations, distributing the revoked
pseudonyms to the system verifiers using revocation lists, as shown
in Figure 3.

Client Verifier

Central Authority

1)
Pse

ud
on

ym

Iss
ua

nc
e

3) Pseudonym

Revocation

2) Access Control

Fig. 3. Anonymous Authentication Systems Overview.

The pseudonyms issued have normally an asymmetric key pair
associated and are made up of the public key and the pseudonym
provider’s signature. When a client is authenticating in the system,
he uses a pseudonym as his digital identity and sends a different
one to the system verifier in each authentication. The purpose of
the pseudonym’s signature is to prove to the verifier the authentic-
ity and integrity of the pseudonym showing that the pseudonym
was, indeed, created by the pseudonym provider. This scheme takes
advantage of the asymmetric encryption properties to prove that
the client is the real owner of a given pseudonym, by using the asso-
ciated private key. So, the messages exchanged between the system
verifier and a client are usually appended with the pseudonym and
a signature made by the client using the private key associated with
that pseudonym.
These systems also follow similar steps, as shown in Figure

3. These steps are usually divided in 3 phases: 1) Pseudonym Is-
suance, 2) Access Control and, 3) Pseudonym Revocation. When-
ever a client joins the system, must start by asking the pseudonym
provider for pseudonyms for his authentications. After acquiring
his pseudonyms, a client is ready to authenticate in the system with
a verifier. The authentication is divided in three phases: the ver-
ifier sends to the client, information about his revocation status,
the client checks this information and if he is not revoked, sends
a pseudonym to the verifier, the verifier checks the validity and
authenticity of this pseudonym, and if everything is correct the user

accesses the system. If an authenticated client misbehaves, the sys-
tem generates a complaint, inserting the pseudonym the client used,
and sends it to the pseudonym provider. The pseudonym provider
links the pseudonym inserted in the complaint to the real identity
of a client and then revokes all the pseudonyms issued before to
that client and distributes them in a revocation list to the system
verifiers.

This is just a general approach followed by most systems, but
some other systems may present some radical approaches or simply
do not implement some steps of this approach.

Backward Unlinkability. Some pseudonym systems [5, 6, 10, 11],
aim for backward unlinkability by dividing time into large epochs,
each further split into smaller time slots. Clients receive pseudonym
groups tied to specific slots, which cannot be used outside their as-
signed time. Upon revocation, only pseudonyms for future slots are
added to the revocation list and shared with verifiers. This approach
doesn’t ensure perfect backward unlinkability—either revealing past
authentications during a slot or allowing, for a revoked user, con-
tinued access until the slot ends. This issue can be mitigated by
reducing slot size, though it increases the number of pseudonyms
linearly. Thus, these systems must balance slot size with pseudonym
overhead.

Privacy Keeper [4] avoids the use of time slots by employing non-
revocation proofs. In this approach, customers present a pseudonym
alongwith a proof—specific to the current revocation list—demonstrating
that they have not been revoked. When a client is revoked, a new
revocation list is generated, and non-revocation proofs for all pre-
viously revoked pseudonyms are computed and added to the list.
ince each proof is unique to its corresponding revocation list, veri-
fiers cannot link past authentications to the current list, enhancing
unlinkability.

Revocation Auditability. To provide revocation auditability is nec-
essary that the client is able to know his revocation status before
authentication. Nymble [10] and Privacy Keeper [4] accomplish
this by having the verifier sending the revocation list in the begin-
ning of each authentication, so the client can effectively check if
his pseudonyms are recvoked or not. The fact of transferring the
revocation list in every authentication process, makes the task of
providing revocation auditability onerous, and a very slow process
that can reach serveral seconds. making it not practical.

Revocation Lists. Revocation lists are essential in pseudonym sys-
tems that rely on a trusted third party to mediate trust between
clients and verifiers, ensuring that pseudonyms assigned to revoked
users are properly flagged. To reduce the overhead of distributing
and storing these lists, many systems implement them using Bloom
filters—a space-efficient probabilistic data structure. The design of
the pseudonym system significantly affects both the frequency and
size of the revocation lists. In time slot–based approaches, a new
revocation list can be created for each time slot. When a user is
revoked, only the pseudonyms associated with the relevant time
slot are added to that slot’s revocation list. This method requires
frequent, but leads to the creation of shorter revocation lists. On
the other hand, in systems like Privacy Keeper, when generating a

revocation list, they include a non-revocation proof for every pseu-
donym of every revoked user. This results in significantly larger
revocation lists.

Zero-knowledge proofs. Some different systems, such as Perea [9],
do not require the presence of a trusted third party. They em-
ploy the use of zero-knowledge proofs, during authentication pro-
cess, between verifiers and clients. Revocation lists are based on
cryptographic accumulators [3, 8]. In the initial phase, clients get
pseudonyms from verifiers. During the authentication phase, the re-
vocation list is sent to the client which confirms his revocation status.
With that information, the client decides whether to authenticate
in the system or not. If so, the client authenticates, by generating
a non-revocation proof, not disclosing those pseudonyms, proving
that none of the last pseudonyms used are in the revocation list.
Although these systems provide perfect backward unlinkability and
perfect revocation auditability, zero-knowledge proofs impose high
latencies on the authentication process.

4 Proposed Techniques
A disadvantage of pseudonym systems that provide the auditabil-
ity property of revocation is that they require the transfer of the
revocation list to the client, which, given its potentially large size
for very dynamic systems, can introduce significant latency in the
authentication process. Our work focuses on this problem, propos-
ing techniques that aim to reduce the amount of information that
clients and verifiers exchange during each authentication process,
while maintaining all the security properties inherent to the revo-
cation list, namely its integrity and authenticity. Considering that
most of the pseudonym systems use Bloom filters to implement
the revocation list, we propose two techniques to achieve this: 1)
a technique based on Hierarchical Bloom Filter Arrays, and 2) a
technique inspired by Redactable Signatures. In both techniques
proposed in this work, we assume the same entities as in most sys-
tems discussed: clients, verifiers, and the central authority, as well
as the same phases: pseudonym issuance, pseudonym revocation,
and access control, with substantial changes in the following phases:
pseudonym revocation and access control.

From this point forward, it is used BF to refer to Bloom Filter and
RL to refer to Revocation List.

4.1 Technique based on Hierarchical Bloom Filter Arrays

RL

Client Verifier

BF

RL

Central
Authority

RL

Next BF
Next BF

1

2

4

3

5

Fig. 4. Authentication with Hierarchical Bloom Filter Arrays. BF is Bloom
Filter. RL is Revocation List.

In this technique, we propose that the RL be composed of multiple
BF of different sizes, in addition to the original filter, each containing
exactly the same elements. These filters are organized sequentially
and in ascending order of their size.

4.1.1 Pseudonym Revocation. During the revocation of a client, the
certification authority creates a set of𝑛 new BF FBn𝜂 to form the new
RL. All the elements used to revoke the pseudonyms to be inserted
in that list, being the elements the pseudonyms themselves or non-
revocation proofs constructed for each revoked pseudonym, are
inserted into all the BF created. Finally, the central authority signs
each of these filters with its private key, protecting the authenticity
and integrity of each filter.

Subsequently, these filters and their respective digital signatures
are aggregated into a RL, RL𝑛𝑒𝑤 = ⟨[BF1, ..., BFn], [BF1𝐾−

CA , ..., BFn𝐾
−
CA]⟩,

which is sent to the verifiers.

4.1.2 Access Control. During the authentication process, repre-
sented in Figure 4, the client starts by downloading the first BF from
the RL, which is the one with the smallest size, as well as, other
relevant information for the pseudonym system, such as the random
parameter 𝜂 associated with the RL. Then, they choose a pseudo-
nym 𝑝 and checks if this pseudonym is marked as revoked in the
previously received filter. Since the false positive rate of a BF varies
with its size, and the client begins by receiving the smallest filter, it
is not unlikely that the client encounters a false positive at this step.
In that case, the client will then download the remaining filters from
the RL in increasing order of size until they reach a filter where the
pseudonym is not marked as revoked. If they reach the last filter
and the pseudonym is marked as revoked in that filter, the client
assumes that it has indeed been revoked and cancels the authentica-
tion. The authenticity of each filter is verified by the client using the
certification authority’s signature. If the client concludes that they
have not been revoked, they can then complete the authentication
by sending the pseudonym 𝑝 and the corresponding proof to the
verifier.

This technique is advantageous in cases where the client can
confirm that the pseudonym has not been revoked by checking the
first few filters (ideally, relying only on the smallest filter in most
cases); however, it may worsen the original solution if the client has
to download several filters. In most cases, the client would be able
to authenticate using the first pseudonyms by checking only the
smaller filters, making this an efficient solution overall.

4.2 Technique based on Redactable Signatures

1011101100010001000101100110011101001001110

Hash01

Hash001 Hash011Hash010Hash000

Hash00

Hash0

Filter:

σ = ⟨Hash0 || η⟩
K-

Fig. 5. Redactable Signature Creation.

RL

Client Verifier

Pseudonym

RL

Central
Authority

RL

Bits
Asked Bits

4 3

2

1

Fig. 6. Authentication with Redactable Signatures. RL is Revocation List.

In this technique, we take advantage of the fact that the client can
know in advance the characteristics of the Bloom filter encoding the
revocation list, such as its size, the number of hash functions. Using
this information, the client can calculate their non-revocation proof
and determine which entries in the vector they need to check to
see if a given pseudonym has been revoked. We then propose that
the client, instead of downloading the entire filter, only downloads
segments of the filter in order to obtain all the necessary entries
from the vector.

4.2.1 Pseudonym Revocation. By transferring only parts of the re-
vocation list, the client is not able to verify the integrity of the list
using a standard digital signature, as proposed in Privacy Keeper.
To overcome this issue, we suggest that the central entity signs the
revocation list using a technique inspired by redactable signatures.
In our solution, after creating the revocation list, RLnew = ⟨BF⟩,

the Bloom filter is divided into multiple segments of configurable
size, and the cryptographic hash of each segment is associated with
the child nodes of a Merkle tree. The remaining nodes of the tree
are then generated recursively by hashing the concatenation of the
hashes of the child nodes. Finally, the central authority generates a
digital signature 𝜎 , by concatenating the root hash with the param-
eter 𝜂 associated with the revocation list (unique value in Privacy
Keeper or time slot in Nymble), as illustrated in Figure 5. The gener-
ated elements form the new revocation list, RLnew = ⟨BF, 𝜎⟩, which
is distributed to the verifiers, who then reconstruct the Merkle tree
using the same process.

4.2.2 Access Control. In the access control phase, shown in Figure 6,
the verifier begins by sending the information about the revocation
list, such as: the characteristics of the Bloom filter, or the unique
value 𝜂 in the case of the anonymous system, Privacy Keeper.

With this information, the client selects a pseudonym 𝑝 that
they have not used yet and with that pseudonym 𝑝 , calculates the
exact positions of the Bloom Filter that needs to verify to test their
revocation status, (in the case of the system Privacy Keeper, the
client would first need to calculate the non-revocation proof), and
requests these positions. The verifier responds by sending the filter
segments that have the bits requested along with the necessary
hashes for the client to reconstruct the path from the leaf nodes
associated with the requested segments to the root node.
Upon receiving this information, the client ensures they are not

revoked using the Bloom filter segments they received, checks the
signature 𝜎 from the certifying entity, and then calculates the root
hash recursively using the information sent by the verifier. The
integrity of the Bloom filter segments received by the client is safe-
guarded by the structure of the binary tree. If a malicious verifier
were to modify any part, that change would reflect in some higher

node of the tree due to the properties of the Merkle tree. The alter-
ation would necessarily affect the root hash, allowing the client to
notice the change when verifying the signature from the certifying
authority at that same node. If the client concludes that they are not
revoked, they complete the authentication process by sending their
pseudonym 𝑝 and the corresponding proof to the verifier.

We propose an optimization to this technique specifically for
cases where the client attempting to authenticate is not revoked,
further reducing the amount of information propagated through the
network. For non-revoked clients, it is sufficient to ensure that at
least one bit of the bits needed to verify their pseudonym’s validity,
is set to zero in the Bloom filter. Accordingly, we introduce this
optimization, having the verifier send only a single segment of the
Bloom filter containing a bit requested by the client, that is set to "0",
rather than transmitting all segments corresponding to the client’s
requested bits.
It is important to note that this optimization does not apply to

revoked clients. Revoked clients must receive all the bits required
to validate their pseudonym and confirm that each bit is set to "1",
thereby verifying their revoked status.

5 Evaluation
We experimentally evaluated both techniques proposed by imple-
menting each technique in C++ for two different anonymous au-
thentication systems: Privacy Keeper and Nymble. For each system,
we developed a client and a verifier using two Intel NUC10i7FNB
machines. The machines are equipped with an Intel i7-10710U pro-
cessor, 16 GB of RAM, and run Ubuntu 22.04 LTS. We analyzed
the impact of varying different parameters of both solutions on
the amount of information transmitted during authentication for
both systems. We also evaluated both techniques by measuring the
average authentication latency and comparing it with the average
latency of Privacy Keeper. We used the Ed25519 algorithm [1] to
generate deterministic digital signatures.

5.1 Technique based in Hierarchical Bloom Filters
As previously described, our technique based on hierarchical Bloom
filters uses multiple filters of different sizes, where various parame-
ters directly influence the amount of information that needs to be
transferred during authentication. Thus, we evaluate the following
parameters: 1) reduction factor between each filter, starting from the
largest/original filter down to the smallest one. 2) number of filters
with different sizes used in the hierarchy, meaning how many times
we reduce the largest filter by the chosen factor. 3) false positive rate
that we accept in the largest filter of the hierarchy. In Figure 7, we
vary these parameters and compute the expected amount of Bloom
filter-related information that needs to be transferred at authentica-
tion time for each configuration, fixing the size of the largest filter
at 1GB.
It is worth highlighting that computing the expected amount of

transferred information is not trivial since it depends on the number
of filters the client has to transfer before authenticating. To evaluate
each set of parameters, we calculated the amount of transferred
information for each scenario (in each scenario, the client needs
to download a different number of filters before completing the

Factor = 1.25
Factor = 1.5

Factor = 1.75
Factor = 2

Factor = 2.25
Factor = 2.5

Factor = 2.75
Factor = 3

2.5 5.0 7.5 10
.0

12
.5

15
.0

17
.5

20
.0

Number of Filters

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
an

sf
er

re
d

In
fo

rm
at

io
n

(G
B)

(a) False Positive Rate = 0.1%

2.5 5.0 7.5 10
.0

12
.5

15
.0

17
.5

20
.0

Number of Filters

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

re
d

In
fo

rm
at

io
n

(G
B)

(b) False Positive Rate = 0.01%

2.5 5.0 7.5 10
.0

12
.5

15
.0

17
.5

20
.0

Number of Filters

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

re
d

In
fo

rm
at

io
n

(G
B)

(c) False Positive Rate = 0.001%

Fig. 7. Variation of Parameters using Hierarchical Bloom Filters Arrays

audit process) and computed the expected value of the information
transferred by the client using the false positive rates of each Bloom
filter to determine the probability of each scenario.

It can be observed that when there is only one filter, the required
amount of transferred information is always 1GB, representing the
original filter. However, when more filters are created, the average
amount of transmitted information quickly decreases to less than
half when the number of filters exceeds 5. Moreover, we observe that
the smaller the reduction factor, the lower the expected amount of
transmitted information in each authentication, although it becomes
necessary to increase the number of filters used to achieve the
minimum transmitted information.

We also observe that the transferred information decreases when
we reduce the false positive rate. The explanation lies in the fact
that reducing the rate also affects the rates of the smaller filters,
as all filters will have lower false positive rates, leading to a larger
number of clients authenticating at the first filters. Note that, to
decrease the false positive rate while keeping the filter size fixed, it
is necessary to reduce the number of items in the filter.
A good configuration for a false positive rate of 0.001% would

be to choose a factor of 2 with 4 filters, as this point minimizes
the information transmitted over the network while maintaining a
reasonable number of filters. Our technique drastically reduces the
transferred information, in particular, transmitting only about 10%
of the original information on average.

5.2 Technique based in Redactable Signatures
Our technique based on Redactable Signatures has two main struc-
tures: the Bloom filter and a Merkle tree, which is built from the

Size of Bloom Filter = 0.1 MB
Size of Bloom Filter = 1.2 MB

Size of Bloom Filter = 12.5 MB
Size of Bloom Filter = 125.0 MB

0 500 1000 1500 2000 2500 3000
Size of Segments (bits)

2
3
4
5
6
7
8
9

10

Tr
an

sf
er

re
d

In
fo

rm
at

io
n

(K
B)

(a) Number of hash functions = 5

0 500 1000 1500 2000 2500 3000
Size of Segments (bits)

2
3
4
5
6
7
8
9

10

Tr
an

sf
er

re
d

In
fo

rm
at

io
n

(K
B)

(b) Number of hash functions = 10

Fig. 8. Variation of Parameters using Redactable Signatures

Size of Bloom Filter = 0.1 MB
Size of Bloom Filter = 1.2 MB

Size of Bloom Filter = 12.5 MB
Size of Bloom Filter = 125.0 MB

0 500 1000 1500 2000 2500 3000
Size of Segments (bits)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Tr
an

sf
er

re
d

In
fo

rm
at

io
n

(K
B)

(a) Number of hash functions = 5

0 500 1000 1500 2000 2500 3000
Size of Segments (bits)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Tr
an

sf
er

re
d

In
fo

rm
at

io
n

(K
B)

(b) Number of hash functions = 10

Fig. 9. Variation of Parameters using Redactable Signatures using proposed
Optimization

filter. The information transferred during authentication consists
mainly of segments of the Bloom filter and multiple digests from
the Merkle tree.

Several parameters of the solution impact the amount of informa-
tion transferred during authentication. These parameters include:
1) number of hash functions, which directly influences the number
of Bloom filter segments sent to the client, and 2) segment size, into
which the filter is divided, as its size determines the number of filter
segments that will be associated with the leaf nodes of the tree,
affecting the size of the Merkle tree and the number of digests sent
to the client.
In Figure 8, we vary these parameters and measure the average

amount of information that the verifier sends to the client during
authentication.
It is noticeable that increasing the number of hash functions in

the filter increases the amount of information transmitted over the
network. This happens because the client receives more segments as
the number of hash functions grows, and also because more digests
need to be sent so that the client can recursively compute the paths
from the leaf nodes to the root node.
The amount of information transferred during authentication

reaches its minimum, considering the studied filter sizes and num-
ber of hash functions, when the segment size is 500 binary digits.
This can be understood by noting that with shorter segments, the
associated Merkle tree becomes larger, requiring more digests to be
sent to the client. Conversely, with larger segments, more informa-
tion about them needs to be sent to the client. The optimal value
balancing these two parameters is 500 binary digits.

From this experiment, we conclude that a good configuration
would be to divide the Bloom filter into segments of 500 binary digits.
In the worst-case scenario, if the filter had 10 hash functions, the
solution would reduce the information sent to the client from 125MB
to 7KB. It is worth highlighting that this represents a significant
reduction in the original amount of information (specifically, 0.006%
of the original size).

5.3 Hierarchical Bloom Filters vs Redactable Signatures

1.2
5 M

B

12
.5

MB

12
5.0

 MB

1.2
5 G

B

Size of Last Bloom Filter

101

102

103

104

La
te

nc
y

(m
s)

Latency to download 1 Bloom filter
Latency to download 2 Bloom filters
Latency to download 3 Bloom filters
Latency to download 4 Bloom filters
Expected Latency

(a) Latency using Hierarchical
Bloom Filter Arrays

12
.50

 KB

0.1
2 M

B

1.2
5 M

B

12
.50

 MB

12
5.0

0 M
B

1.2
5 G

B

Size of Bloom Filter

100

101

102

103

104

La
te

nc
y

(m
s)

Privacy Keeper
Redactable Signatures
Hierarchical Bloom Filter Arrays

(b) Average Latency

Fig. 10. Authentication Latency

In this section, we evaluate the authentication latency of both
proposed techniques and compare them with the authentication
latency of Privacy Keeper. To ensure a fair comparison between
both techniques, we selected configurations that minimize the in-
formation exchanged during authentication between verifiers and
clients, based on the analysis presented earlier.

For the evaluation of all systems, we developed a set of tests where
we measured the average authentication latency of a client while
varying the size of the Bloom filter that implements the revocation
list. In the case of the technique based on hierarchical Bloom filters,
this size corresponds to the size of the last and largest filter. For
the evaluation of PickyFilters with hierarchical Bloom filters, we
used the following configuration: a reduction factor of 2 (meaning
each filter is half the size of the next one), fixing the number of
filters in the set to 4, with 5 hash functions per filter. By varying
the latency of the last filter, we measured the authentication latency
in each of the 4 possible scenarios (in each scenario, the client
downloads a different number of filters). Using these 4 latencies, we
calculated the expected latency of each authentication, considering
the latency for each of the 4 scenarios and the false positive rate of
each filter, which we present in Figure 10a. To calculate the expected
latency, we assumed a false positive rate of 0.01% for the last Bloom
filter, which we used to derive the false positive rates for the other
filters. Note that only this technique has its efficiency dependent
on the acceptable false positive rate in the revocation list. We used
the obtained expected latency for comparison with the other two
techniques. For the evaluation of the technique based on Editable
Signatures, we fixed the segment size to 500 binary digits and the
number of hash functions to 5, measuring the authentication latency.

In Figure 10b, we compare the expected latencies (and their evo-
lution as the Bloom filter size increases) using both proposed tech-
niques and the original Privacy Keeper (which always transfers the

entire revocation list). Our experimental evaluation shows that for
Bloomfilters of 1.25GB, the average authentication latency is approx-
imately ±17𝑠 in the original Privacy Keeper, ±3𝑠 with hierarchical
Bloom filters, and ±2𝑚𝑠 with Redactable Signatures. PickyFilters
with Editable Signatures thus achieves the best performance, signif-
icantly reducing authentication latency by approximately 99.99%
compared to the original Privacy Keeper.

5.4 Evaluation Based on System Scale
In this section, we evaluate the effectiveness of both proposed tech-
niques implementing them in Privacy Keeper and Nymble, by mea-
suring the amount of information the verifier needs to send to the
client during the process of authentication, varying the number of
revoked users in the systems, and comparing the techniques with
the original systems. To ensure a fair comparison between the tech-
niques, we selected configurations that minimize the information
exchanged during authentication between verifiers and clients, as
outlined in the earlier analysis.
As explained before, the number of users revoked affects the

size of the revocation lists differently. In Privacy Keeper, a non-
revocation proof for each revoked pseudonym is added to the revo-
cation list. Consequently, the number of elements in the revocation
list is equal to the number of revoked users multiplied by the av-
erage number of pseudonyms per revoked user. In Nymble, which
operates using epochs and slots where each user is assigned a pseu-
donym for each time slot, revocation lists can be generated at the
start of each slot independently. As a result, the number of elements
in each revocation list corresponds exactly to the number of revoked
users.
For both techniques, we used exactly the same configuration as

in the evaluation of section ??. For the evaluation of the technique
with HBFA, we used the following configuration: a reduction factor
of 2, which means that each filter is half the size of the next filter,
with the number of filters in the set fixed at 4, and 5 hash functions
in each filter. For the evaluation of the redactable signatures-based
technique, we fixed the segment size at 500 binary digits and the
number of hash functions at 5. We consider a false positive rate of
0.01% for revocation lists. We also consider 300 pseudonyms per
revoked user in Privacy Keeper.

We calculated the amount of information transferred for theHBFA
technique using the same approach described in section ??. Specifi-
cally, we measured the information transferred in each of the four
possible scenarios, where the client downloads a varying number
of filters in each case. Using these four values, we determined the
expected amount of information transferred per authentication by
accounting for the information transferred in each scenario and the
false positive rate of each filter, which being 0.01% the rate of the
last filter.
In Figure 11, we compare both techniques with the original sys-

tems. Our study shows that both our proposed techniques are ef-
fective for both systems, allowing the systems to scale up without
losing performance during the authentication protocol, being ab-
solutely critical for the Privacy Keeper and its applicability, and a
huge improvement for Nymble. In particular, in a system with 1
million revoked users, our technique based on redactable signatures,

50
 00

0

20
0 0

00

40
0 0

00

60
0 0

00

80
0 0

00

1 0
00

 00
0

Number of Revoked Users

100

101

102

103

104

105

106

Da
ta

 Tr
an

sf
er

re
d

du
rin

g
Au

th
en

tic
at

io
n(

KB
)

Nymble
Nymble with Hierarchical Bloom Filters
Nymble with Redactable Signatures
Nymble with Optimized Redactable Signatures

Privacy Keeper
Privacy Keeper with Hierarchical Bloom Filters
Privacy Keeper with Redactable Signatures
Privacy Keeper with Optimized Redactable Signatures

Fig. 11. Data Transferred during Authentication vs Number of Revoked
Users

allows to lower the amount of transferred information from 1.09GB
to 1.2KB, in the case of Privacy Keeper, and from 3.6MB to 0.9KB,
in the case of Nymble.

5.5 Additional Time to Generate a RL
Both of our proposed techniques introduce additional time to the
revocation list generation process. To evaluate the practicality of
these techniques, we conducted a series of experiments aimed at as-
sessing their impact on generation time. The goal was to determine
whether the overhead introduced remains within acceptable lim-
its—ensuring that the delay does not become prohibitively high or
hinder the timely revocation of misbehaving clients. These tests help
us understand the trade-offs involved and confirm the feasibility of
implementing the proposed approaches in real-world scenarios.

5.5.1 HBFA. Figure 12 illustrates the results of a series of tests we
conducted to assess the additional overhead involved in generating
the revocation list using the Hierarchical Bloom Filter Arrays tech-
nique, as well as its impact on the latency required to generate a
revocation with this approach.

There are several factors that may impact the necessary additional
overhead in generating a revocation list with multiple Bloom filters,
instead of just one. We have conducted a series of tests to measure
the additional latency this would take, varying parameters such as:
the number of filters that our revocation list was composed of, the
number of hash functions of each filter, the size of those filters and
the number of tokens to be inserted in each filter.
By analyzing our results it is possible to notice that the number

of hashes, the number of tokens to be inserted and the number of
filters, have a linear impact in the additional overheard, doubling
the latency when doubling the number of hashes or the number of
tokens, due to the number of bits that are necessary to set to "1"
also double. We can also conclude that the size of the Bloom filters
do not have a significant impact on this metric, due to the nature
of Bloom filters being highly efficient and constant with respect to
their operations.
Also, we can conclude that, depending on the system scale, the

additional overhead can be negligible, being only a few milliseconds

5 Filters, 100.00 KB
10 Filters, 100.00 KB

5 Filters, 1.00 MB
10 Filters, 1.00 MB

5 Filters, 10.00 MB
10 Filters, 10.00 MB

5 Filters, 100.00 MB
10 Filters, 100.00 MB

50 thousand
(1000 revoked users,

50 pseudonyms
/user)

500 thousand
(1000 revoked users,

500 pseudonyms
/user)

5 million
(1000 revoked users,

5k pseudonyms
/user)

50 million
(1000 revoked users,

5k pseudonyms
/user)

Number of Tokens in Each Filter

0

1.0 * 10

2.0 * 10

3.0 * 10

4.0 * 10

5.0 * 10

6.0 * 10

RL
 G

en
er

at
io

n
Ti

m
e

(m
s)

(a) 5 hash functions

50 thousand
(1000 revoked users,

50 pseudonyms
/user)

500 thousand
(1000 revoked users,

500 pseudonyms
/user)

5 million
(1000 revoked users,

5k pseudonyms
/user)

50 million
(1000 revoked users,

5k pseudonyms
/user)

Number of Tokens in Each Filter

0

2.0 * 10

4.0 * 10

6.0 * 10

8.0 * 10

RL
 G

en
er

at
io

n
Ti

m
e

(m
s)

(b) 10 hash functions

Fig. 12. HBFA’s Overhead

for most cases until 5 million tokens, starting to impose a serious
overhead when we hit the scale of 50 million tokens, reaching the
magnitude of 60 seconds or more.

100KB
(1000 revoked users,
50 pseudonyms/user)

1MB
(1000 revoked users,

500 pseudonyms/user)

10MB
(1000 revoked users,
5k pseudonyms/user)

100MB
(1000 revoked users,

50k pseudonyms/user)
Revocation List Size

100

101

102

103

RL
 G

en
er

at
io

n
Ti

m
e

(m
s)

1000 bits
2000 bits
4000 bits
8000 bits

Fig. 13. Redactable Signature Overhead.

5.5.2 RS. To quantify the overhead introduced by our Redactable
Signature technique, we conducted experiments measuring the time
required to generate a signature over a revocation list, varying both
the size of the Bloom filter and the size of the chunks into which it
was divided.

As shown in Figure 13, the signature generation time increases
linearly with the Bloom filter size, as expected. Additionally, us-
ing smaller chunks results in longer generation times due to the

larger number of leaf nodes in the Merkle tree, which increases the
number of required hash computations. In contrast, larger chunks
yield smaller trees and thus lower computational overhead. The
latency required to generate a redactable signature ranges from
just 1 millisecond or less for Bloom filters of 100KB to hundreds of
milliseconds for filters as large as 100MB.
This highlights a trade-off between redaction granularity and

efficiency. As discussed before, (see Figures 8 and 9), larger chunks
reduce signature generation time but require more data transfer
during authentication. This trade-off becomes particularly relevant
for Bloom filters exceeding 100MB. For smaller filters, generation
time remains below one second across all chunk sizes, making the
overhead negligible in practice.

6 Conclusions
In this work, we addressed the problem of efficiently ensuring revo-
cation auditability. In previous work, this property was ensured by
sending the client the complete revocation list so that they could
verify their revocation status before authenticating in the system.
This requirement could cause authentication to take up to several
dozens of seconds, which is unacceptable for applications involv-
ing human interaction. We propose two techniques that allow for
the transfer of less information, thus achieving an acceptable and
practical authentication latency. Experimentally, we show that one
of these techniques significantly reduces the authentication time
(from 17 seconds to 2 milliseconds).

References
[1] Daniel Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. 2012.

High-speed high-security signatures. Journal of cryptographic engineering 2, 2
(2012), 77–89.

[2] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM 13, 7 (1970), 422–426.

[3] Jan Camenisch and Anna Lysyanskaya. 2002. Dynamic accumulators and ap-
plication to efficient revocation of anonymous credentials. In Advances in Cryp-
tology—CRYPTO 2002: 22nd Annual International Cryptology Conference Santa
Barbara, California, USA, August 18–22, 2002 Proceedings 22. Springer, 61–76.

[4] C. Correia. 2024. Low-Latency Privacy-Preserving Access to Edge Storage. Ph. D.
Dissertation. Instituto Superior Tecnico, Universidade de Lisboa.

[5] Cláudio Correia, Miguel Correia, and Luís Rodrigues. 2023. Using Range-Revocable
Pseudonyms to Provide Backward Unlinkability in the Edge. In Proceedings of
the ACM Conference on Computer and Communications Security. Copenhagen,
Denmark.

[6] Jason J Haas, Yih-Chun Hu, and Kenneth P Laberteaux. 2011. Efficient certificate
revocation list organization and distribution. IEEE Journal on Selected Areas in
Communications 29, 3 (2011), 595–604.

[7] Robert Johnson, David Molnar, Dawn Song, and David Wagner. 2002. Homomor-
phic signature schemes. In Cryptographers’ track at the RSA conference. Springer,
244–262.

[8] Jiangtao Li, Ninghui Li, and Rui Xue. 2007. Universal accumulators with efficient
nonmembership proofs. In Applied Cryptography and Network Security: 5th In-
ternational Conference, ACNS 2007, Zhuhai, China, June 5-8, 2007. Proceedings 5.
Springer, 253–269.

[9] Patrick P Tsang, Man Ho Au, Apu Kapadia, and Sean W Smith. 2008. PEREA: To-
wards practical TTP-free revocation in anonymous authentication. In Proceedings
of the 15th ACM conference on Computer and communications security. 333–344.

[10] Patrick P Tsang, Apu Kapadia, Cory Cornelius, and Sean W Smith. 2009. Nymble:
Blocking misbehaving users in anonymizing networks. IEEE Transactions on
Dependable and Secure Computing 8, 2 (2009), 256–269.

[11] Eric Verheul, Christopher Hicks, and Flavio D Garcia. 2019. Ifal: Issue first activate
later certificates for v2x. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 279–293.

[12] Yifeng Zhu, Hong Jiang, and J. Wang. 2004. Hierarchical Bloom filter Arrays
(HBA): a novel, scalable metadata management system for large cluster-based
storage. In Proceedings of the IEEE International Conference on Cluster Computing.
San Diego (CA), USA, 165–174.

	Abstract
	1 Introduction
	2 Background
	2.1 Bloom Filters
	2.2 Hierarchical Bloom Filters
	2.3 Redactable Signatures

	3 Related Work
	4 Proposed Techniques
	4.1 Technique based on Hierarchical Bloom Filter Arrays
	4.2 Technique based on Redactable Signatures

	5 Evaluation
	5.1 Technique based in Hierarchical Bloom Filters
	5.2 Technique based in Redactable Signatures
	5.3 Hierarchical Bloom Filters vs Redactable Signatures
	5.4 Evaluation Based on System Scale
	5.5 Additional Time to Generate a RL

	6 Conclusions
	References

