Configuring the Communication Middleware to
Support Multi-user Object-Oriented Environments*

Sandra Teixeira Pedro Vicente Alexandre Pinto
U. Lisboa U. Lisboa U. Lisboa
steixeira@di.fc.ul.pt pedrofrv@di.fc.ul.pt apinto@di.fc.ul.pt

Hugo Miranda Luis Rodrigues
U. Lisboa U. Lisboa
hmiranda@di.fc.ul.pt ler@di.fc.ul.pt
Jorge Martins Anténio Rito-Silva
INESC-ID INESC-ID

Jorge.B.Martins@inesc-id.pt Rito.Silva@inesc-id.pt

1st September 2002

Abstract

Distributed multi-user interactive systems have a rich and complex
set of requirements. A promising approach to tackle the complexity of
these systems is to rely on configurable architectures that are able to
support component re-utilization and composition.

The MOOSCo project, Multi-user Object-Oriented environments
with Separation of Concerns, addresses the difficulties in applying a
component-based approach in a vertical and integrated manner, from
analysis to implementation, to the design of this class of systems. To
support communication among distributed components, the project
uses a configurable group communication system called Appia. The
paper discusses the role of Appia in the MOOSCo architecture and
shows how it makes possible to derive, in a simple and elegant way,
the most appropriate protocol composition depending on the objects
shared by the multi-user object-oriented environment.

*This work was partially supported by Fundagao para a Ciéncia e Tecnologia, POCTI/
C/ EEI/1 33127/ 1999 MOOSCo.

Sections of this report have been published in the In Proceedings of the International
Symposium on Distributed Objects and Applications (DOA), October 2002, Irvine (CA),
USA.

1 Introduction

Distributed multi-user interactive systems represent an extremely relevant
research area. Applications such as virtual environments, distributed simu-
lation, computer supported collaborative work (CSCW), multi-user games or
dungeons (MUDs), and multi-user object-oriented environments (MOOs) [5]
are becoming increasingly pervasive. From the analysis, software engineering
and system support point-of-view, these applications are extremely challeng-
ing due to its unique requirements for dependability, scalability, adaptability,
usability, non-functional domains to be considered, and efficiency.

The MOOSCo project [1][12], Multi-user Object-Oriented environments
with Separation of Concerns, addresses the difficulties in applying a component-
based approach in a vertical and integrated manner, from analysis to im-
plementation, to the design of this class of systems. The MOOSCo project
addresses the several concerns involved in the development of MOOs, such
as object interaction, awareness management, distributed communication,
information sharing and so forth. A promising approach to tackle the com-
plexity of these systems is to rely on configurable architectures that are able
to support component re-utilization and composition. The MOOSCo archi-
tecture is based on component composition and addresses three abstraction
layers: user models, middleware abstractions, and communication protocols.
Due to the compositional characteristics of the architecture, it is possible to
use middleware abstractions and communication protocols tailored to the
specific user models needed in each case. To support this fine-grain level
of composition, including at the level of the communication protocols, the
project is relying on a framework for protocol composition and execution
called Appia [11].

In this paper we show the advantages of using Appia as a composition
framework for MOOs with particular emphasis on distributed communica-
tion and information sharing concerns. Using a concrete example of a virtual
space with different shared objects, we show how the application designer
may select a different composition of communication protocols for each at-
tribute of a shared object and how it can enforce inter-channel constraints.
Moreover, this configuration can be performed using a configuration file.
This allows the application to be configured during its deployment, not only
as a function of the objects being shared but also of the properties of the
network infrastructure.

The paper is structured as follows. The different configuration require-
ments of the MOOSCo system are introduced in Section 2. Section 3 makes a
brief introduction to the Appia system and shows how it is used in MOOSCo.
The comparative performance of the resulting system is presented in 4. Sec-
tion 5 presents related work. The advantages and difficulties of the approach
are discussed in Section 6. Section 7 concludes the paper.

2 Configurable multi-user environments

2.1 Multi-user environments

Multi-user virtual environments, such as MOOs, support real-time inter-
action between several geographically distributed users. To achieve this,
MOOs offer linked virtual shared spaces, usually following a wvirtual room
metaphor. It is within these virtual rooms that users may share data and
multimedia information (such as graphics, images and sounds).

MOOs offer the mechanisms for a user to enter or leave a virtual room,
watch other users activities while they happen and interact with other users
in the environment. These systems allow the creation and modification of
the virtual environment by change, addition and removal of objects.

Naturally, information sharing is a central aspect in the environment
implementation. There are several types of information shared by the MOO
users. First of all, the users have to be aware of other users in the same
virtual room and of the operations performed by these. This implies that
whenever a user enters or leaves the room, all other users are informed.
Secondly, users must perceive and be able to interact with the objects in
the room. This implies that the adding or removing of any object must be
indicated to all users in the room. Furthermore the users must be aware of
objects’ changes: Each object is characterized by one or more attributes (for
example, position, speed, sound, etc) that can be changed independently and
one or more actions (for example rotate, play, etc) that can be performed
at will. Finally, the communication requirements to propagate the changes
of these attributes or actions may be completely different (for example,
the data propagation protocols are different from the audio propagation
protocols).

Although each object attribute places different demands on the commu-
nication protocols, the dissemination of attribute information must respect
a global coherence so that every user has the same perception of the envi-
ronment. This means that the MOOs communication support must allow
the configuration of the quality of service required for a specific attribute,
but also allow the configuration of the coherence relations between different
attributes.

2.2 Monolithic solutions versus configurable solutions

As just described, there is not a unique and best solution in the context
of MOOs. Solutions should be contextual. On the other hand, the overall
satisfaction of MOO requirements for consistency, adaptability, scalability,
and efficiency, is not easy and may result in conflicting and inconsistent
solutions. For instance, due to latency, messages might arrive in different
orders at different machines. This results in a consistency problem: different
users get different views of the environment.

To solve this sort of problems most MOOs resort to a given, pre-defined,
non-configurable strategy. For instance, some approaches rely on a central-
ized server to serialize messages. Such solution does not scale to a large
number of users. Other approaches use a decentralized approach, that rely
on communication protocols that provide total ordering and causal ordering
for messages in the system. Such approaches may perform well in local-area
networks but also exhibit scalability limitations in large-scale networks due
to the number of messages that may need to be exchanged. In addition,
domain-specific requirements may consider different levels of consistency
and even their change at runtime.

Instead of relying on fixed strategies, the MOOs design and development
will profit from an approach that allows the customization of contextual
solutions by the tuning and composition of predefined reusable components.
Even if there are several systems providing solutions for the information
sharing support, few of these systems have the required flexibility to adapt
to the applications’ particular requirements. This paper intends to offer a
solution to a better protocol composition for the application requirements.

2.3 Configuration requirements

Each virtual environment with its particular objects places different require-
ments on the information sharing support system. In this section we will
introduce a very simple example that shows the complexity of the configu-
ration requirements usually found in MOO systems.

Lets consider a simple game, a MUD (Multi-User Dungeon). In this type
of game, each player personifies an animal that moves in a virtual universe,
searching for food. Each user is represented by an awvatar, implemented as a
shared object with three attributes: its appearance, its geographical position
and the direction it is facing; and a single action: eat. The appearance is
influenced by the amount of food consumed. In the following example we
will consider the scenario in which there are two users that interact in a
virtual shared space composed of a single virtual room with a cooling fan
and a food container. The cooling fan position is fixed and pre-defined so
its only relevant attribute, in terms of changing information sharing, is its
rotation speed. The food container has two relevant attributes: position
and number of items within. The users must approach the food container
and eat one or more items. This must reflect in their avatars’ appearance.

It should be pointed out that if two users try to take the last item,
only one of them should succeed. This requires that some order on these
concurrent actions should be established. The system must also guarantee
that the order in which the attributes are changed respects causal order. For
instance, if the number of items in the container diminishes an appearance
change must be made because of their ingestion. On the other hand, changes
to the cooling fan state are independent of the changes made to other objects.

avatar_A avatar_B food container fan
apperance position direction action action direction position apperance position n°items speed

QoS
QoS
QoS
QoS
QoS
QoS
QoS
QoS

Figure 1: Independent Channels

In the following section, we describe different ways to configure the com-
munication protocols in a setup were in each user node there is a replica
of each object in the application. In this setup, users must be informed
of all operation that change object attributes. In the following discussion
we will use the term channel to describe a composition of communication
protocol components. The quality of service offered by the channel depends
on the protocols that compose a channel. For instance, one may build a
communication channel that supports ordered and reliable point-to-point
communication (typically supported by a TCP/IP protocol stack). Later
in Section 3.1, we will provide a more precise definition of a channel in the
context of the Appia system.

2.3.1 Independent communication channels

A possible protocol composition for the information sharing in the virtual
room just mentioned, is to use an independent communication channel for
each attribute, as depicted in Figure 1. This architecture has the advan-
tage that allows each attribute to use a particular quality of service. For
example, to disseminate cooling fan speed changes it would use a reliable
communication channel without any particular order. On the other hand,
to disseminate state changes to the food container it would use a total-order
protocol, to enforce that all nodes see the changes in a coherent order. The
disadvantage of this alternative is that it is not possible to use a shared com-
munication component to enforce that causal order is maintained between
the changes made to different attributes. For instance, it would be impossi-
ble to causally order updates to the number of items in the food contained
and updates to the appearance of who has eaten them (therefore, it would
be possible to observe changes in the appearance before observing its cause,
the removal of a food item).

2.3.2 A single shared channel

A frequent solution to the coherence problems raised by the previous ar-
chitecture is to use a single channel that is shared among all attributes, as

avatar_A avatar_B food container fan
apperance position direction action action position direction apperance position n°items speed

Total Order

Causal Order

Reliable Multicast

Figure 2: Global Channels

illustrated in Figure 2. This channel must satisfy the strongest order re-
quired by the shared objects. In the example it would be total-order. The
drawback of this solution is that the communication among all attributes
would use total-order, when only a small subset of the attributes demanded
it. Since dissemination protocols that provide total-order are typically less
efficient than those that only provide causal-order, or even no order at all
(for the speed of the cooling fan), the use of strong total order might be an
overkill, for those attributes not requiring it, leading to possible degradation
of performance.

2.3.3 Shared channel with inter-channel dependencies

As just shown, neither the use of a single independent channel for each at-
tribute, nor the use of a single channel shared among all attributes fully
satisfies the requirements in our example. A solution is to create a proto-
col composition in which some attributes share some ordering properties,
without forcing all attributes to share those properties.

In our example, all attributes would use a reliable information dissem-
ination channel. This would be the quality of service strictly required for
the dissemination of the cooling fan speed. Therefore this attribute would
not use any additional ordering protocol. The remaining attributes would
share a common causal order, to enforce the relations between attributes,
as previously mentioned. Finally, a stronger ordering protocol, total order,
would be shared among avatars and only be used for the avatars’ actions.
Since there is a certain predictability in the avatar’s displacement it would
be possible to reduce network traffic by extrapolating its movement. This
could be achieved by another protocol, dead-reckoning, that does movement
prediction and only propagates position updates when the forecast deviation
is above a certain threshold. As this prediction potentially generates minor
inconsistencies between the position of an avatar and what other users per-
ceive, and it is a requirement that an avatar must be near the food container

fan
speed

avatar_A | avatar_B food container

apperance position direction action | action direction position apperance

position neitems

Forc% b&imity

I
|
|

E)ead Reckcﬂ [Total Orde] Eead Rec@ 3

Causal Order

IE3

)

droup Communication Protocols

Figure 3: Shared Channels

in order to be able to eat, the avatar’s actions would need a new protocol,
called force-proximity, that guarantees that when an eat action is dissemi-
nated every user accurately sees the avatar near the basket. The resulting
protocol composition is depicted in Figure 3.

In the following section we will describe a configurable communication
system that allows the implementation of such adaptation.

3 A configurable communication system

3.1 The Appia protocol composition framework

Appia [11] is a protocol composition and communication framework that
allows communication channels, each with its own QoS, to be integrated
in a coherent multi-channel protocol stack. Using Appia, the application
designer can specify the protocol stack that meets her/his QoS requirements
through the composition of micro-protocols.

In the previous sections, we have identified the need for inter-channel
coordination to support MOO applications. For instance, we have iden-
tified the need to preserve causal order across different channels. Similar
examples have been identified by other research teams[14, 4]. A powerful
feature of Appia is that it provides the mechanisms to express inter-channel
coordination.

Stack composition in Appia relies on a clear separation between two
related concepts: layers and sessions. We define a layer as the implemen-
tation of a protocol. All protocols implement the same event interface,
which defines the types of events each layer is able to consume and produce.
The format and semantics of these events is irrelevant to our exposition.

Typical examples of events are data transmission requests, indications and
confirmations. Examples of layers are “datagram transport”, “positive ac-
knowledgment”, “total order”, “checksum”, etc. Examples of relevant layers
and events in the context of fault-tolerant applications can be found in [§].

An ordered set of layers (protocols) defines a quality of service. When
a new quality of service is defined, Appia gathers the event types that each
layer is able to produce and consume and uses that information for:

Performance improvement Appia defines event routes for each event
type that will low in a composition. Each event route keeps a refer-
ence to the protocols that are interested in receiving that event type.
When an event travels a protocol composition, it will only be deliv-
ered to the protocols in his corresponding event route. We have shown
elsewhere that this feature improves Appia performance [11].

Incoherent composition detection To be able to behave correctly, most
protocols rely on the services provided by other protocols in the com-
position. One example of incoherent compositions are those where one
service fundamental for one protocol is not provided by any other. In
Appia, protocols can only communicate by the exchange of events.
Layers are free to declare event types that must be provided by some
other protocol in the composition. When creating a protocol compo-
sition, the Appia runtime throws an exception if it is found that one
event type required by one protocol is not provided by any other.

As in z-kernel, we define a session as an instance of a layer[9]. The
session maintains state that is used by the protocol code to process events.
A protocol that implements ordering may keep a sequence number or a
vector clock as part of the session state. In connection oriented protocols,
the session also maintains information about the endpoints of the connection.
Note that it is often useful to maintain several active sessions for the same
layer even when they share the same endpoints: for instance, one might
want to have different FIFO channels for different priority streams.

We can now provide a precise definition of a channel in the Appia sys-
tem. A channel is defined as an ordered sequence of sessions. Sessions are
used as a composition mechanism to implement coordination among chan-
nels. If needed, different channels may share the same session at one or
more layers. The common session stores state that is shared by all channels
and can implement the desired coordination. Each channel is modeled on
a previously defined quality of service. Channels inherit the event routes
defined by qualities of service mapping layers of the latter on sessions of the
former. However, Appia does not require that two or more channels sharing
at least one session are modeled by the same quality of service. In fact, the
quality of service and the number of simultaneous channels where a session is
being used may be transparent for the session. This is an innovative feature

Channel 1 Channel 2

(o) (o) ((moms])(oes) [T]

- Proto 3 | Proto 3
Sessions 0..n
Channels | 0..n
model model
1
1
Proto 1
Proto 1 Proto 2 Proto 3 Proto 2 Proto 2
Proto 3 Proto 3
Layers
0Oo0Ss

Figure 4: Relation between the basic concepts of Appia

of Appia that, to the extent of our knowledge, can not be found in other
composition frameworks.

Figure 4 shows how three protocols named Proto 1, Proto 2 and Proto
3 can be used in the definition of two channels. Layers are grouped for the
definition of two independent qualities of service (QoSs). Each of these QoSs
can be used for the definition of any number of channels. In this example,
protocols 1 and 2 have each one session created, while protocol 3 has two
sessions created. Sessions are then used for defining the channels. Note that
each channel uses one session for each layer declared on his corresponding
QoS. However, when the channels are defined, the same session of protocol
2 is shared between both channels. Protocol 3, in turn, uses one separate
session for each channel.

3.2 Defining channels with shared sessions

As noted in Section 2.3, users may share a set of objects and their respec-
tive attributes from the virtual environment. When one of the attributes is
changed, its new state must be disseminated to all the processes that share
the corresponding object. This dissemination must respect the consistency
criteria defined by the application. With Appia the consistency criteria is
mapped to a communication channel that offers the desired protocol com-
position. Therefore, for each attribute, a different communication channel
is created: each channel is composed by the protocols required to provide
the desired quality of service. Channels may have independent or shared
sessions. When one wants to coordinate the activity of the channels at a

<!ELEMENT configuration (attribute+)>

<!ATTLIST configuration object CDATA #REQUIRED>

<!ELEMENT attribute (name, QoS)>

<!ELEMENT QoS (micro-protocol+)>

<!ELEMENT micro-protocol (name, sessionname?, initParameters*, mode)>
<!ELEMENT name (#PCDATA)>

<!ELEMENT sessionname (#PCDATA)>

<!ELEMENT initParameters (parameter+)>

<!ELEMENT parameter (#PCDATA)>

<!ELEMENT mode (#PCDATA)>

Figure 5: System’s grammar

certain protocol level, shared sessions should be used.

Applying this model to our previous example should result in the con-
figuration depicted in Figure 3. Each attribute has its own channel to dis-
seminate its own changes. But these channels are not independent. At the
bottom of the stack, all channels share the set of protocols necessary to pro-
vide reliable group communication'. The channel used to disseminate the
cooling fan speed only needs one more FIFO layer, whose state is preserved
in a private session. All the remaining channels share a causal order session.
The channels used to disseminate the position and direction of each avatar
share a session of a dead-reckoning protocol. Finally, the two channels used
to disseminate the eat action of the avatars also share a session of a total
order protocol and each channel has its own session of a force-proximity
protocol.

3.3 The configuration process

In the previous Section, we have shown how it is possible to use the Appia
composition model to build a multi-channel protocol stack. In this section
we show how the user can specify a configuration fitting her/his consistency
requirements, for instance, to build the communication stack illustrated in
Figure 3.

The XML language is appropriate for specifying the users’ configuration.
Using this language, the user can define a set of rules to build a well formed
and structured file. These rules must be defined in a grammar (DTD Doc-
ument Type Definition), that will be followed to define the file. Those files
will be easily built and understood due to its organization.

The user defines an XML file for each object he/she wants to create.
Although nothing prevents this file from being created in run-time, in our

! Actually, it could be possible to refine even further the example and consider the use
of best-effort communication protocols in some channels but we omit such optimizations
to maintain the exposition simpler.

10

current prototype we use exclusively specifications that are made prior to
the execution. However, as we will describe, a single file can be used for each
class of objects (for instance, for all avatars), thus allowing the creation of
new objects in run-time.

The configuration file must follow the grammar rules that the system is
ready to interpret, as presented in Figure 5. Selected portions of the XML
configuration file for the avatar objects is presented in Figure 6 and the
corresponding file for the fan is depicted in Figure 7. We will refer to these
files to give concrete examples of some configuration features.

According to the grammar specification this file must have: the name
of the object, the name of each attribute, for each attribute the declaration
of the stack of protocols that implement the target consistency criteria, an
identifier of the sessions to be used. Each channel is composed of a sequence
of layers: the order in which they are listed corresponds to the order by
which they appear in the communication stack. The configuration file for
each object is parsed when the user places the object into the virtual envi-
ronment to build the associated communication channel. When an object
is shared, the configuration file of the channel is disseminated along with
the object state, such that remote processes can create the corresponding
communication channel in their local nodes.

Both protocols and sessions are identified by textual names in the config-
uration file. The session declaration has an attribute called initParameters
that are used to configure the session. These parameters are passed to the
session in an initialization event. For instance, in the definition of the dead-
reckoning session this parameter is used to defined the threshold used to
trigger an update. Each session is also characterized by an attribute called
mode with the following meaning:

e If the session cannot be shared with other attributes, mode should be
set to localAttribute. Such session does not need to be named as a
unique name is assigned automatically in run-time using the object’s
name and the name of the attribute. An example of a session with this
characteristic is the session of the Force-proximity protocol, which is
used exclusively by the channel of the action attribute of each object.

e If a session is to be shared by more than one attribute of the same
object, but not with attributes of other objects, the mode should be set
to localObject. As before, the name of the session is automatically
assigned in run-time using the name of the object. An example of such
a session is the dead-reckoning protocol that controls the dissemination
of the position and direction attributes of each avatar: for each object
a different session is created that is shared among these two attributes.

e If a session is to be shared among different objects, the mode should
be set to shared. In this case the user must identify the name of the

11

<configuration object="avatar">

<attribute>
<name>
apperance
</name>
<QoS>
<micro-protocol>
<name>
Causal Order
</name>
<sessionname>
causal session
</sessionname>
<mode> shared </mode>
</micro-protocol>
<micro-protocol>
<name>
Reliable group communication
</name>
<sessionname>
group session
</sessionname>
<mode> global </mode>
</micro-protocol>

<name>
Force-proximity
</name>
<mode> localAttribute </mode>
</micro-protocol>
<micro-protocol>
<name>
Total Order
</name>
<sessionname>
total session
</sessionname>
<mode> shared </mode>
</micro-protocol>
<micro-protocol>
<name>
Causal Order
</name>
<sessionname>
causal session
</sessionname>
<mode> shared </mode>
</micro-protocol>
<micro-protocol>

</QoS> <name>
</attribute> Reliable group communication
</name>
<sessionname>
group session
<attribute> </sessionname>
<name> <mode> global </mode>
action </micro-protocol>
</name> </QoS>
<QoS> </attribute>
<micro-protocol> </configuration>

Figure 6: Avatar XML configuration file (partial)

12

<configuration object="fan"> </micro-protocol>

<attribute> <micro-protocol>
<name> <name>
speed Reliable group communication
</name> </name>
<QoS> <sessionname>
<micro-protocol> group session
<name> </sessionname>
FIFO Order <mode>global</mode>
</name> </micro-protocol>
<mode> </QoS>
localAttribute </attribute>
</mode> </configuration>

Figure 7: Fan XML configuration file

session to be shared. This allows objects from different types to share
different sessions of the same protocols. In our example, the total
order and causal sessions are shared sessions.

e [f one knows a priori that, due to some global consistency criteria, all
objects should share a given session, the mode should be set to global.
In this case, the run-time ensures that no other attribute may create
a new session of that protocol. In our example, all attributes share a
single session of the group communication protocols.

The use of modes allows to create configuration files that can be applied
to several objects of the same type. In our example, all avatars may use
the configuration file of Figure 6. Thus, this sort of fine-grain configuration
does not restrict the number of avatars than can be created in run-time.

4 Performance

The system has been implemented as a set of extensions and new layers
to the Appia system[11]. A companion prototype multi-user cooperative
application, that demonstrates the the operation of the system was also
developed.

To illustrate the comparative performance of the different configurations,
we have measured the round-trip delay associated with the propagation
of updates in shared attributes. We have considered the “position” and
“action” attributes, since these have quite different requirements in terms
of communication protocols. We have measure the values obtained with
three different configurations for the supporting communication channels:

13

Independent channels | Shared channel | Shared sessions
position 68 145 74
action 71 150 147
inter-channel consistency no yes yes

Figure 8: Comparative performance

i) independent channels, where each channel offers different properties but
where it is impossible to enforce inter-channel constraints; ii) a single shared
channel enforcing the strongest requirement of both attributes, in this case,
total order; iii) channels that enforce distinct properties but where inter-
channel dependencies are expressed using the notion of shared sessions.

The results are depicted in Figure 8 (all values are in milliseconds).
It can be observed that the configuration that uses independent channels
offers the best round-trip delays but does not allow to enforce inter-channel
constraints (order across different attributes). If such constraints need to
be enforced, the use of shared sessions is more beneficial than to use a
single channel, since in this case, total order does not need to be used when
dissemination updates to the position attribute. It can be also observed that
the degradation in performance for the configuration using shared sessions is
not significant when compared with the degradation of performance incurred
by a solution that requires the use of a single shared channel.

5 Related work

All existing MOO systems, such as [2, 6, 13], provide support for information
sharing. DIVE [6] and SPLINE [2] use a replicated database approach: all
interaction is performed through the replicated database. Although they
offer a clean separation between the application and the replicated database,
applications have little control over the replication issues. In particular,
none of these systems allow the application developer to specify customized
algorithms. Furthermore, from the point of view of communications support,
existing MOO systems are usually tied to a single quality of service. For
instance, NPSNET [10] only uses unreliable communication while DIVE only
use reliable communication. SPLINE support both reliable and unreliable
with ordering for messages regarding the same object. However in some
situations it could be useful to force message ordering for a particular set
of objects. In all existing systems there is no support for quality of service
adaptation that takes into consideration application specific requirements.
As result of their monolithic structure these systems are restricted to a single
user model.

In recent years, there has been a significant progress in the development

14

of group communication infrastructures. The latest systems offer a very
impressive range of configuration facilities. For instance, Horus [15] allows
communication stacks to be changed in runtime; BAST [7] allows different
protocols to be selected to implement the same services under different usage
patterns. Coyote [3] allows the same message to be processed by different
protocols in parallel. However, these systems lack built-in mechanisms to
implement inter-channel coordination. Although presenting different com-
position models, none of these frameworks is able to support inter-channel
coordination while hiding the final composition schema from the program-
mer of the protocols to be shared. Previous support for these kind of features
has always been limited to particular cases, typically for performance im-
provement. This is the case of the Horus’s FAST protocol [15].

Frameworks explicitly supporting inter-channel constraints lack general-
ity. The work of CCTL [14] uses independent communication channels which
are managed by a single control channel. The quality of service of each chan-
nel must be chosen by the application programmer from one of a predefined
set available at the framework. Another example is the Maestro [4] system,
that illustrates the difficulties of maintaining consistent failure detection
when channels with diverse characteristics are used concurrently.

6 Discussion

The main advantage of the proposed architecture is that the user is able to
configure a communication stack that satisfies the consistency requirements
of the set of shared objects used by the application. A specialized commu-
nication channel can be assigned to each object attribute and the different
channels can be coordinated thanks to the concept of configurable shared ses-
sions. This and the possibility to access domain-specific information from a
session allowed for different protocols, not just related to communication but
with general consistency required for replication, another important aspect
of MOO applications. This is illustrated, for instance, by the dead-reckoning
protocol whose threshold value can be configured by the user depending on
the object being shared. Supporting both concerns under the same infras-
tructure while still maintaining the separation of concerns allows to define
coherent consistency from the network-level up to application-level and yet
allow for separate development and reasoning.

The composition model offered by Appia is a step forward with regard
to previous approaches to support MOO applications. However, the current
system still exhibits some limitations. A disadvantage of the configuration
procedure is that it requires the use of a global name space for the sessions.
When two channels need coordination, the same session name must be used
in configuring the channels. Thus, in practice, the user is forced to have a
global view of the configuration of all channels. The provision of local and

15

global modes mitigates this disadvantage, as a single configuration file can
be used for all objects that share a given protocol composition. Therefore,
the object has not to consider the configuration of channels on an object by
object basis, but in terms of classes of objects.

One of the challenges raised by the model is the development of multi-
channel communication protocols. Although session sharing is provided by
Appia since its inception, several protocols developed for it do not consider
this capability. This is due to two main reasons. One is concerned with
programming discipline. Since the concept of shared sessions is unusual,
programmers do not consider this case unless directly requested to do so.
Another reason is that the complexity of coding a protocol that accepts
multi-channel sessions is highly variable. Some protocols, such as FIFO
protocols are very simple to implement but others are more complex.

To illustrate the difficulty of building multi-channel protocol we give
the example of the total order protocol used in our MOO. The protocol
is a sequencer-based protocol: a given member of the group of replicas is
elected to assign sequence number to all messages exchanged in the group.
In a multi-channel implementation, a single sequence of sequence numbers is
used across all channels that share the same session. However, the protocol
designer has to decide if it creates an additional channel just to exchange
control information (such as the sequence numbers) or if it used one of
the data channels and, in the later case, which one to use. Since different
channels may have different properties (protocols), some introspection may
be required to select the most appropriate channel.

7 Conclusions

This article presents a configurable communication architecture that satis-
fies the complex requirements raised by interactive multi-user applications.
This architecture is based on the vertical and horizontal composition of pro-
tocols. Vertical composition enables the configuration of the protocols that
compose the channels used for update dissemination. Horizontal composi-
tion enables to respect dependencies between attributes through the use of
shared sessions. The configuration may be performed during the applica-
tion deployment phase, without being fixed into the code. This allows the
configuration to be adapted not only to the properties of the shared objects,
but also to the environment in which the system is running.

Acknowledgements The authors are grateful to the anonymous reviewers for their

comments on an earlier version of this paper.

16

References

[1]

M. Antunes and A. Silva. Using separation and composition of con-
cerns to build multiuser virtual environments. In Proceedings of the
6th International Workshop on Groupware - CRIWG’2000, Madeira,
Portugal, 2000. IEEE.

J. Barrus, R. Waters, and D. Anderson. Locales: Supporting Large
Multiuser Virtual Environments. In IEEE Computer Graphics and Ap-
plications, pages 16(6):50-100, Nov. 1996.

N. Bhatti, M. Hiltunen, R. Schlichting, and W. Chiu. Coyote: A system
for constructing fine-grain configurable communication services. ACM
Transactions on Computer Systems, 16(4):321-366, November 1998.

K. Birman, R. Friedman, and M. Hayden. The maestro group man-
ager: A structuring tool for applications with multiple quality of ser-
vice requirements. Technical report, Cornell University, Ithaca, USA,
February 1997.

S. Evans. Building blocks of text-based virtual environments. Technical
report, Computer Science University, University of Virginia, April 1993.

E. Frécon and M. Stenius. Dive: A Scalable Network Architecture for
Distributed Virtual Environments. In Distributed systems Engineering

Journal(Special Issue on Distributed Virtual Environments), number
Vol. 5, No 3, pages 91-100, September 1998.

B. Garbinato and R. Guerraoui. Flexible protocol composition in
Bast. In Proceedings of the 18th International Conference on Dis-
tributed Computing Systems (ICDCS-18), pages 22-29, Amsterdam,
The Netherlands, May 1998. IEEE Computer Society Press.

M. Hayden. The Ensemble System. PhD thesis, Cornell University,
Computer Science Department, 1998.

N. Hutchinson and L. Peterson. The x-Kernel: An architecture for im-
plementing network protocols. IEEE Trans. on Software Engineering,
17(1):64-76, January 1991.

M. Macedonia, M. Zyda, D. Pratt, D. Brutzman, and P. Barham. Ex-
ploiting Reality with Multicast Groups. In IEEE Computer Graphics
and Applications, pages 15(5):38-45, September 1995.

H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol
kernel supporting multiple coordinated channels. In Proceedings of
the 21st International Conference on Distributed Computing Systems,
pages 707710, Phoenix, Arizona, April 2001. IEEE.

17

[12]

[13]

MOOSCo. Multi-user Object-Oriented environments with Separation
of Concerns. Home Page URL:http://www.esw.inesc.pt/moosco/.

J. Pubrick and C. Greenhalg. Extending Lo-
cales: Awareness Management in MASSIVE-3. In
URL:http://www.crg.cs.nott.ac.uk/research/systems/MASSIVE-3,
September 1999.

I. Rhee, S. Cheung, P. Hutto, and V. Sunderam. Group communication
support for distributed collaboration systems. In Proceedings of the 17th
International Conference on Distributed Computing Systems, pages 43—
50, Balitmore, Maryland, USA, May 1997. IEEE.

R. van Renesse, K. Birman, and S. Maffeis. Horus: A flexible group
communications system. Communications of the ACM, 39(4):76-83,
April 1996.

18

