
Dynamic Adaptation of Byzantine Fault Tolerant
Protocols

Carlos Eduardo Alves Carvalho

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor:
Prof. Luı́s Eduardo Teixeira Rodrigues

Examination Committee

Chairperson: Prof. Luı́s Manuel Antunes Veiga
Supervisor: Prof. Luı́s Eduardo Teixeira Rodrigues
Member of the Committee: Prof. João Carlos Antunes Leitão

October 2017

Acknowledgements

Firstly, I thank my parents, from the bottom of my heart, for making this journey possible and for

always being there through thick and thin. I also thank Diana for her caring and teachings. I thank my

friends, specially Miguel and Beatriz, for being patient with me and making this journey a delightful one.

I would also like to thank Dr. António Venâncio for all of the meta-discussions about this project. I also

would like to acknowledge my supervisor, Luı́s Rodrigues, for welcoming me as his student and for the

endless support and sharing of knowledge. Last but not least, I thank all my colleagues at INESC-ID,

namely Manuel Bravo, Diogo Barradas, Daniel Porto and Nuno Duarte for their support and friendship.

To each and every one of you – Thank you.

Lisbon, October of 2017

Carlos Eduardo Alves Carvalho

For my mother,

Resumo

O problema do consenso distribuı́do na presença de faltas bizantinas tem recebido particular

atenção nas últimas décadas. Em parte devido ao enfraquecimento da confiablidade dos sistemas

fı́sicos e em parte devido ao aumento do número de ataques maliciosos. Assim, existem hoje diversos

protocolos para este efeito, cada um otimizado para condições de execução particulares. Uma vez que

na maioria dos casos os sistemas reais operam em condições dinâmicas, importa desenvolver mecan-

ismos que permitam adaptar os protocolos em tempo de execução ou substituir um protocolo por outro

mais adequado às condições correntes.

O problema da adaptação dinâmica de protocolos de consenso não é novo, mas a literatura é

escassa para o caso bizantino e não existem trabalhos que permitam comparar as soluções exis-

tentes. Este trabalho tem dois objetivos complementares. Em primeiro lugar, estuda como as diferentes

técnicas de adaptação dinâmica propostas para o modelo de falta por paragem podem ser aplicadas

na presença de faltas bizantinas. Em segundo lugar, através da concretização destas técnicas numa

moldura de software comum, baseada no pacote de código aberto BFT-SMaRt, apresenta um estudo

comparativo do desempenho das mesmas.

Abstract

The problem of distributed consensus in the presence of Byzantine faults has received particular

attention in recent decades. Today a variety of solution to this problem exist, each optimized for particular

execution conditions. Given that, in most cases, real systems operate under dynamic conditions, it is

important to develop mechanisms that allow the algorithms to be adapted at runtime or to switch between

different algorithms so that is possible to optimize the system to the current conditions.

The problem of dynamic adaptation of consensus algorithms is not new, but the literature is scarce

for the Byzantine case and there is no comprehensive comparison of existing solutions. This work

has two complementary objectives. First, it studies how the different dynamic adaptation techniques

proposed for the crash failure model can be applied in the presence of Byzantine faults. Second, it

presents a comparative study of the performance of these switching algorithms in practice. For that

purpose, we have implemented the switching algorithms in a common software framework, based on

the open source BFT-SMaRt package. Using this common framework we have performed an extensive

evaluation that offers useful insights on the practical effects of different mechanisms used to support the

run-time switching among Byzantine protocols.

Palavras Chave

Keywords

Palavras Chave

Tolerância a Faltas Bizantinas

Adaptação Dinâmica

Protocolos de Consenso Adaptáveis

Protocolos de Consenso Bizantino

Replicação de Máquinas de Estado

Keywords

Byzantine Fault Tolerance

Dynamic Adaptation

Adaptable Consensus Protocols

Byzantine Consensus

State Machine Replication

Contents

1 Introduction 2

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Results . 3

1.4 Research History . 4

1.5 Structure of the Document . 4

2 Related Work 6

2.1 State Machine Replication . 6

2.1.1 Raft . 7

2.2 The Byzantine Generals Problem . 8

2.2.1 Tangaroa . 9

2.2.2 PBFT . 11

2.2.3 Zyzzyva . 12

2.2.4 Aardvark . 14

2.2.5 Fast Byzantine Consensus . 14

2.2.6 Discussion . 15

2.3 Approaches on Protocol Adaptation . 16

2.3.1 Adaptation of SMR Protocols . 18

2.3.2 Configuration as a Dynamic Module . 18

2.3.3 Switching Between Black-Box Protocols . 19

2.3.3.1 Rα . 19

2.3.3.2 Run-time switching between protocols . 20

2.3.3.3 Building a Reconfigurable State Machine from Non-Reconfigurable Pro-

tocols . 21

i

2.3.4 Stoppable Protocols . 23

2.3.4.1 The Next 700 BFT Protocols . 23

2.3.5 Further Considerations . 25

2.3.5.1 Multi-step Algorithm Switching . 25

2.3.5.2 General vs Specialized Switchers . 25

2.3.6 Discussion . 26

3 Byzantine Adaptation 28

3.1 System Model . 28

3.2 Byzantine Fault Tolerant Adaptation Techniques . 29

3.2.1 Adaptation of Reconfigurable Protocols . 29

3.2.2 Adaptation of Protocols Modelled as a Black-box 31

3.2.3 Adaptation of Stoppable Protocols . 33

3.2.4 Using Parallelization in Adaptation . 33

3.2.5 State Management During an Adaptation . 34

3.3 Implementing Adaptation Within BFT-SMaRt . 36

3.3.1 BFT-SMaRt . 36

3.3.2 Architecture . 37

3.3.3 Fast-SMaRt . 38

3.3.4 Safe-SMaRt . 39

3.3.5 Support for Parallel Execution of Protocols . 39

3.3.6 Adaptation Requests . 40

3.3.7 Adaptation Execution Flow . 40

3.4 Implementing Adaptation Using BFT-SMaRt as a Black-Box 41

4 Evaluation 43

4.1 Local Network Context . 43

4.1.1 Adaptation Time . 44

4.1.2 Throughput During an Adaptation . 45

4.1.3 Network Overhead of an Adaptation . 45

ii

4.2 Wide-area Network Context . 46

4.2.1 Adaptation Time . 46

4.2.2 Throughput During an Adaptation . 48

4.2.3 Network Load Overhead of an Adaptation . 50

4.3 Adaptation Under Heavy Load . 51

4.4 Flash Adaptation versus Ordered Adaptation . 52

5 Conclusions 54

Bibliography 57

iii

List of Figures

2.1 The general architecture of a replica in State Machine Replication 7

2.2 A tree of commands and configurations resulting of speculative execution in Bortnikov et

al. reconfigurable state machine approach . 22

3.1 Flow of an adaptation using reconfigurable protocols . 30

3.2 Flow of an adaptation using protocols as a black-box . 32

3.3 The architecture of BFT-SMaRt . 37

3.4 Architecture of the developed system to support adaptation in BFT-SMaRt. 38

3.5 Architecture of a switching system using ordering protocols as independent processes . . 42

4.1 Execution time of an adaptation in a local network, using 6 replicas 44

4.2 Throughput during an adaptation in a local network . 45

4.3 Network load during an adaptation, in a local network, using 6 replicas 46

4.4 Network load during an adaptation, in a local network, using 11 replicas 46

4.5 Reconfiguration time in a wide-area network environment 47

4.6 Throughput during an adaptation, in an wide-area network, using 1000 client threads. . . 48

4.7 Throughput during an adaptation, in an wide-area network, using 1200 client threads. . . 48

4.8 Answered requests during an adaptation, in an wide-area network, using 1000 client

threads. 49

4.9 Answered requests during an adaptation, in an wide-area network, using 1200 client

threads. 49

4.10 Load introduced in an wide-area network when executing an adaptation 50

4.11 Introduction of an adaptation when the system’s performance is heavily degraded 51

4.12 Adaptation time of flash, coordination-demanding, stoppable and pure black-box ap-

proaches. 53

iv

List of Tables

4.1 Latencies between the different replicas in the system used in the wide-area network

experiments . 47

v

Acronyms

SMR State Machine Replication

BFT Byzantine Fault Tolerant

CFT Crash Fault Tolerant

MAC Message Authentication Code

SHA-256 Secure Hash Algorithm with 256-bit Output

1

1Introduction
This dissertation addresses the problem of dynamic adaptation of Byzantize Fault Tolerant (BFT)

consensus protocols. It departs from a comprehensive analysis of the related work, namely of previous

techniques to perform dynamic adaptation of consensus protocols in different fault-models (including

Crash Fault Tolerant (CFT)). Subsequently, it discusses how these solutions can be adapted to the BFT

case, in order to derive a catalog of adaptation strategies that can be used in different contexts. Finally,

it offers a comparison of the performance of these techniques in practice, by experimentally evaluating

an implementation of the algorithms in a common framework.

1.1 Motivation

State Machine Replication (SMR)(Schneider 1990) is one of the fundamental techniques for pro-

viding fault tolerance. At its core, this technique uses a distributed consensus algorithm so that all the

replicas can agree in the order in which they should process the requests. This work focuses mainly on

the case where one intends to use SMR to tolerate Byzantine faults (BFT). This is motivated by the ob-

servation that Byzantine faults tend to be more likely in the present days as electromagnetic phenomena

is potentiated by the trends in chip development and malicious cyber-attacks are ever more frequent.

Among the systems that have been proposed to accomplish BFT state machine replication we

highlight PBFT (Castro, Liskov, et al. 1999), Aardvark (Clement, Wong, Alvisi, Dahlin, and Marchetti

2009), and Zyzzyva(Kotla, Alvisi, Dahlin, Clement, and Wong 2007). Each of these systems operates

better under certain conditions, and worse in others, with none surpassing all others in all situations, as

shown by Singh, Das, Maniatis, Druschel, and Roscoe (2008). Zyzzyva performs better when no faults

occur and the network is stable. On the other hand, when faults frequently occur, Aardvark operates

better than the rest, sacrificing performance in the fault-free case. In addition, the performance of the

PBFT is less sensitive to the increased size of the messages exchanged when compared to the Zyzzyva.

These differences motivate the interest of switching among different algorithms, or to dynamically adapt

a given algorithm.

Therefore, in this work we are interested in the study of mechanisms that allow to adapt, or to

replace, in runtime, a consensus algorithm for another. This is relevant since most of the practical

applications of SMR are subject to variations of their execution environment, from changes in the load

imposed by clients to variations on the network performance. Furthermore, as there is no one-size-

fits-all algorithm solution for a range of extended operating conditions, the only way to ensure a good

performance in face of a variable envelope is to perform dynamic adaptation.

The problem of dynamic adaptation of consensus algorithms is not new and has been well studied

for the crash fault model (e.g. (Couceiro, Ruivo, Romano, and Rodrigues 2015), (Mocito and Rodrigues

2006), (Chen, Hiltunen, and Schlichting 2001)). However, the literature is scarce for the Byzantine case

and, in fact, several of the previously proposed mechanisms may fail in face of Byzantine faults and

need to be modified to operate in such a scenario. Even among algorithms developed taking Byzantine

faults into account there is, as far as we know, no work comparing their performance. In this way,

those who seek to support dynamic adaptation while tolerating Byzantine faults do not have at their

disposal concrete data in order to choose the adaptation technique that best suits the characteristics

and objectives of the target system.

Thus, this work has two main goals. First, it studies how the different dynamic adaptation tech-

niques that were previously proposed for the crash failure model can be adapted to work in the presence

of Byzantine faults. Second, it presents a comparative study of the performance of these switching

algorithms in practice. For that purpose, we have implemented the switching algorithms in a common

software framework, based on the open source BFT-SMaRt library (Bessani, Sousa, and Alchieri 2014).

Using this common framework we have performed an extensive evaluation that offers useful insights on

the practical effects of different mechanisms used to support the run-time switching among Byzantine

algorithms.

1.2 Contributions

This work studies, implements and evaluates techniques to perform on-the-fly adaptations on BFT

consensus protocols with the goal of offering a better overall performance to a State Machine Replication

(SMR) system. This thesis presents then the following contributions:

• A common conceptual framework to rationalize about different techniques for performing dynamic

adaptation of BFT consensus protocols.

• A portfolio of techniques for the dynamic reconfiguration of BFT systems, that extends previous

techniques proposed for different fault models.

• New insights on the relative performance of these techniques in different operational scenarios.

1.3 Results

The results produced by this thesis are enumerated as follows:

• The design and implementation of several modules and extensions to allow the BFT adaptation of

the BFT-SMaRt framework.

3

• The development and implementation of five different adaptation approaches, in BFT-SMaRt,

which implement the support for on-the-fly switching between different consensus protocol be-

haviours, as well as the adaptation of some configuration parameters of such protocols. This five

approaches are combinations of three distinct adaptation algorithms with some possible optimiza-

tions.

• An experimental comparative evaluation of the implemented techniques, with regard to its perfor-

mance in different use cases and conditions of the execution environments.

1.4 Research History

This work was developed as part of the Abyss project. The main goal of the project is to develop and

evaluate a complete solution to support dynamic adaptation of BFT protocols. Other team members are

working on different modules of the Abyss architecture, such as a BFT policy-driven adaptation manager

(to issue the adaptation given the current environment) and a BFT sensor infrastructure to capture the

environment variables. An early prototype of the Abyss architecture has been developed by Frederico

Sabino (2016); this works extends that previous protocol adaptation technique in an significant manner.

Initially this work was focused not only in developing on-the-fly protocol switching, but also on other

adaptations, namely leader switching, batch size adaptation, among others. During the development of

the work the aim focused more on the protocol switching, because it was the more general approach,

making no assumption of the actual protocol running and subsuming all other adaptations.

This thesis greatly benefited from the fruitful discussions with Miguel Pasadinhas about the usability

of the system from the perspective of a adaptation manager implementation; Professor Alysson Bessani

and João Sousa about the operation of BFT-SMaRt; Daniel Porto and Manuel Bravo about conceptual

and technical aspects of this work.

A subset of the work reported in this dissertation has been published in Actas do Nono Simpósio de

Informática, INForum 17 (Carvalho, Porto, Rodrigues, and Bessani 2017). The paper has been awarded

with the prize for the best student paper.

This work was developed at INESC-ID and LaSIGE and has been supported in part by FCT through

projects PTDC/EEI-SCR/ 1741/ 2014 (Abyss) and UID/ CEC/ 50021/ 2013.

1.5 Structure of the Document

The remaining of this document is organized as follows. Chapter 2 provides a brief introduction

to BFT systems and presents several adaptation techniques described in the literature. Chapter 3

describes a conceptual model to compare the distinct adaptation techniques, discusses the changes

4

needed to apply such techniques in a BFT context and presents some possible optimizations. It also

describes the architecture and implementational details of the application of such techniques and opti-

mizations in the BFT-SMaRt framework. Chapter 4 presents an experimental comparison and evaluation

of the developed adaptation approaches. Lastly, Chapter 5 concludes this document by summarizing

the main findings of this work and discussing some directions for future work.

5

2Related Work

This chapter starts by briefly introducing the concepts of State Machine Replication (2.1) and Byzan-

tine Fault Tolerance (2.2). Then, some existing BFT SMR systems are described and compared (2.2.2 to

2.2.6). In section 2.3 are presented and discussed some adaptation techniques present in the literature.

In the literature, the term reconfiguration is used sometimes to refer the adaptation of the replicas

already deployed, and sometimes to refer to the change in the membership of the set of replicas partic-

ipating in the consensus. In this work, we use reconfiguration to refer to any change to a configuration

parameter or behaviour in the system (including changing the running protocol or the set of deployed

replicas). Thus, the terms reconfiguration and adaptation are used interchangeably.

2.1 State Machine Replication

A general approach to provide fault-tolerance is to use State Machine Replication (Schneider 1990).

This approach sees the whole system as a finite state machine with a given state and that is capable of

processing certain commands, which modify the state (deterministically). This state is replicated among

all replicas of a given service and commands are executed in all of them. The rationale is to have several

copies of a server, so if some fail, others can still provide service. It is common to have a log with the

history of the requests processed by the machine. This serves two purposes: firstly to transfer state if

a new replica is initiated (possibly to replace a faulty one); secondly, to enforce synchronization among

replicas. As faults may cause some deviations among the state of replicas, the history of each replica

is used to decide upon a common history, so that the overall SMR keeps consistent. To decide on the

order of the commands executed, there is the need for an agreement among the replicas, that is called

consensus. A high level representation of the general architecture of a replica in SMR is presented in

Figure 2.1.

The replicas participating on a SMR system may change over time, because faulty replicas may

be replaced by new ones, or the total number of replicas is changed (e.g. increased to withstand more

faults). It is essential that every replica knows about the others in order to carry out consensus: the state

about how many and which replicas are participating in consensus is denoted a view.

SMR systems can be built to tolerate Crash or Byzantine faults. Both approaches are discussed in

more detail in the following sections.

Consensus
Module

State

History

var1: 2
var2: 15
var3: 0

op1: var1 = 2; op2: var2 = 15; op3: var3 = 1; op4: var3 = 0

Figure 2.1: The general architecture of a replica in State Machine Replication

2.1.1 Raft

Raft(Ongaro and Ousterhout 2014) is a protocol used to implement SMR in synchronous systems

subject to crash faults. Raft can be seen as a more understandable consensus approach than the most

known Paxos protocol, originally proposed by Leslie Lamport(Lamport et al. 2001). Paxos relies on

three roles: proposers, acceptors and learners. The proposer is responsible for electing a value to be

decided with a given sequence number and forwarding this decision to the acceptors. The acceptors

receive this chosen value and promise to one another that they will not accept a different decision for

that sequence number. When at least f + 1 acceptors made the promise, then it is ensured that even if

f fail, the decision will not be lost. Finally this decision is broadcast to all learners, who may act upon it.

Paxos requires at least 2f + 1 replicas in order to tolerate up to f faults, as does Raft.

Raft, as Paxos, is a leader-based protocol; one of the replicas is elected to play a special role and

act as a coordinator for the protocol, called leader and similar to the Paxo’s proposer. The protocol

includes the required mechanisms to replace a failed leader by another replica and to make sure that no

inconsistency is generated even if, due to the asynchrony of the system, more than one replica believes

to be the leader at a given point in time.

The leader replica receives requests from the client and broadcasts them to all the other replicas.

Before a request is processed, the protocol ensures that it is ordered and added to the log of, at least,

f + 1 replicas. When a given entry is appended to the log of a majority of the replicas, we say that it

is committed and it is safe to answer to the client because, despite failures, that operation will always

be part of the history of the state machine. Known to be committed, it can be executed and a response

returned to the client.

If the leader fails, a new leader is elected. Each replica has a given time-out threshold to wait for

messages from the leader. When a time-out occurs, the replica suspects that the leader may have

crashed, so it initiates a leader election. Firstly it proposes itself as a candidate for leadership to all other

replicas. Then, all replicas cast their vote, and if, and only if, a majority vote for it, it starts to be the leader

and informs every other replica of its new role. Every time an election is started, it is started a new term,

7

which is sent along all communications. Terms have increasing numbers and are used to enable replicas

to know if other replica is further advanced or far behind, as the system progresses. As an example,

if a candidate to leadership receives a request for processing a command from another leader and the

term is greater than its own term, then it knows that the new leader already won an election further on

the progress of the machine. Knowing this, the candidate stops the election, as it knows there was an

election “further in the future” in which he did not participate, although a majority of replicas did. This

can happen, for example, due to a transient fault in the network, where some packets were dropped,

and the replica missed some communications.

When a leader is elected, it is possible that inconsistencies of logs among the replicas may arise.

As an example, the old leader may have entries in his log that were not fully replicated yet. To solve this,

Raft forces all replicas to replicate the new leaders log. This is done by finding the latest point where

the log of the replica is equal to the leader, removing further entries (that not exist in the leader’s log),

if they exist, and appending the missing entries that are present in the leader’s log. Unfortunately, if no

preventive measures are taken, the new leader can be a replica that failed to append some commands

to his log. This could carry the risk of erasing parts of history which a client already knows of, and

thus breaking correctness, because the overall state of the machine would not be consistent with the

requests made by client. To solve this, Raft limits who can be elected as leader: only a candidate that

has a log with, at least, the same entries as a majority of the replicas can be elected. This ensures that

the new leader has all the committed entries, as by design, an entry is committed if a majority of the

replicas have it in their logs.

As the main focus of this work is on BFT, we will not present more crash fault tolerant systems,

as the on described earlier already provides a general view about the mechanics of crash fault tolerant

SMR. In the next section we will present the problem of Byzantine fault tolerance, some systems that

solve this problem, and discuss the key differences between crash and Byzantine fault tolerant, as well

the differences and similarities among BFT SMR approaches.

2.2 The Byzantine Generals Problem

The Byzantine fault tolerance problem was first described by Lamport, Shostak and Pease in (Lam-

port, Shostak, and Pease 1982). The authors present the problem starting point as follows: there are

several of the Byzantine army camped outside an enemy city, being each division commanded by a

general. They must agree on how to perform the attack, because if they don’t attack in accordance to

each other they might face defeat. The problem arises from the existence of traitors among the generals

that might try to impair this agreement so that the Byzantine army fails. Of course, this is a metaphor for

a distributed system where some machines may not act like specified or intended.

In the paper a solution, among others, was presented that became the starting point for most prac-

tical implementations of BFT SMR. The ultimate objective of the protocol is to have all the non-faulty

8

nodes agreeing on a value. These nodes are the replicas, when we talk about SMR. The value to be

agreed upon is suggested by the leader, a node with this special role.

As discussed in the paper, the ability of faulty nodes to lie about the messages received from other

nodes introduces difficulty in solving the problem. So as to mitigate this, the proposed solution uses

signed messages to prove the source of a given message. This protocol assumes a fully connected,

synchronous, network, at most f faulty nodes and at least 2f + 1 nodes. Below, we present an informal

description of the solution:

1. Every node starts with a vector Vi = ∅, representing the collection of values received from other

nodes.

2. The leader proposes a value v, sending a signed message to all other nodes.

3. Upon receiving a message each node acts accordingly with one of the next cases (in other cases

the messages are ignored):

A) If it receives a message from the leader for the first time, the node adds v to Vi. Then it signs

the message and resends it to all other nodes.

B) If the node receives a message with a value v′, signed by k + 1 nodes (including the leader)

and v′ /∈ Vi, the node adds v′ to Vi. Then if k < f , it signs the message and sends it to all

nodes apart from those that already signed the said message, to try to guarantee that, even

if f nodes fail, at least one correct node will know about the value proposed by the leader.

4. When a node will not receive more messages, it chooses an action, based on a deterministic

function, taking in account the values in Vi.

To know when a node will not receive further messages, it is needed to have some time-out mech-

anism. To achieve this, it is necessary to assume some maximum time for processing and transmitting

a message, therefore a synchronous network needs to be assumed. Although this may seem a flaw,

there is no possible solution for solving the problem under an asynchronous network assumption, as

the FLP Impossiblity Theorem (Fischer, Lynch, and Paterson 1985) proves. Nevertheless, most recent

solutions assume networks where asynchrony may happen during limited periods of time and need for

more replicas to ensure safety, which is discussed further on this chapter.

2.2.1 Tangaroa

In this subsection we will present an adaptation of Raft that tolerates Byzantine faults, called Tan-

garoa (Copeland and Zhong 2014). We will compare both approaches so the differences between crash

fault tolerant and Byzantine fault tolerant systems become evident.

9

The first key difference is that to tolerate Byzantine faults there is a need for more replicas, at least,

3f +1, to tolerate f faults, as opposed to 2f +1 in crash fault tolerance (Bracha and Toueg 1983), when

dealing with partially synchronous networks 1.

Secondly, it is necessary to ensure authenticity in communications, as replicas may lie about mes-

sages received from other replicas. To enforce this, Tangaroa uses digital signatures. As an example,

a leader could modify a command received from a client, tricking other replicas to execute something

different from the real command and harming the safety of the system. If the client signs its messages,

then it is theoretically impossible for a leader do tamper with it (Diffie and Hellman 1976).

Thirdly, a Byzantine leader could starve the system by ignoring clients’ requests while continuing

to send heartbeats, this is, sending messages proving it has not crashed, although never broadcasting

the requests. So there must be a mechanism that is able to detect this and act upon it. This approach

solves it by allowing clients to denounce a leader if it does not answers to requests timely, so a leader

change is triggered. Nevertheless, another common solution is to have the clients broadcast all of their

requests to all the operating replicas.

Furthermore, any replica could lie about its log, when asked to replicate the leader log, compromis-

ing the state of the machine. They could state that they had replicated it, but when in reality they have

another sequence of requests in its log. So, further proof must be gathered to convince other replicas

that a replica has, in fact, all the entries in its log. To prove this, a replica hashes its log and signs it, so

others can compare the hashes with their own to check if the histories match.

Another issue arises because a replica could lie and elect himself as leader, without winning an

election. To do this, a replica could just broadcast a message stating “I’m the new leader”, making

others look to it as the new leader. To prevent this, a recently elected leader, when informing the system

of its new role, must sent cryptographic proof that a majority of replicas voted for him (i.e. the signed

votes).

A Byzantine leader in Raft, as it is the single node that coordinates what is committed, could also tell

that a given entry was committed even if a majority of the replicas had not appended it to their logs. By

opposition, in Tangaroa, the responsibility of marking entries as committed is removed from the leader

and belongs to all replicas. When a replica appends some entry to the log it broadcasts its action to

all other replicas. The replicas collect these messages and identify by themselves that an entry was

committed when a majority of replicas has, in fact, appended it.

Finally, in Raft a Byzantine replica could always be proposing elections, sending the system to a

loop of infinite elections, where no progress is made. To mitigate this, in Tangaroa, a replica only casts

a vote for a new leader if it also suspects that the leader is faulty. Otherwise, the election will be ignored,

because all correct replicas will ignore the election proposal.

We can see that some overheads arise when a Byzantine fault tolerant approach is used. There

1Discussed in more detail in 2.2.2

10

is a need for more replicas, which sometimes is an issue, because it makes the whole system more

expensive. Moreover there is the need for producing cryptographic proofs to ensure authenticity, which

causes a significant overhead in CPU and the time consumed to process communications, both when

producing and verifying those proofs. Finally, a need for all-to-all communication and a need for ex-

tra communication steps arise, which increase the number of messages in the network exponentially,

what can possibly introduce more latency on communications, as well, it demands further effort by the

replicas to process all the messages. However, despite this extra overhead, sometimes a Byzantine

environment must be assumed, when having a Byzantine failure is not tolerable, for example in critical

control software.

Below we present and discuss some approaches for solving BFT SMR in practice.

2.2.2 PBFT

PBFT (Castro, Liskov, et al. 1999) is a widely-studied BFT protocol that aims on solving BFT SMR

in a practice. It was the first presented BFT protocol that relaxed the synchrony assumption, which is

often not present in real world systems. It does not rely on synchrony to ensure safety, instead, it relies

on the assumption that the network has some times of synchrony to ensure liveness (assuring liveness

and safety under total asynchrony is impossible (Fischer, Lynch, and Paterson 1985)). Furthermore,

some optimizations were also introduced to try to reduce the response time.

As Tangaroa, this approach needs the theoretical minimum of replicas to work, which is 3f + 1

replicas, where f is the maximum number of faults tolerated. On a high-level view, the protocol works

as follows:

1. The client sends an operation request to the leader, that is responsible for ordering the operations

on the system.

2. The leader atomically multicasts the request to the other replicas, called backups.

3. All the replicas process the request and answer to the client.

4. The client verifies if it received at least f+1 equal replies, if so it assumes that reply as the result of

the operation.

In this system the view states what replica is the leader. When the leader is suspected to be faulty,

a view change is carried out and another replica becomes the leader. This suspicion is arose when a

backup notices that a request it knows of is taking too long to be executed.

The atomic multicast protocol is composed of three phases: pre-prepare, prepare and commit. The

first two, together, guarantee that the requests are totally ordered within a view, even in the presence of

a faulty leader. The latter two, in conjunction, guarantee that the ordering is kept among views.

11

In the pre-prepare phase the leader assigns a sequence number n to the request and sends a

PRE-PREPARE message to all replicas. A backup accepts this message if:

• is in the same view as the leader,

• has not accepted a pre-prepare with the sequence number n for a different request, in that view,

• verifies the authenticity of the message.

If a backup accepts the PRE-PREPARE, it enters in the prepare phase. As it does so, it sends

a PREPARE message to all other replicas. Every replica registers the PRE-PREPARE messages, its

own PREPARE, as well as the PREPARE messages received from other replicas (as long as they have

correct signatures and are in the same view).

When a replica has at least 2f PREPARE messages from other backups that are coherent with the

PRE-PREPARE, it multicasts a COMMIT message to all other replicas. When a a replica receives has at

least 2f + 1 COMMIT messages, possibly including its own, matching the PRE-PREPARE, it processes

the operation requested by the client and replies to it.

A view-change is initiated when a backup notices that a request is taking to long to be processed.

To change the view, the replica stops participating in the processing of requests and multicasts a view-

change message. When the leader of the new view gets 2f view-change messages from other replicas,

it informs all backups of the new view (with proof that 2f + 1 replicas agreed upon that).

In order to make the system faster in practice, among other optimizations, this paper introduces the

usage of Message Authentication Code (MAC) instead of digital signatures to reduce the load on the

CPU of the replicas. MACs are computationally less expensive because they use symmetric cryptogra-

phy, as opposed to the asymmetric cryptography used to produce digital signatures, which needs more

complex mathematical computations to be carried out.

2.2.3 Zyzzyva

Zyzzyva aims to make a fast BFT SMR system by using speculation. In this approach, a request is

executed without running an agreement among the replicas to order it, in the hope that no failures occur,

unlike other systems such as PBFT. Logically, to ensure safety even under the presence of Byzantine

faults, an agreement is run when suspicions of faulty behaviour occur. To detect this type of behaviour,

the client is responsible to detect and inform about some divergence of answers received by it. As PBFT,

Zyzzyva relies on a leader to give a sequence number to the requests and uses 3f +1 replicas (f being

the total number of tolerated faults).

In the fast case, where there are no faults nor divergence on the state of the replicas, the protocol

works as follows:

1. The client sends a request to the leader.

12

2. The leader gives a sequence number to the request and forwards it to all the replicas.

3. Each replica executes (speculatively) the request and sends the response to the client. If the client

receives 3f + 1 equal answers, it is safe to rely on the answer because all the correct replicas will

keep this request consistently ordered in their history.

On the other hand, if the client receives only between 2f + 1 and 3f matching answers, further

steps must be taken to ensure safety. It may indicate that the state of the replicas is diverging, due to

faults in them or the network, because there is no proof that all processed the request the same way.

Therefore, the consistency of the general state of the system may be at risk of becoming inconsistent

when a view change happens. This could happen, for example, under the presence of a faulty leader,

that could orchestrate an attack by lying to some correct replicas, making it possible to agree on a

faulty state when a view-change happens. To prevent this kind of faulty behaviour to harm the system’s

correctness, the client builds and distributes a certificate that proves that at least 2f + 1 replicas agree

on the answer of the request with a given sequence number, so when a view change happens, it is

ensured that there is proof that a quorum of 2f + 1 replicas agreed on the order of the request in the

past. To ensure that enough servers received this proof, it awaits the acknowledgement of at least 2f+1

replicas. This amount of replicas ensures that even the presence of f faulty nodes that will lie about this

acknowledgement, there is a sufficient number of replicas (f + 1) to prove that this agreement existed.

If the client receives less than 2f + 1 matching responses, which is not enough to ensure that

a majority of correct replicas agreed on some response, it suspects a faulty leader and resends the

request to all replicas. If a given replica has not processed that request already, it forwards the request

to the leader. If, after a certain amount of time, it has not received the corresponding request ordered by

the leader, the replica starts a view-change.

The usage of speculation and having an agreement protocol with just two steps introduces extra

complexity on the view-change protocol. Having just two phases, omitting a phase when the replicas

share their state, makes the traditional view-change protocol unsafe, as the correct replicas might not be

able to initiate a view-change in the presence of a faulty leader (it is possible that only f correct replicas

notice it). To ensure that at least 2f replicas commit to a view-change, there is a need for an extra step in

the view-change protocol, where the replicas state their disagreement about the leader. So, the protocol

works as follows:

1. A replica informs all other about is suspicion about the leader.

2. Upon receiving f + 1 confirmations of the suspicion on the leader from other replicas, it is created

a proof that at least one correct replica suspects the leader and it is sent along a view-change

message. All correct replicas, given this proof, will commit also to the view-change.

3. The leader of the new view collects 2f + 1 view-change messages and then sends a new-view

message with proof of that.

4. Finally, when a replica receives the new-view, it changes its view.

13

2.2.4 Aardvark

Aardvark (Clement, Wong, Alvisi, Dahlin, and Marchetti 2009) addresses the problem of BFT SMR

with a very different mindset of the previous solutions. The authors reject every optimization that could

impair the performance in cases where faults happen. This way, Aardvark maintains a steady through-

put, even in the presence of faults, making it more robust w.r.t. Byzantine behaviour, in the replicas and

the clients. This system relies on a similar communication pattern to PBFT, using a leader to sequence

clients’ requests and a three phase agreement protocol, although it presents some key differences on

the implementation.

Firstly, to minimize the harm a Byzantine client could make on the system, clients digitally sign

their requests, instead of using MAC (although, MAC are also used as an optimization in some cases).

This way it is ensured that if a replica can prove the authenticity of a request, all other can too, because

signatures provide non-repudiation, so when a client signs a message, there is (theoretically) undeniable

proof that it indeed sent that message. Although signatures are more expensive to compute than MAC,

this simplifies the protocol, removing some corner cases found on other systems. For example, the

authors found out that in PBFT and Zyzzyva if a client would send a request with a valid MAC for the

primary and invalid MACs for the other replicas, it would render the system unusable. PBFT would incur

in recurring view changes, while Zyzzyva would invoke a conflict resolution protocol that in practice, due

to not be fully implemented, would never finish.

Secondly, also to mitigate the impact of faulty clients, it uses separate queues for messages from

the clients and replica-to-replica communication. This way, a replica can guarantee that only a portion

of the resources can be used by the client, allocating only part of the computation time to process

client’s requests. This way a client can not render a replica unusable for participating in the ordering of

requests by flooding its queue with requests. This approach also uses independent network interface

controllers and wires to link each pair of replicas. So, at the expense of having to rely on point to-point

communication, it is possible to receive messages in parallel and also shut down links to faulty nodes

trying to develop a denial of service attack.

Lastly, Aardvark carries out view-changes regularly, as opposed to carrying it only as a last-resort

measure. The authors justify this decision stating that the cost of having a faulty leader surpasses the

cost of executing periodic view-changes. In order to carry the changes periodically, the replicas demand

an increasing minimum throughput of requests by the leader, as soon as the leader fails to provide such

throughput, the replicas start a view-change.

2.2.5 Fast Byzantine Consensus

Martin and Alvisi present a Byzantine consensus protocol. Fast Byzantine Consensus (Martin and

Alvisi 2006), capable of finishing in just two steps of communication, like the one present in Zyzzyva, but

without speculative executions. However, to achieve this, it uses 5f +1 replicas to tolerate up to f faults.

14

This work does not describe a full implementation of state machine replication, nevertheless it is easy to

derive such system from the consensus behaviour.

As the other discussed solutions, this ordering protocol ensures safety in an asynchronous network

and liveness when synchrony is achieved. It also tolerates, in theory, an infinite number of clients,

including those who present Byzantine behaviour. To tolerate f faults of processes playing each role,

it demands n replicas such that they can accommodate at least 3f + 1 proposers, 5f + 1 learners and

3f + 1 acceptors, where each replica can play any number of this roles.

When there is only one correct leader proposing, then the protocol completes in two steps:

1. The leader proposes a value, sending it to all acceptors;

2. The acceptors accept this value and inform the learners of it. Learners accept such value when

they observe that, at least, (a+ f + 1)/2 2 accepted such value.

In order to tolerate asynchrony in the network, every replica retransmits the requests performed

until they receive a confirmation response. Moreover, to detect a faulty leader, learners inform not only

proposers of the learned values, but also acceptors. This way, if an acceptor doesn’t hear from enough

learners within a given time span, it raises an accusation against the leader. If a quorum of proposers

suspect the leader, than a new leader is elected. The leader election does not deviate considerably from

the leader election of other already discussed protocols, the new leader is deterministically determined

and builds a proof of the current state of execution, which delivers to all acceptors.

A variation of this protocol is also presented, called Parametrized FaB Paxos, which flexibilizes

the number of replicas needed to unsure correctness, standing between the typical 3f + 1 with three

communication steps, and the faster two-step consensus using 5f+1. This variation demands 3f+2t+1

replicas to ensure safety up to f faults and guarantees two-step execution with up to t faults.

2.2.6 Discussion

When comparing the machinery needed to tolerate Byzantine faults versus the mechanisms needed

to tolerate only crash faults, it is evident that the first carries significant overheads. Firstly there is a need

for, at least, more f replicas to tolerate f faults. Secondly, all-to-all communication introduces much

more load in the network, which can cause starvation. Moreover, the use of authenticated messages

introduces more load on the CPU to process the cryptography, as increases the time needed to process

each message. Nonetheless, this all-to-all communication, with a heavy CPU load to calculate authenti-

cation proofs, can be avoided in some cases as show by Chain in (Aublin, Guerraoui, Knežević, Quéma,

and Vukolić 2015). In Chain all replicas form a chain and a request is transferred from node to node

in the chain, reducing the cost of all-to-all authenticated communication, but introducing extra latency,

2a is the total number of acceptors in the system and f is the number of tolerated faults.

15

because the messages are processed sequentially in every nodes, instead of in parallel. Moreover,

despite not being fully experimented in a SMR application, Fast Byzantine Consensus promises a better

performance than other discussed protocols, has it only needs two steps to finish in most cases and

does not suffer from the drawbacks of speculative execution like Zyzzyva. Actually, it can be optimized

to finish tentatively in just one step in the SMR case. Nevertheless, it is more resource consuming than

CFT consensus protocols. However, as stated earlier, these overheads in latency, network resources,

CPU and number of machines, present in all of the BFT solutions, could pay off if the gain in resilience

and availability is essential to the service provided.

The three practical BFT SMR protocols presented above show us that different approaches and

optimizations can be taken in order to produce BFT systems. Each of the approaches carries a gain

in performance in some cases while sacrificing some of it in other situations. For example, when no

faults occur and the network is stable, Zyzzyva has the best performance, due to its fast and two-

phase cases. On the other hand, under the presence of faulty clients, Aardvark beats Zyzzyva due to

its resilient design. A faulty client can also harm the performance in PBFT, sending inconsistent MAC

authenticators, one for the leader and other for the other replicas, this would send the system to recurrent

view changes, limiting its progress (Clement, Wong, Alvisi, Dahlin, and Marchetti 2009). Moreover, when

comparing PBFT with Zyzzyva, we can denote that the first is more predictable and steady performance

under increasing payload sizes of the requests. On the other hand, Zyzzyva offers a better performance

in wide-area network, where packet loss is frequent (Singh, Das, Maniatis, Druschel, and Roscoe 2008).

It’s also noticeable that, despite their major differences, all the approaches can be decomposed

in the same modules. All implementations have a protocol for the agreement and a module for view

change. The clients have also different behaviours and responsibilities, but in all of the systems they

all request something and act upon a reply (or the absence of it). Moreover, the view carries a slightly

different meaning and information with it in the different approaches, but, then again, they are always

responsible to capture the configuration and (to some extent) the state of the system in a given timespan.

So, a pattern starts to emerge when we look to this protocols from a higher level, which is very important

to be able to modularize these in order to adapt them, specially if we are looking for a general solution

that can work with arbitrary protocols.

Finally it is important to notice that some protocols, like Zyzzyva, rely on the client to ensure correct-

ness as they actively participate in history consistence and fault detection. This introduces some extra

challenges to adaptation techniques which are discussed further in Chapter 3.

2.3 Approaches on Protocol Adaptation

There is a wide spectrum of adaptations that can be made to protocols, that can affect different

ranges of replicas, as well as they can demand distinct levels of consistency on coordination. Adap-

tations can have effect on all replicas or in just a subset, as an example, a change in the agreement

16

protocol must be known by all replicas, while a change in the batch size, usually, only concerns the

leader. Moreover, adaptations may demand an atomic agreement (no request can be processed with

different settings among the replicas), for example, if the authentication method changes, all replicas

must know it before processing any further request, otherwise inconsistencies may be introduce in the

system. On the other hand, if it is the time-out threshold to detect replicas failing to answer that changes,

most of the times is not paramount that it happens at all the replicas simultaneously to keep the correct-

ness of the system. Below we present some adaptations that can be made for each of the categories.

• Adaptations that have effect only on a subset of replicas: Change in the batch size of requests,

changes in logging techniques, etc.

• Adaptations that have effect in all replicas:

– Demanding an atomic agreement: Changing the underlying agreement protocol; changing

the BFT SMR approach; changing the authentication method used for the messages.

– Demanding eventual agreement: Changing the time-out threshold to detect replicas failing

to reply;

To carry out such reconfigurations is then needed an orchestration between the replicas of the sys-

tem, if the adaptation affects more than one replica, and some local reconfiguration strategy (Rosa,

Rodrigues, and Lopes 2007). The orchestration component is responsible to coordinate the reconfigu-

ration among the replicas in order to ensure the correct function of the system. This orchestration works

much like a synchronization barrier, so that all the replicas move through the reconfiguration steps in

sync with each other. This reconfiguration steps are the local reconfiguration strategy, that defines what

are the local steps needed to change the configuration.

The combination of local strategies with different kinds of orchestrations can provide several ap-

proaches on reconfiguration, each one has different consistency guarantees and different performance

(Rosa, Rodrigues, and Lopes 2007):

• Flash: In this strategy all the replicas apply the changes locally, without care for other replicas.

This is a strategy that introduces little delay during a reconfiguration, although only works for

adaptations that do not demand an atomic agreement.

• Interrupting: This strategy stops the systems, applies the new configuration and only then starts

the system again. This way and atomic agreement for when the new configuration is applied is

guaranteed, but the delay introduced is considerably bigger than the previous solution.

• Non Interrupting: To try to minimize the delay of an interrupting strategy while maintaining the

guarantees of an atomic agreement adaptation, this approach runs both configurations (old and

new) simultaneously until the new one is fully functional, then the old can be shut down. Never-

theless, this introduces more complexity in the orchestration than the previous solutions, it also

carries the computational overhead of having two configurations running at once.

17

2.3.1 Adaptation of SMR Protocols

Any adaptation strategy used may ensure the properties of systems that is being adapted. When

talking about SMR usually we want to ensure that every request is totally ordered at most once, thus

being necessary to ensure that a given request that was already ordered previously to an adaptation is

not ordered again.

Another key property of SMR that needs to be ensured during and adaptation is irrevocability. This

property guarantees that if the systems outputs to the user that some request was executed, then the

state of the system must always reflect that execution, even if some processes fail. More informally, if a

user successfully executed an action, like depositing some amount of money, then it as assurance that

in the future the money will still be in her account, despite what failures can happen, even if the machine

where the money was deposited explodes. SMR offers this because otherwise it would be fuzzy to

define even the semantics of tolerating a fault. So, when adapting the system we must assure that no

request is dropped from the history if a client already knows about its execution.

2.3.2 Configuration as a Dynamic Module

When talking about adaptations in the context of SMR, we can use its own consensus module to

execute the orchestration because the synchronization can be made be deciding on the steps to perform.

Lamport, Malkhi and Zhou(Lamport, Malkhi, and Zhou 2010) presented a method to produce algorithms

for adaptation that uses the inter-replica agreement naturally present in SMR systems to decide on a new

configuration, using the already existing interface to propose commands. The agreement is dependent

on the configuration, so, to agree about a request i, all the replicas must be using the same configuration.

So, to allow the replicas to know how to behave, a specification of the current configuration is kept in

the system’s state. To change it, there must be an agreement, so a new special request is introduced,

RECONFIGURE(C), which specifies the new configuration C. So, when RECONFIGURE(C) is agreed upon

as the request i, the configuration is set to C, so from request i+1 and onward this new configuration is

used. This method is called by the authors R1.

Nevertheless, if we aim to adapt the underlying protocol, developing a system like this in practise

would have some drawbacks. Firstly, it would be a complex monolithic protocol, due to be a composition

of usually already complex SMR protocols, so it would be harder to develop and to prove correct than

smaller non-adaptive protocols. On the other hand, it would be harder to extend to keep up with the

state of the art, probably becoming obsolete in a short amount of time. An alternative to this is using

black-box switching.

18

2.3.3 Switching Between Black-Box Protocols

We designate by black box-switching the task of building a reconfigurable state-machine from two

state-machine implementations that have no support for reconfiguration, not even any special command

to put the state-machine in a quiescent state.

In this context we say that a state-machine is reconfigurable if it accepts a special command RE-

CONFIGURE(C,C ′) that can be applied to configuration C to change the state-machine to configuration

C ′. Since one aims at providing this abstraction using state-machines that have no support for reconfig-

uration, the solution consists in instantiating two different state-machines, a state machine S1 running

configuration C and another state machine S2 running configuration C ′ and, at some point, start redi-

recting all request to the second state-machine.

There are two main challenges in this approach. The first is how to know that is safe to stop using

S1 and start using S2. The second is to avoid a long hiatus, where no commands are processed, during

the switching operation.

A naive look at the first problem could indicate that a simple, yet not efficient, solution to the first

problem would be to coordinate all nodes to stop submitting commands to machine S1. When one is

sure that new commands are no longer being submitted to S1, one would simply wait for all commands

previously submitted to be ordered, and then one could resume the operation by submitting new com-

mands to S2. Unfortunately, this strategy is only feasible in a system with a perfect failure detector. In

the general case, it may be hard to ensure that clients and replicas that are not reachable have reached

a quiescent state.

Due to the problem above, most solutions rely on using state machine S1 to define which is the

last command to be ordered by S1. This is implemented by issuing a special command that works as

a marker. All commands that are ordered after the marker can no longer be processed and need to be

resubmitted to state machine S2. Note that this approach does not require S1 to be made quiescent.

S1 may still process commands after the marker, but the results are ignored to prevent the duplicate

execution of commands, so these need to be re-processed by S2.

The approach above solves the first problem but does not address the efficiency problem. In fact,

a large number of commands may be affected by the reconfiguration, being ordered after the marked

and needed to be re-submitted (to be re-ordered again) to machine S2 which may double the latency

of command processing during the reconfiguration procedure. In the next paragraphs we discuss some

approaches to mitigate this problem.

2.3.3.1 Rα

Lamport et al. presented an improvement to R1 so that it could deal with parallel commands being

decided after a reconfiguration happened. This is, in the R1 approach, if the agreement i+ 1 was being

19

agreed upon when a reconfiguration was decided, at command i, i+ 1 would have to be resubmitted to

the new configuration, as after the reconfiguration no more decided commands should be processed to

ensure that it is not processed by both the old and the new configuration.

In order to allow concurrent processing of requests, the state machine must then delay the change

of the reconfiguration when a RECONFIGURE(C) is agreed on. This is, if a RECONFIGURE(C) is decided

as the request i, the reconfiguration only takes place after executing the request i + α − 1, being α

the maximum number of concurrent agreements running at a giving time. This allows for the requests

that are being agreed upon in parallel with the RECONFIGURE(C) to use the old configuration safely,

because it is ensured that a reconfiguration request will only affect processes that are not being decided

concurrently. This method is called Rα.

If it is necessary to make the reconfiguration take place immediately after a RECONFIGURE(C), this

is, no request will be executed between deciding RECONFIGURE(C) and the configuration taking place,

α− 1 noop commands must proposed right after the RECONFIGURE(C). This can be batched in order to

consume the same resources as it was only one command.

However, this solution would imply buffering all the commands that arrive during the reconfiguration

time, so that they are then processed by the new configuration. This would then cause an interruption

on the processing of new requests and a degradation in the quality of service due to a drop in the

throughput of operations done.

2.3.3.2 Run-time switching between protocols

Mocito and Rodrigues (Mocito and Rodrigues 2006) try to mitigate the problem of interrupting the

processing of new messages during an adaptation event by using an approach similar to the non inter-

rupting approach presented by Rosa et al. (Rosa, Rodrigues, and Lopes 2007). Despite of the work

of Mocito et al. being focused on changing between total order protocols, we believe that the ideas

present in it can be adapted to SMR, as total order is recurrently a central piece in the development of

SMR systems. The main idea of the work of Mocito et al. is to have both protocols, the one that is cur-

rently running and its successor, running simultaneously during the switching time (since the adaptation

command is issued until the new configuration is fully functional). On a high level view, to switch from

protocol A to protocol B, the protocol works as follows:

1. A special message stating the intended switch is broadcast to all processes.

2. When a process receives this message, it starts using both protocols and sends a flagged mes-

sage notifying this. Although, until the switch is on the final stage, only protocol A messages are

delivered. Algorithm B messages are buffered in order.

3. When every process is using protocol B, protocol A is stopped. Then, all messages from B that are

buffered and were not delivered by A are delivered in order. Finally, B starts operating as normal.

20

This approach effectively eliminates the downtime in service that would happen if a protocol was

stopped and then the new one was initialized. On the other hand, this solution may introduce a significant

overhead on network if the protocols individually operate near the limit of the available bandwidth. This

happens because the network, in order to not become a bottleneck, must support both protocols running

at the same time. Despite this, in the paper is discussed an optimization to mitigate this issue that

consists in sending only the headers of the current protocol (A) during the switch. So, this way, the

payload is only transmitted using the new protocol (B), reducing the load on the network.

This solution leaves yet two problems to solve: it does not allow for concurrent reconfigurations and

it relies on a perfect failure detector. The first problem is not really a concern to us, as we assume that the

adaptation manager present in the Abyss system will not send concurrent reconfiguration commands,

as it would be a source of overhead. The second issue is of major importance to us, as we want to

develop fault tolerant systems, we can not rely on a perfect failure detector. In case of a replica crashing

or getting mute, a switch would never finish because there would be a replica never stating that it was

already using the new protocol.

2.3.3.3 Building a Reconfigurable State Machine from Non-Reconfigurable Protocols

Bortnikov et al. (Bortnikov, Chockler, Perelman, Roytman, Shachor, and Shnayderman 2015) fur-

ther explored this black-box approach, mitigating the problem of having to resubmit some requests to

the new configuration, like Mocito et al., but under a crash fault tolerant paradigm. So, the authors of

the paper present a framework to develop a configurable state machine from non-configurable ones,

assuming only reliable communications (messages sent from a process to another are eventually re-

ceived) and a crash fault model. The work focuses on the change of the set of replicas participating

on the state machine execution at a given point in time, this is, switching between non-reconfigurable

SMR implementations that work with a fixed number of replicas. Although, this work can be extended to

support the switch between SMR implementations that not only can have different number of replicas,

but also can execute in different ways, having distinct patterns of communication, for example.

In this approach, the processes of the reconfigurable state machine must be able to state that they

are ready to start processing requests under the new configuration. This is, upon RECONFIGURE(C ′), the

processes broadcast READY(C ′) as soon as they are aware of it. When any replica receives READY(C ′)

from a quorum of replicas, then they start using the new configuration and notify all active processes

(under all configurations) that they changed its own configuration with a NEW-CONF(C ′) message.

Switching between different state machines generally carries the overhead of transferring the state

from one to another, in order to ensure total order. To mitigate this overhead, this work is built on top of

the premise that different configurations (i.e non-reconfigurable state machines) must be independent of

each other, so they can start operating from the initial state, independently of the history of the previous

configurations.

21

Figure 2.2: A tree of commands and configurations resulting of speculative execution in Bortnikov et al.
reconfigurable state machine approach. The edges correspond to the history of commands executed
between two configurations. The highlighted path corresponds to the history kept in the global history,
being the other discarded at some point.

Another optimization introduced, leveraging the independence of the configurations, is the concur-

rent speculative execution of new configurations, as soon as they are proposed, even if not already

decided by the current configuration. This way there is no need for resubmitting requests to a new

state machine, as every request that happened during the switching event was already submitted to

it. Although, a problem may arise if concurrent reconfiguration changes occur, it would form a tree of

commands and configurations (as in Figure 2.2), instead of a single ordering line, thus breaking the total

ordering of commands. To solve this, all replicas prune this tree in a deterministic way, by choosing

always the first reconfiguration decided to be the one that is kept in the global ordering as the next.

To inform this decision to the configurations that are being executed speculatively, the state of each

configuration is shared periodically among the configurations, so they can prune the tree accordingly.

Although the dealing with concurrent reconfiguration requests is not a concern for our work, this

speculative approach reduces the delays of deciding and starting a new configurations, specially un-

der high-latency networks, mitigating also the need to buffer or resubmit commands that were being

processed during the reconfigurations. To ensure that there are no commands duplicated by executing

speculatively, the reconfigurable state machine only proposes new commands to the currently operating

state-machine configuration if no reconfiguration was already decided by that configuration. If some re-

configuration was already decided, then, by design, some other state-machine implementation is already

responsible for ordering such commands,

To use this SMR protocol in practise there is a need an additional component, the Command Queue

(CM). This component is responsible for associating the clients’ commands with configurations, propos-

ing it in the running configuration or configurations, if concurrent speculative configurations are execut-

ing. So, this component must be aware of the state of the active configurations in the system, which

does by keeping track of the ready messages, to know which configurations are running at the time.

22

2.3.4 Stoppable Protocols

Despite the black-box approach being already proven as a feasible solution, it would be easier if

the different state machines had a stop primitive to put it in a quiescent state. This way we can be sure

that at some point in time a given configuration has stopped, having a giving final state, and it would not

process further requests. This would allow for a simpler management of the adaptable system, even

under a fault-tolerant paradigm, as by design, it would be possible to know when a machine has stopped

and when it would be safe to send new requests to other state machine.

The basic idea behind this stopping kind of adaptation is to send a stop-sign to a given state ma-

chine, and then the state machine stops executing requests. All the requests addressed to the machine

will receive an answer stating that the machine has stopped, and eventually some kind of pointer to

the new one (Lamport, Malkhi, and Zhou 2010). Once again, if multiple agreements are run in parallel

further care must be taken. The stop-sign would impair sending an execution guarantee to the client as

soon as the request is agreed upon, it would have to wait for all previous requests to be executed, as

the machine could stop before. In this case, like the Rα, a delayed stop-sign must be used, so the stop

happens after α agreement instances, guaranteeing that no execution guarantee is violated.

In the same paper is also discussed another way to stop a machine, sending infinite noop requests.

This derives from the conceptual thinking of a machine execution consisting in some finite non-noop

requests followed by infinite noops. This can be easily represented in finite manner, while using batching.

2.3.4.1 The Next 700 BFT Protocols

These ideas of stopping the running replicas and spawning new ones with a different configuration

were explored with a BFT mindset in Abstract (Aublin, Guerraoui, Knežević, Quéma, and Vukolić 2015).

The main idea is the development of several components, called Abstract instances, that, at a given

time, one instance is running and providing service to the client, when some event of interest happens,

an adaptation event occurs and other Abstract instance takes its place. This adaptations event is a

generalizations of a stop-sign, as it is a deterministic condition checked by each replica themselves, it

can be a stop-sign sent by another process (e.g. the client) or any execution or environmental condition,

as some time-out or deciding a given amount of commands to be executed. Moreover, this solution

deviates from other BFT SMR, like PBFT and Zyzzyva, as it may abort client’s requests.

More concretely, an Abstract instance implements a BFT protocol specialized for the given system

conditions, called progress conditions, as it only needs to guarantee progress under that conditions. If

progress conditions are not met (i.e some assumed condition fails), the Abstract instance aborts, and

other with weaker system assumptions takes its place. Therefore, to guarantee the correct functioning

of the whole system, it is necessary to guarantee that no request is aborted by all instances. As an

example, it is possible to have an Abstract instance that only makes progress when there are no faults,

aborting otherwise, in this case it is necessary to ensure that some other instance is capable of dealing

23

with faults, or a client would never get its request answered. As suggested by the authors, this is usually

achieved by using a robust well-studied BFT protocol as one of the Abstract instances.

The transition between instances is mediated by the clients, as they propagate the history of an

aborted Abstract instance to the next one. So clients need to be aware of the adaptations happening in

the server replicas, not only for interacting with them correctly, but also to carry the state. The transition

happens in three steps: stopping the current instance, choose a new one and finally initializing the

chosen new one. As choosing what adaptation to do is out of the scope of this work, so next we will

describe in more detail only how an instance is stopped and initialized:

1. Stopping the current Abstract instance: An Abstract instance stops when it aborts the first client

request, due to the violation of the progress conditions. Along with the abort notification, an abort

history is also sent. The mentioned history contains, as prefix, the commit history of the instance,

and possibly some uncommitted requests.

2. Initializing the new Abstract instance: The client invokes the new Abstract instance with the

abort history of the previous instance. This history is used to define the initial state of the instance,

before it starts processing new requests. Abstract does not need any explicit agreement to decide

the one common abort history among the replicas of an aborting instance. This is possible be-

cause , by design, every abort history as the same commit history as prefix, being this enough to

make possible the guarantee of total order.

If switching through a client is a problem, in the context of some specific system, it is possible to

extend Abstract to allow switching through a component responsible for the reconfiguration, or even

to do the switch through the replicas. In the first case, an aborting Abstract instance must send the

abort notification and the abort history to the dedicated reconfiguration component, and this component

is responsible to invoke the new instance with the history received. The latter case, switching through

replicas, is possible by making each replica act as a client, being able to send a noop command, it would

mediate the instance switching without making any modification on the state of the system.

Having this switching mechanism through the client, without any pre-emptive action to start new

Abstract instances could carry the weight of making a client wait for the new instance to initialize, as

opposed to the solution of Bortnikov et al.

Abstract presents itself as powerful solution to facilitate the development of adaptive BFT systems.

It allows for better system qualities (e.g. throughput, latency) by allowing the use of specialized protocols

for each situation. On the other hand, it alleviates the difficulty of developing BFT systems, by making

possible the development of several simpler modules, that as a whole implement a full BFT system.

24

2.3.5 Further Considerations

The problem of adapting protocols in run-time is recurrent under different contexts. In this section

we will explore some interesting ideas on adaptations on systems that were not developed to adapt SMR

systems, but have some interesting considerations about adapting distributed systems in general, which

can be used in the BFT SMR context.

2.3.5.1 Multi-step Algorithm Switching

Chen, Hiltunen, and Schlischting explored these ideas of non-stopping adaptation, and developed

an architecture and method to build a distributed system that is able to adapt between configurations

gracefully (Chen, Hiltunen, and Schlichting 2001). In this approach, every adaptable component (e.g. to-

tal order component) has several adaptation-aware algorithm modules (AAM) and a component adaptor

module (CAM). The first type of module is responsible to provide some specific implementation for the

module functionality. The CAM is responsible for managing the adaptation of the module, this includes

switching safely between distinct AAMs, coordinating the change with the other replicas in the system

and detecting when and which adaptation should occur.

Generally, switching between protocols in a distributed system must take into account the messages

flowing in the network, as they may end up being received by a replica operating on a new protocol that

does not recognize it. The authors of the paper try to solve this in a seamless manner by using a three-

step change algorithm. Upon a adaptation event, the component prepares to receive messages from

the new AAM, as well as control messages for the switch-over process. When all components across all

replicas are prepared, they start processing the outgoing messages with the new AAM. Finally, when all

replicas are sending messages with the new AAM, the component can stop receiving messages from the

old AAM. The AAM must be aware of the adaptation process, as it must provide an API to execute the

three steps described earlier. As both modules are active during the switch-over, incoming messages

must be identifiable as being from the old AAM or the new, this is easily achievable by using specific

headers or a similar mechanism.

This approach presents itself has a modular and understandable approach for reconfiguring a dis-

tributed system seamlessly, without stopping the whole system in order to carry out change, being more

general than Bortnikov’s et al. approach and introducing less load on the network than the solution of

Mocito et al.. Nevertheless, it demands the protocols used in adaptable components to have awareness

of the adaptation process. This way, the developer must adapt the protocols, what can be a drawback,

because understanding some protocols implementation can be a hard and time-consuming task.

2.3.5.2 General vs Specialized Switchers

Couceiro explored the use of a general stopping approach versus the use of specialized, custom

built, non-stopping switching mechanisms (Couceiro, Ruivo, Romano, and Rodrigues 2015). In this work,

25

the authors implemented a framework to allow the adaptation of protocols in the context of replicated

in-memory transactional systems. This framework allowed to have different reconfiguration protocols to

switch between protocols, having a general ”stop and go” approach, as well as being able to support

custom tailored mechanisms to switch between two particular protocols.

The ”stop and go” approach described by the authors demanded a given protocol for replicated

transactional systems to have a boot() primitive, that initializes the said protocol from inactivity, and a

stop() primitive that stops the protocol, putting it in a quiescent state. On the other hand, the special-

ized switching algorithms described take advantage of the particularities of the protocols. The solution

presented used a similar approach to the one of Mocito et al. (Mocito and Rodrigues 2006), with both

protocols running at the same time during the transition. Although, it deviates from it because how and

when each protocol really processes requests is decided by the switching algorithm itself, so, they may

be running in parallel, but only one processing requests, for example.

A practical comparison between both approaches is presented in the paper, and, as expected, the

drop in performance when executing a custom switch is much smaller than when compared with the

general approach. This happens because the specific approach leverages the white-box approach of

the algorithms to perform a switch without having to interrupt the processing of new requests, or with

very little interruption. The big downside of these specialized approaches is that they demand for a

deep understanding of the specifics of the protocols to be switched. Moreover, switching between some

protocols can be a very hard problem to solve, if not impossible, due to incompatibilities that often occur

between different approaches.

2.3.6 Discussion

Building adaptive SMR systems switching among other (static) SMR implementations as black-

boxes seems a more feasible approach then developing a monolithic, complex and hard to manage

and extend intrinsically adaptable SMR protocol. Nevertheless, this is done ate the cost of building an

adaptation coordination capable of performing the switch among two different state machines efficiently

while maintaining the correctness of the overall system. To ease this coordination one could have the

different state machines to be stoppable, this is, having a stopping primitive to put them in a quiescent

state, where it is guaranteed to make no further progress. Nevertheless, this implies the development of

such kind of protocols, either from scratch or adapting already existent ones, which can be a complex

and costly task which a practitioner may not want to endure. As an example, if we analyse the differences

between Paxos (Lamport et al. 2001) and a stoppable version of it (Lamport, Malkhi, and Zhou 2008),

we can see that deriving stoppable protocols may be not as trivial as it seems upon a first look.

When talking about adaptation of the underlying protocol in a SMR systems, the client usually needs

to be somehow aware of the adaptations that are happening in the server replicas, because, as dis-

cussed earlier, the client can play different roles in different protocols, specially in BFT SMR. Messages

flowing in the network may also have incompatible formats, which can introduce further challenges. As

26

an example, if we use a black-box specific SMR implementation as a configurable parameter of our

adaptive the state-machine, switching between a protocol that uses symmetric cryptography to another

that uses signatures is not trivial because messages already sent by clients in the older protocol can

not be processed in the new one. Given this, either the client gets its request refused and must resend

in a new message, much like the stop-sign approach, or the message must be translated, which can

be hard as the private key of the client is secret. Therefore, we can denote that both non-stopping and

stopping approaches get very similar in this case. So, we can denote that the optimizations introduced

by concurrently or speculatively ordering new commands under a new configuration may not be useful

to its full extent, as the client must resend its request with a new format anyway.

In summary, both approaches, black-box and using stoppable protocols, are different paths to

achieve a goal but, due to optimizations and implementational details they can produce similar algo-

rithms, as stated in (Lamport, Malkhi, and Zhou 2010). So, discussing if a non-stopping approach

performs better than a stopping approach is complicated because there is no comprehensive study

comparing the two. Although we think that the more specialized approach we take when doing a re-

configuration, the least overhead will be introduced (Couceiro, Ruivo, Romano, and Rodrigues 2015).

Therefore, in this work we will try to implement several approaches, more general and more specialized,

in order to compare them in practise.

Deciding which configuration to use and when to do it is also a concern when talking about adaptive

systems. However, that is out of the scope of this work, as it is part of the Abyss project, where these

decisions will be made by other components.

Summary

We have started by introducing and comparing some of the most relevant existing BFT protocols.

It stood out that no protocol outperforms the others for every case, as they are optimized for some

case assumed to be more frequent. For example, Zyzzyva performs better when no faults occur whilst

PBFT beats Zyzzyva when faults do happen. Because the environment of execution is very dynamic

and changes over time, it is relevant to dynamically reconfigure a system so the optimal solution for the

current environment is used.

Given the need to reconfigure the system dynamically, we also surveyed existing work on dynamic

adaptation of protocols. Most of the previous work in this area assumes a CFT system model. Further-

more, for the few works that take Byzantine faults into account, to the best of our knowledge, there is

no available comparison of their performance. This leaves a systems designer who wants to develop an

adaptive system without data to make informed decisions about which solution to choose.

To address this gap, in the next chapters we present a conceptual framework to reason about

reconfiguration strategies, a portfolio of these strategies (that adapt previous techniques designed for

other fault models), and an experimental comparison of the performance of these techniques in practice.

27

3Byzantine Adaptation

This chapter starts by presenting a common conceptual framework to reason about the different

adaptation techniques. This conceptual framework was designed to allow an easier comparison and

understanding of the different approaches on adaptation that appear in literature, which are described

for different use cases and using distinct names for similar core concepts. The different strategies

are therefore divided in three main categories: i) adaptation of reconfigurable protocols, ii) adaptation

of protocols that are modelled as black boxes, and iii)adaptation of stoppable protocols matching the

categories described in Chapter 2.

Then, it discusses how these techniques can be applied in a SMR BFT context. On on side,

there are some particularities of the operation mode of most SMR implementations, specially due to

the client/server operation. On the other side, some modifications must be made to the adaptation algo-

rithms, so they can cope with Byzantine faults. Some optimizations are also presented and discussed.

Lastly, the chapters presents the design and implementation of the a number of techniques for

the BFT-SMaRt framework. A general architecture, capable of using distinct SMR implementation as

black-box processes is also discussed at the end of this chapter.

3.1 System Model

This work assumes a Byzantine fault model where processes can present an arbitrary behaviour,

including colluding to attempt to harm the system with a coordinated attack. Nevertheless, the adversary

is considered to have limited computational power and cannot break the cryptographic primitives used

in the algorithms. It is assumed a partially synchronous network, where arbitrary periods of asynchrony

may happen, but eventually there is a period of synchrony where the system can make progress. In

this periods of synchrony, the transmitted messages shall arrive at their destination within a known time

bound.

The system operates with N replicas of computation with the ability to instantiate several Byzantine

consensus protocols. This set of replicas is able to tolerate a defined number of faults, being henceforth

referred as f . Moreover, the clients of the system do not interact directly with the replicas, but with

a switcher. This is a module responsible to retransmit clients’ requests to one or more consensus

protocols, making the adaptation transparent to the client. It is assumed, also, that there is an external

module, called adaptation manager, responsible to issue the adaptations to the system. When it is

necessary to adapt the system, e.g. change the consensus protocol, the adaptation manager sends

a command stating that to all the system replicas. This module may also be replicated to tolerate

Byzantine or crash faults, so the described system is designed to support such replication, only starting

an adaptation if some quorum of adaptation manager’s replicas issued the same adaptation.

The system is designed considering only consensus protocols with no tentative or speculative exe-

cutions. This is, no correct replica may have an inconsistent state when compared other correct replica,

where an inconsistent state is having a different operation ordered in the same logic time frame. The

commutation between such protocols would imply the development of a specific switching mechanism

that was able to deal with the particularities of the behaviour of such protocols. Furthermore, the client

must not intervene in the protocol correctness. This would imply that the client was aware of the adap-

tations in the system and demand a much more complex switching algorithm to adapt also the client

behaviour. Besides that, a liveness problem could arise if a client is always behind the current system’s

configuration, getting its requests denied indefinitely until a period of synchrony happens in the network.

Even so, there would be the need to deliberately restrict the frequency of adaptations, crippling the adap-

tive performance of the system. Zyzzyva is an example of both cases, it uses speculative executions

and relies on clients for correctness.

3.2 Byzantine Fault Tolerant Adaptation Techniques

3.2.1 Adaptation of Reconfigurable Protocols

The adaptation using reconfigurable protocols, described by Lamport, Malkhi and Zhou (2010), is

general an can be applied in a Byzantine context without significant changes. The correction of the

technique depends only of the properties of the underlying protocol, so if a BFT protocol is used, its

reconfiguration also supports this kind of faults.

Nevertheless, as this systems aim at supporting a replicated adaptation manager, it is necessary to

develop an additional mechanism to do so. This mechanism consists in collecting enough (usually f+1)

similar, properly signed, adaptation requests from the manager’s replicas. Furthermore, when dealing

with Byzantine faults, it is also necessary to prevent that a replica can submit an adaptation command

if the said operation was not requested by the manager, as it can lead to an attack that degrades the

system’s performance by inducing unwanted adaptations. We considered two approaches to mitigate

this problem. The first one is to include a cryptographic proof of the rightfulness of the adaptation

command. This proof includes the signature of a quorum of the adaptation manager’s replicas. The

second approach is to only start an adaptation after receiving at least f + 1 commands, where f is

the number of tolerated faults, before starting an adaptation. This approach would not need to use

cryptographic proofs because with f+1 commands at least one would be correct. Nevertheless it would

delay the introduction of the adaptation, as this last solution needs f +1 consensus runs, instead of just

one. For this reason the first solution was implemented in the developed system and a representation

29

Switcher
Adaptable
Consensus

Be
ha

vi
ou

r A
Be

ha
vi

ou
r B

adapt(adaptation)

received(request, 1) sendToOrdering(request, 1)

ordered(request, 1)sendToExecution(request, 1)

received(request, 50) sendToOrdering(request, 50)

ordered(request, 50)sendToExecution(request, 50)

adaptationReceived(adaptation, 1) sendToOrdering(adaptation, proof)

received(request, 51) sendToOrdering(request, 51)

ordered(request, 51)sendToExecution(request, 51)

... ...

Figure 3.1: Flow of an adaptation using reconfigurable protocols

of the algorithm is presented in Algorithm 1. Note that this mechanism is orthogonal to all the described

strategies. A sketch of the overall flow of an adaptation is presented in Figure 3.1.

This is expected to be the most efficient approach to perform adaptations in runtime, nevertheless

developing such protocols may prove itself to be harder than using already described protocols. Fur-

thermore, there is the chance to make the protocol prioritize reconfiguration commands. This is possible

because this technique is aware and can manipulate the actual queue of incoming requests and can

always put a reconfiguration request ot the head of the queue, instead of putting it on the tail, like an

ordinary request.

In the context of this thesis, the problem of concurrent consensus is not an issue as BFT-SMaRt

uses batching instead of concurrent consensus as a performance optimization. In its turn batching

presents no special challenge when applying an adaptation, it’s only needed that the ordered batch is

identified as having an adaptation so it is applied upon ordering.

Using adaptable protocols also makes possible the introduction of finer-grained adaptations, like

changing the leader, without having to swap the entire protocol and deal with pending requests transfer

between protocols (like with other type of techniques, described further on this chapter). Some of this

adaptations may demand a consensus run to decide the right logical moment when to apply the adap-

tation across all replicas, so it is applied logically at the same time to ensure correctness. On the other

hand, some adaptations, like changing the batch size or the fault detection time-out, without running

a consensus, similar to the flash adaptations discussed in (Rosa, Rodrigues, and Lopes 2007). This

changes don’t affect correctness even if they are not applied at the same time in all replicas and, if no

consensus is executed, the adaptation is usually applied faster.

The development of an adaptable protocol in BFT-SMaRt was facilitated because the Mod-SMaRt

framework (Sousa and Bessani 2012) already has an isolated consensus module and some configura-

30

tion parameters by design. This way, a second consensus protocol was implemented and the consensus

module was generalized as a configurable parameter. This is discussed in more detail in section 3.3.

Algorithm 1 Reception and Execution of Adaptation Commands

1: procedure ONADAPTATIONRECEIVED(adaptation, sender, signature)
2: if sender is trusted ∧ signature is valid then
3: PendingAdaptations← PendingAdaptations ∪ (adaptation, sender, signature)
4: CHECKPENDING(adaptation)
5: procedure CHECKPENDING(adaptation)
6: similarAdaptations← SIMILARADAPTATIONS(PendingAdaptation, adaptation)
7: if length(similarAdaptations ≥ quorum then
8: if adaptation needs ordering then
9: proof← MAKEPROOF(similarAdaptations)

10: SENDTOORDERING(adaptation, proof)
11: else
12: EXECUTEADAPTATION(adaptation)
13: function SIMLIARADAPTATIONS(adaptation)
14: similarAdaptationCommands← ∅
15: for all pending in PendingAdaptations do
16: if pending.adaptation ≡ adaptation then
17: similarAdaptationCommands← similarAdaptationCommands ∪ pending
18: return similarAdaptationCommands
19: procedure ONORDERED(adaptation, proof)
20: if (adaptation, proof) is sound then
21: EXECUTEADAPTATION(adaptation)

3.2.2 Adaptation of Protocols Modelled as a Black-box

To adapt an non-adaptable, “black-box”, protocol, it is necessary to send a marker (a special control

message or a flag associated with an ordinary message) in the active protocol (A) to decide the logical

instant, in the message flow, where the switch to the next protocol (B) takes place (Mocito and Rodrigues

2006). To facilitate the implementation, this marker may contain the information needed about the new

configuration, so every replica is able to apply it correctly without further messages from other modules.

This way, the marker acts like an adaptation command but which execution is performed at the switcher,

instead of the protocol itself. A sketch of the flow of an adaptation using protocols as black-boxes is

presented in Figure 3.2.

Nevertheless, in leader-based protocols, like most BFT consensus protocols, there is an additional

challenge. It arises from the following: if the process pi is the leader of protocol B but it’s the last process

to be informed, due to, for example, network asynchrony, that A ordered a marker, it may be suspected

as faulty despite being correct. This happens because all the other processes, being already operating

in B, may notice the lack of activity of the leader and begin a leader change, even before all processes

are participating in B. In most cases it does not break the protocol’s correction, as this lack of activity is

similar to a period of asynchrony in the network, falling in the system model of most of the recent BFT

consensus protocols, however it may impair the performance and progress of the system.

For this reason, in a Byzantine fault tolerant system, it may be preferable that a switcher starts re-

31

Switcher
Consensus

A
received(request, 1) sendToOrdering(request, 1)

ordered(request, 1)sendToExecution(request, 1)

received(request, 50) sendToOrdering(request, 50)

ordered(request, 50)sendToExecution(request, 50)

adaptationReceived(adaptation, 1) sendToOrdering(adaptation, proof)

received(request, 51)

sendToExecution(request, 51)

... ...

Consensus
B

sendToOrdering(request, 51)

ordered(request, 51)

ignored

ordered(adaptation, proof)

sendToOrdering(request, 51)

ordered(request, 51)

Figure 3.2: Flow of an adaptation using protocols as a black-box

transmitting requests to B as soon as possible, even before A orders a marker. This causes a possible

parallel execution of both protocols and further measures must be taken to ensure safety (Mocito and

Rodrigues 2006). Messages ordered in B should be frozen until A becomes inactive, then a sanitization

process shall be done to prevent duplicated messages being delivered to the application. This pro-

cess consists in removing all the frozen messages that were already delivered by A. Finally all retained

messages from B can be delivered and it may proceed delivering any further ordered messages.

For simplicity, a version of the algorithm which does not use parallel execution is described in Algo-

rithm 2. The parallel execution of protocols is discussed in more detail in Section 3.2.4.

Algorithm 2 Execution of Adaptations using Stoppable and Non Reconfigurable Algorithms

1: procedure RECEIVEREQUEST(ordinaryRequest)
2: pendingRequests← pendingRequests ∪ ordinaryRequest
3: SENDTOORDERING(ordinaryRequest) . Order in the currentAlg algorithm
4: procedure ONORDERED(ordinaryRequest, algorithm)
5: if algorithm is currentAlg then
6: pendingRequests← pendingRequests \ ordinaryRequest
7: SENDTOEXECUTION(ordinaryRequest)
8: procedure EXECUTEADAPTATION(adaptation)
9: currentAlg← adaptation.algorithm

10: SENDTOORDERING(pendingRequests)

In addition, note that, in the case of SMR, where the operations come from clients asynchronously

and in parallel, the ordering of requests in the queue awaiting for ordering is even more unpredictable

than in cases where the operations are issued by the replicas themselves. This has the potential to

make the number of requests in the queue after a marker to be of considerable size. So, it is likely that

some resources are wasted ordering operations after a marker, as they are discarded and re-submitted

in the next protocol, even if every switcher stops sending new commands to an protocol after sending

32

a marker to it. Even more so, such action may induce sub-optimal behaviour of the protocol after the

marker is ordered, as queue-sharing and leader-election sub-protocols may take place. This is, as the

leader may be deprived of some client requests, because they were not submitted by the switcher after

a marker, other replicas that have the said requests may retransmit them or even suspect a faulty leader.

3.2.3 Adaptation of Stoppable Protocols

As discussed in Chapter 2, a possible way to mitigate the waste of resources, caused by executing

consensus to order requests in an protocol that is no longer active, is to use stoppable protocols. This

kind of protocols don’t perform any consensus after ceasing to be active, replying asynchronously with

the information that it has stopped for every request submitted.

In a CFT system a straightforward way to implement the switch between two stoppable protocols, A

and B, consists in executing the following two-step algorithm:

1. Each switcher sends a stop command to A and stops retransmitting new requests until it acknowl-

edges that A is in a quiescent state.

2. The switcher proceeds to deliver all the retained requests, as well as any new ones, to protocol B.

In practise, with our architecture, with a switcher that is omniscient of the client requests and the

ordering of them by all protocols, using stoppable protocols is very similar to using them as black boxes,

just with the particularity of the marker acting as a stop command when ordered.

3.2.4 Using Parallelization in Adaptation

As seen before, when stoppable protocols or protocols as black-boxes are used to carry out adap-

tations, a hiatus may occur between ceasing the activity the currently active protocol and start executing

operations in the new one. The solutions described in (Bortnikov, Chockler, Perelman, Roytman, Sha-

chor, and Shnayderman 2015) and (Mocito and Rodrigues 2006) minimize this overhead by transmitting

all messages in both protocols, during the adaptation time. They assume as well that both protocols are

already activated and no process uses any of the protocols incorrectly, this is, does not start operations

in an protocol that is not active or a candidate to be as so after an adaptation. The algorithm is described

in Algorithm 3.

However, in a Byzantine context, there is a chance that a Byzantine process starts sending mes-

sages to any protocol, even if it does not comply with an issued adaptation. This may waste resources

and make possible a malicious vector of attack to cause starvation and reduce the system’s perfor-

mance. We found two ways to minimize this problem, starting the protocols only when they are needed

to perform an adaptation or sending a proof of the rightfulness to use a protocol because there was a

adaptation request that commanded so.

33

In the first approach, the switcher only starts a protocol if it is necessary to perform an adaptation,

and promptly deactivate any protocol that ceases to be necessary in the current execution context.

This way no Byzantine process can harm the system’s performance by operating incorrectly in some

inactive protocol because other processes are not listening to that messages. However, this solution, by

starting protocols in run time, may increase the time needed to perform an adaptation as it has to wait

for the establishment of communication channels, possible state transfers and leader elections, which

are common in BFT protocols.

The second approach assumes all protocols are already running, although some are idle due to

being inactive, mitigating the time needed for their initialization during an adaptation. So, any protocol

which starts operating in an idle protocol sends a proof, along with the first message sent in the pro-

tocol, of the correctness of this action. This proof consists, similar to what was discussed earlier, in a

cryptographic proof with the signature of a quorum of adaptation issuer replicas. This quorum may be

f +1 if up to f faults are tolerated and it is assumed that no correct adaptation issuer instance can send

an incorrect adaptation request. When some process receives the first message in an idle protocol, it

checks the proof and, if it’s considered valid, then the protocol is marked as operating. If the proof is

forged, then an accusation about the sending process is issued against the replica that used it and so it

may be considered faulty and removed from the working set of replicas.

3.2.5 State Management During an Adaptation

The switcher is responsible to control which ordered messages are sent to execution and added

to the history of the system. This happens either directly, managing the queue of requests to send to

execution, when parallelization or non-adaptive protocols are used, or indirectly by sending requests to

a given protocol only when no other is operating, when using stoppable protocols.

The consistency of the history across all configurations can be achieved in several manners. One of

them is to build the whole history as a composition of ordered stable trunks. Each trunk has a common

agreed final state of the execution of a protocol and trunks are ordered following the succession of

active protocols. This may imply running a state-transfer protocol when adaptation takes place, which

introduces a penalty in throughput and delay of its application.

To mitigate this drawback, it is possible to eliminate this state transfer, if the protocols don’t have

speculative ordering and the adaptation is totally ordered in the history. With these two assumptions, if

any replica receives a reconfiguration command, then it already has all the history up to that point. Any

deviation in state is managed by the internal state transfer mechanisms of the current protocol.

Furthermore, the queue of unanswered requests must also be taken care of, so no request is lost or

duplicated, causing faulty behaviour. For example, losing unanswered requests through an adaptation

may impair the detection of a faulty leader which is omitting some of the clients’ requests. One way is

for the distributed switcher to agree on a common set of unprocessed requests to deliver to the new

34

Algorithm 3 Reception and Execution of Adaptation Commands Using Parallelization

1: procedure ONADAPTATIONRECEIVED(adaptation, sender, signature)
2: if sender is trusted ∧ signature is valid then
3: PendingAdaptations← PendingAdaptations ∪ (adaptation, sender, signature)
4: CHECKPENDING(adaptation)
5: procedure CHECKPENDING(adaptation)
6: similarAdaptations← SIMILARADAPTATIONS(PendingAdaptation, adaptation)
7: if length(similarAdaptations ≥ quorum then
8: proof← MAKEPROOF(similarAdaptations)
9: SENDTOORDERING(adaptation, proof)

10: INITPARALLELALG(adaptation)
11: procedure INITPARALLELALG(adaptation)
12: FrozenOrdered← ∅
13: onSwitchProcess← true
14: nextAlg← adaptation.protocol
15: function SIMLIARADAPTATIONS(adaptation)
16: similarAdaptationCommands← ∅
17: for all pending in PendingAdaptations do
18: if pending.adaptation ≡ adaptation then
19: similarAdaptationCommands← similarAdaptationCommands ∪ pending
20: return similarAdaptationCommands
21: procedure ONORDERED(adaptation, proof)
22: if (adaptation, proof) is sound then
23: EXECUTEADAPTATION(adaptation)
24: procedure EXECUTEADAPTATION(adaptation)
25: onSwitchProcess← false
26: notSentFrozenOrdered← FrozenOrdered \ orderedRequests
27: currentAlg← nextAlg
28: SENDTOEXECUTION(notSentFrozenRequests)
29: notSentFrozenOrdered← ∅
30: procedure ONRECEIVED(ordinaryRequest)
31: SENDTOORDERING(currentAlg, ordinaryRequest)
32: if onSwicthProcess then
33: SENDTOORDERING(nextAlg, ordinaryRequest)
34: procedure ONORDERED(ordinaryRequest, protocol)
35: if onSwitchProcess ∧ protocol is nextProtocol then
36: FrozenOrdered← FrozenOrdered ∪ ordinaryrequest
37: else if protocol is currentProtocol then
38: orderedRequests← orderedRequests ∪ ordinaryRequest
39: SENDTOEXECUTION(ordinaryRequest)

35

protocol after an adaptation. Nevertheless, in the context of the described solution for BFT-SMaRt this

is not needed, as the fault-detection and queue-sharing mechanisms are shared among the different

protocols.

3.3 Implementing Adaptation Within BFT-SMaRt

3.3.1 BFT-SMaRt

There are available several open-source libraries to ease the development of BFT SMR systems,

namely UpRight (Clement, Kapritsos, Lee, Wang, Alvisi, Dahlin, and Riche 2009), Archistar (Lorünser,

Happe, and Slamanig 2014) and BFT-SMaRt(Bessani, Sousa, and Alchieri 2014). The first was the first

attempt, that we are aware of, of a library concerned about simplifying the development of BFT systems.

However, these concerns introduced a significant overhead in the performance of the system (Bessani,

Sousa, and Alchieri 2014). Moreover, as of the date of the writing of this work, the library seems to

not be maintained any more, being the last release dated of the 27 of January of 2010. Archistar is a

compact BFT replication engine, although it is not easily extensible, because it is a monolithic approach.

As for UpRight, it is not currently maintained, and, moreover, has very little documentation, which can

make implementation problems harder to solve, in the future.

Given this, in this section we will present BFT-SMaRt, which will be the starting point of our work, be-

cause it is still maintained and it is highly modular, facilitating its extension. Besides this, some members

involved in the Abyss project have deep knowledge about it, making it easier to solve implementation

challenges, when they arose.

This library, implemented in Java, implements a BFT system similar to PBFT. Although it deviates

from PBFT, as it uses a modular approach, instead of a monolithic one, to develop something more

understandable and extensible. To develop an application using BFT smart, a developer needs only

to implement the usual invoke(command) on the client, and an execute(command) on the server side,

leaving all the responsibilities to ensure BFT to the library itself. Besides this, if more complex behaviour

is needed, BFT-SMaRt can be extended using plugins, alternative calls and call-backs.

BFT-SMaRt is also able to add or remove replicas form a given system, carrying out the state-

transfer needed to initialize the new replicas. This state capture and transfer is isolated in a layer between

the replication protocol and the application, so it does not influence the consensus protocol. To carry out

such tasks three principles are used: logging the operations executed in the system, taking snapshots

of the progression of the system, in different points in time at different replicas (so the system does not

stop) and, finally, transferring the state to fresh replicas in a collaborative fashion, with distinct replicas

sending different chunks of the state to the initializing replica.

The architecture of BFT-SMaRt, depicted in Fig. 3.3, has the following main modules:

36

Figure 3.3: The architecture of BFT-SMaRt

• Extensible State Machine Replication: responsible for implementing the application behaviour.

• Mod-SMaRt and VP-Consensus (Sousa and Bessani 2012): responsible for implementing the

SMR mechanics, including total ordering.

• Reconfiguration Module: responsible for carrying out the addition or the removal of replicas.

• State Transfer Module: responsible for initializing new replicas with the current state, or even

recovering the whole system.

BFT-SMaRt was used in a work already done in the area of BFT protocol adaptation (Sabino, Porto,

and Rodrigues 2016). In this work, Sabino, developed an architecture, based on BFT-SMaRt, to develop

adaptable BFT SMR systems, including a component to monitor the environment of the system and

an adaptation manager, that reacts upon the happening of certain events, like a change in the network

conditions. Despite this, the adaptations explored in this work are changes in protocol parameters

like the batch size and the number of replicas, not discussing the main concern of our work, protocol

commutation.

3.3.2 Architecture

To implement the various techniques in order to experiment and compare them, several modifi-

cations and extensions were made to BFT-SMaRt. Firstly, since BFT-SMaRt had only one consensus

protocol available, an adaptation of the protocol described in (Guerraoui and Rodrigues 2006) to the

Mod-SMaRt framework, a partial version of the “Fast Byzantine Consensus” described in (Martin and

Alvisi 2006) was developed. This new protocol is called Fast-SMaRt. In addition, to experiment how the

adaptation techniques can cope with heavy load in the system, a version of Mod-SMaRt capable to deal

with some vectors of performance-degradation attacks was developed. This variation of Mod-SMaRt is

called Safe-SMaRt. Moreover, a switcher module was added, responsible for managing the communica-

tion between the clients and the existent protocols and configurations. This switcher is ready to receive

37

adaptation command from a replicated adaptation issuer, which is being developed by other members

of the Abyss project.

Switcher

Behaviour

Server Replica

Order(r) Ordered(r)

Client

Ordering Module

Exec(r)

Execution

Request(r)

Answer(ans)

Adaptation
Manager Adapt(adaptation)

Order(adaptation) Ordered(adaptation)

Figure 3.4: Architecture of the developed system to support adaptation in BFT-SMaRt.

Besides the new consensus protocol and the switcher module, other extensions were developed

for BFT-SMaRt, namely, an extended dispatch layer, finer grained adaptations and stoppable versions

of Mod-SMaRt and Fast-SMaRt. The dispatch layer was modified so it could deal with messages from

different protocols, so it can function properly when more than on protocol in execution. Other finer

grain adaptations, like leader switching and logging toggle, were developed both to provide support to

experiments in the context of the whole Abyss system and to make possible the comparison between

reconfiguring a single protocol versus switching between protocols with different configurations.

A representation of the architecture is presented in Figure 3.4

3.3.3 Fast-SMaRt

Fast-SMaRt was implemented by extending the classes that modelled the behaviour of replicas and

messages for the consensus protocol already existent for Mod-SMaRt. So, new classes that provided

the desired behaviour for Proposers, Acceptors and Learners in the Fast Byzantine Consensus protocol.

A new class of messages was also developed so it could carry the information needed by the protocol.

Moreover, were performed some modifications to the TOMLayer class, which is responsible for

sending ordered requests to execution, among other things. This modifications made possible that a

request is sent for execution a step earlier than in the original BFT-SMaRt consensus protocol. The

dispatch layer that handled incoming consensus messages was also modified so it could support non-

authenticated messages because Fast Byzantine Consensus does not make use of this in order to boost

38

its performance.

3.3.4 Safe-SMaRt

Safe-SMaRt was derived from the ideas of Aardvark in the sense of better tolerating faulty client

behaviour. Specifically, this variation of Mod-SMaRt detects and deals with clients not operating in a

closed-loop (waiting for the answer of request n before sending request n + 1), as in the BFT-SMaRt

protocol this is the correct way of operating. As there are no dedicated channels of communication

for each client, like in Aardvark, it is not possible to shut the communication completely. So, a simpler

version of this was done by ignoring faulty clients’ requests, not putting it in the ordering queue. This way

the queue is not filled with faulty requests nor consensus runs are spent ordering them, thus protecting

the performance of the system.

To detect such behaviour, every time a client submitted a new request, the event is registered in a

table. This register is removed when the said request is ordered and goes to execution. So, if a client

submits a request and another request is already registered, it indicates that the client is probably faulty

and the request is ignored. Nevertheless, the request is not totally discarded, it is put on a quarantine

queue, because it can happen that the replica identifies that the client is on an open-loop when actually

it is the replica itself that is behind in the history of executions. Therefore, when a state transfer happens

and the replica notices that it was delayed and the quarantined request were correct, it puts them on the

queue and removes the register of in-progress quests.

Note that this was developed only as an artefact to perform some experiments and does not aim at

making the system as robust as possible against faulty clients. In fact, this is a solution that deals with

a very specific vector of attack and still doesn’t solve the problem totally, only mitigates it partially. For

example, if the attack is performed at the TCP level, this solution does not provide any benefit.

3.3.5 Support for Parallel Execution of Protocols

To allow for a parallel execution of protocols, both in the cases of parallelization optimizations and

the parallel execution that happens after an adaptation using non-reconfigurable protocols, the dispatch

layer was extended. A new identification field was added to the consensus messages in order to distin-

guish which protocol they belong to.

In practise this could be done just by identifying the class of the incoming message, as each protocol

present in the system has different classes for their messages. Nevertheless, if one opts to use the

same protocol but with different configurations, this solution becomes insufficient. Because of this, each

consensus message has a identification field that identifies from which configuration it is, expanding

the concept of having only different protocols to having distinct configurations, regardless of the actual

protocol it belongs to.

39

Moreover, the log of operations had to be incorporated in the switcher responsibilities. This way,

the switcher manages the overall log, of the operations that contributed to the history of the service, by

including the operations of active protocols. Nevertheless protocol-specific logs must be kept to allow the

tentative execution of protocols that don’t write right away for the history of the progress of the system.

Currently, all the configurations (available combinations of protocols with their parameters) must be

instantiated at the start of each replica execution. They are declared in the code that runs at the start

of the system replica. It would be more flexible if these configurations could be added at run time, but

unfortunately this was not implemented due to time constraints.

3.3.6 Adaptation Requests

The adaptation manager’s replicas send adaptation commands via socket to the switchers. This

command is a string which includes a sequence number of the adaptation to be performed, a description

of the adaptation (with type and arguments) and an authenticity proof, which denotes that the adapta-

tion was, in fact, issued by the adaptation manager. This proof is a signature of the previous content,

using RSA with SHA256 hashing. This is an expensive computation, nevertheless, as the adaptation re-

quests are not very frequent, it does not represent a threat to the system’s performance. The adaptation

command is formatted in the following manner:

<sequence number>:<adaptation type>[:adaptation arguments]*:proof

Each switcher, upon receiving a quorum of similar adaptation requests, builds an object containing

all the parameters of the configuration, as well as a concatenation of all the proofs (to prove the right-

fulness of the adaptation to other replicas). This object is similar to an ordinary client request so it can

be ordered in the same way, having only a flag identifying it as a adaptation, so it is recognized by the

switcher or the reconfigurable protocol.

3.3.7 Adaptation Execution Flow

An informal description of the flow of introducing an adaptation on the developed system is pre-

sented below:

1. Each replica awaits for the collection of n similar and properly signed reconfiguration request from

the adaptation issuer replicas. This number is the minimum number of equal messages to tolerate

the modelled Byzantine behaviour form the adaptation issuer. For example, if on wants to tolerate

up to one failure in the adaptation issuer replicas and it’s assumed that no correct replica can issue

a wrong reconfiguration, 2 similar reconfiguration commands shall suffice because by definition at

least one is correct. So, generally, f + 1 similar commands.

40

2. At each replica, a reconfiguration command is built, containing a sequence number, a description

of the adaptation and a cryptographic proof of the authenticity of the adaptation. This message is

broadcast to all replicas mimicking a client request.

3. This message is ordered and the ordering of further requests is halted temporarily. While the

system is halted, this message is analysed at every replica and if it proves itself to be sound

(authentic and has the right sequence number), the described adaptation is executed.

4. After the execution of the adaptation the ordering of new requests continues normally, with the new

configuration installed on the system.

3.4 Implementing Adaptation Using BFT-SMaRt as a Black-Box

A purely black-box prototype was also developed. This system aimed at switching between different

protocols running in independent processes, where no knowledge about their functioning is needed,

besides the interface. This solution isolates the switcher in an independent process. This process acts

as a server proxy, with the execution module co-located with it. It acts in the following manner:

1. Receives the client request with the same interface as a regular BFT-SMaRt server.

2. It sends the request to be ordered in the active protocol (process), or to several, if parallel execution

is in place.

3. It collects the ordered requests and sends them for execution, which then answers to the client.

The adaptation requests follow a similar execution flow and when it is executed it changes to which

processes incoming requests are sent. All the processes are co-located in the same machine to avoid

the increased cost of two network communication steps for each request. A representation of the archi-

tecture is present in figure 3.5.

This prototype was not developed fully because it failed to deliver acceptable performance in the

proof of concept experiments done. Even in normal operation the system revealed itself to be 3 to 4

times worse in terms of throughput when compared to the solution where the switcher was located in

the BFT-SMaRt server process. This loss of performance could derive from several things, for example

the cost of inter-process communication, the cost of context switch when switching processes or the cost

of Java garbage collector as much more objects are instantiated in this solution. No further experiments

were carried out due to time constraints.

Summary

This chapter started by providing a conceptual framework devised for facilitating the reasoning about

different adaptation techniques. It divides those techniques into three main categories: using reconfig-

41

Switcher Process

Execution

Client

Adaptation
Manager

Adapt(a)

Ordering Algorithm A
Process

Order(r/a)

Ordered(r/a)

Ordering Algorithm B
Process

Order(r/a)

Ordered(r/a)

Ordering Algorithm C
Process

Order(r/a)

Ordered(r/a)

Exec(r)

Request(r) Answer(ans)

Figure 3.5: Architecture of a switching system using ordering protocols as independent, black-box,
processes

urable protocols, usage of protocols modelled as black-boxes and using stoppable protocols. Each

category presents a different level w.r.t. the trade-off ease of implementation vs potential performance.

Reconfigurable protocols promise the best performance but are the hardest to develop, opposing the

black-box approach which is the easiest to deploy while the expect performance is lower, finally the

stoppable approach sits in the middle of the previous two. Furthermore, some possible optimization are

also presented, namely the prioritization of adaptation commands and using parallelization.

We have discussed a number of changes that need to be performed to previous work to support

Byzantine Fault Tolerance. Among them, the proofs of adaptation, to mitigate unwanted reconfigurations

introduced by Byzantine components. It was also discussed the need for proofs to start a parallel

execution of a protocol, to avoid its unrightful usage.

Finally, the implementation of such techniques in the BFT-SMaRt framework has been presented.

Some new modules, like the switcher, a new consensus protocol, and a safer mode of operation were de-

scribed. Furthermore, some extensions were also discussed, namely the support for multiple protocols

running concurrently, were also discussed.

42

4Evaluation
In order to compare the different adaptation techniques, in this section we intend to answer the

following questions:

a) How much time does it take for a reconfiguration to be executed with each technique?

b) What is the impact on the system’s performance caused by adapting with the different techniques?

c) What load is imposed by the adaptation on the network?

d) How useful are the the distinct adaptation techniques to bring the system out of a poor performance

situation caused by environmental conditions (reactive adaptation)?

e) How large is the advantage of using reconfigurable protocols, instead of stoppable or black-box, if

one wants to perform adaptations that do not demand coordination (known as flash adaptations)?

So, in this chapter an experimental evaluation is presented to answer such questions. In Sec-

tions 4.1 and 4.2 we address questions a), b) and c). Question d) is discussed in Section 4.4 and

question e) is explored in Section 4.3

To mitigate artefacts in the data caused by unwanted hidden variables, like the physical network

conditions or the virtual machines performance, 15 runs were performed for each experiment. The 4

most deviating datasets, the two with smaller values and the two with bigger values, were discarded.

After that an average was calculated, being the values presented in the graphs. The standard deviation

fell between 7% and 12%, nevertheless the differences among the different techniques kept consistent

within each of the individual experiment run.

4.1 Local Network Context

To execute this experiments 6 and 11 BFT-SMaRt replicas were used as this is the minimum repli-

cas needed to tolerate one and two faults, respectively, using Fast-SMaRt 1, and a client capable of

introducing variable load in the system. All the replicas and the client were hosted in independent virtual

1This number of replicas does, in fact, penalize the performance of Mod-SMaRt, has it uses more replicas than necessary.
However, we chose not to introduce and remove replicas during our experiments so that the only change happening is the protocol
switch. Moreover, we do not intend to prove the efficiency either of Mod-SMaRt nor Fast-SMaRt, but the efficiency of the switch
algorithms.

machines on the DigitalOcean2 cloud provider. Each machine has a dual core CPU running at 2.40GHz,

2GB of RAM and a full-duplex 1Gb/s network connection. This configuration was chosen for being the

most powerful, hence closer to a real-world server, within the available resources. The client which gen-

erates load sends requests in multiple threads, simulating multiple clients. In this section of experiments

the client sends a request of 10kB each after receiving the reply (with 10B) of the previous request

(works in a closed-loop). The system ran for 4 minutes, which were dropped, before any adaptation was

executed so that the load introduced by the client could put the system in a stable point of performance.

4.1.1 Adaptation Time

To evaluate the time needed to perform an adaptation using each technique, it was accounted the

delay between the arrival of an adaptation request3, and the application of such adaptation. This has

been performed with different amounts of load introduced in the system. The results are presented in

Figure 4.1. In the graph it is also represented, as a baseline, the time of a consensus run to order

a request, since it represents the minimum time to execute an operation on the system with the given

conditions. It is observable that the time of adaptation using reconfigurable protocols grows much slower

than the other approaches, following closely the consensus time. This happens mainly because in a

solution using reconfigurable protocols it’s possible to have access to the queue of incoming requests

and prioritize adaptation requests, while in all other techniques that is not possible. This way, when using

reconfigurable protocols, the adaptation time grows only with the time taken to order a request, while on

the other hand, in the other techniques it grows both with the time to process a request and the queuing

time.

0 5 10 15 20 251
number of client threads

0

2000

4000

6000

8000

10000

12000

ti
m

e
 (
µ
s)

reconfigurable

black-box

stoppable

black-box parallel

stoppable parallel

consensus time

Figure 4.1: Execution time of an adaptation in a local network, using 6 replicas

2https://digitalocean.com
3More precisely, the arrival of the second similar adaptation request, in order to have a quorum of commands tolerating one

fault in the adaptation manager’s replicas.

44

4.1.2 Throughput During an Adaptation

To measure the overhead of executing an adaptation with each of the techniques described, it was

used a client with 20 threads, being this the observed configuration that introduced a significant load

in the system without putting it under excessive stress. The throughput was extrapolated at every 100

requests ordered, by measuring the time it took to order the said requests. After the request number

1000 an adaptation request, to switch from Mod-SMaRt to Fast-SMaRt, was submitted to the system.

The obtained results are shown in Figure 4.2.

600 700 800 900 1000 1100 1200 1300 1400 1500
number of ordered requests

350

400

450

500

550

600

650

th
ro

u
g
h
p
u
t

(r
e
q
/s

)

reconfigurable

black-box

stoppable

black-box parallel

stoppable parallel

(a) With 6 replicas

600 700 800 900 1000 1100 1200 1300 1400 1500
number of ordered requests

100

150

200

250

300

350

400

450

th
ro

u
g
h
p
u
t

(r
e
q
/s

)

reconfigurable

black-box

stoppable

black-box parallel

stoppable parallel

(b) With 11 replicas

Figure 4.2: Throughput during an adaptation in a local network

It can be observed that, in the context of this experiments, none of the used techniques introduced

a visible overhead in the throughput of the system. The rise in throughput between requests 1000

and 1100 exists because the adaptation applied to the system contributed to an overall increase in

performance.

4.1.3 Network Overhead of an Adaptation

The network load was measured during the same experiment described above, with samples every

millisecond. In order to facilitate the comparison of the data, the most relevant 40ms of execution were

taken and aligned so the reconfiguration request arrives at 10ms. The data is represented in Figures 4.3

and 4.4.

As opposed to throughput, the load introduced in the network varies among the different techniques

used. The use of non reconfigurable protocols imposes an increase on network usage after an adapta-

tion is executed as the protocol that ceased to be active continues to execute in the background until it

depletes the queue of received requests. When using parallelization techniques, there is a visible over-

head on the network prior to the execution of a reconfiguration. This happens because as soon as an

adaptation request is received the next protocol to be active starts executing tentatively in parallel with

the currently active protocol, existing a period with an increase of nearly 90% of the load on the network,

when comparing with the normal execution.

45

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
time (ms)

0

2

4

6

8

10

12
lo

a
d
 (

M
B

/s
)

reconfigurable

black-box

stoppable

(a) Techniques without parallelization

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
time (ms)

0

2

4

6

8

10

12

lo
a
d
 (

M
B

/s
)

black-box parallel

stoppable parallel

(b) Techniques with parallelization

Figure 4.3: Network load during an adaptation, in a local network, using 6 replicas

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
time (ms)

0

2

4

6

8

10

12

14

16

18

20

22

lo
a
d
 (

M
B

/s
)

reconfigurable

black-box

stoppable

black-box parallel

stoppable parallel

Figure 4.4: Network load during an adaptation, in a local network, using 11 replicas

4.2 Wide-area Network Context

To experiment the different techniques in an wide-area network context, a cross-datacenter network

was emulated. To emulate the said network topology, 6 replicas were hosted in the same datacenter

and latency was introduced between them at the Linux Kernel level, using the netem4 tool. To simulate

a network environment as close as possible to a realistic use case, real latency values across Amazon

datacenters were used. The emulated network simulates having a system replica in each of the following

datacenters: North California (0), Oregon (1), Ireland (2), Frankfurt (3), Tokyo (4) and Sidney (5). The

amount of latency between each replica is presented in (Bravo, Rodrigues, and Van Roy 2017) and is

shown in Table 4.1. To emulate the variability in the communications delay, a jitter of ±10% of the latency

added.

4.2.1 Adaptation Time

Except from the network environment, this experiment closely followed the one described in sec-

tion 4.1.1. However, due to the increase of latency, the batching mechanism of BFT-SMaRt was more

prominent, reducing the load of consensus messages to be processed. This raised the need to introduce

more clients to induce enough load to bring the system performance to its peak. So, 2 multi-threaded

4https://wiki.linuxfoundation.org/networking/netem

46

Table 4.1: Latencies between the different replicas in the system used in the wide-area network experi-
ments

Replica 1 2 3 4 5
0 10ms 74ms 84ms 52ms 89ms
1 - 69ms 79ms 45ms 81ms
2 - - 10ms 107ms 154ms
3 - - - 118ms 161ms
4 - - - - 52ms

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300100
number of client threads

0
100
200
300
400
500
600
700
800
900

1000

ti
m

e
 (

m
s)

reconfigurable

black-box

stoppable

black-box parallel

stoppable parallel

Figure 4.5: Reconfiguration time in a wide-area network environment

clients were used with a total number of threads between 100 and 1300, with half of the threads running

in each client process. The collected data is shown in Figure 4.5.

The results show that the difference in time between adapting using a reconfigurable protocol versus

adapting with other techniques is much closer to be constant than in a local network, mainly up to the

load introduced by 1100 replicas. This happens because the latency introduced by the network (felt by

all the techniques) is much more relevant than the latency introduced by the queuing time, which is the

main differentiator of the distinct techniques reconfiguration times. Nevertheless, the absolute value of

the difference between the distinct solutions is much more prominent than in a local network, instead of

less than ten milliseconds, in this environment the differences were of hundreds of milliseconds.

The steeper slope observed starting in the load introduced by 1200 clients derives from the fact that

the system starts to fail in coping with the number of incoming requests, having greater queuing times,

which affects directly the time of executing an adaptation when using non reconfigurable or stoppable

protocols.

We can then conclude that in a wide-area network environment, there is a greater load span in which

the different techniques grow more similarly, when compared to a local network. However differences

exist in the overall time, and may get several orders of magnitude different if the queuing time surpasses

the ordering time of a request. This can be of interest if the adaptation is time-sensitive and must

be performed as fast as possible, as in a local network, using a reconfigurable protocol is the faster

technique.

47

4.2.2 Throughput During an Adaptation

To test the overhead of carrying an adaptation in an wide-area network environment, a similar

method to the one described in 4.1.2 was followed. 6 BFT-SMaRt replicas and 2 multi-threaded clients

were used. Because of the higher latency in request processing, it was possible to collect data with

time based samples. This is, instead of collecting data samples every 100 requests ordered, like in

the local network experimental method, the throughput was calculated at every 100ms based on the

number of requests answered in that time. This approach facilitates the interpretation of the results as

it’s more intuitive to rationalize using the passage of time instead of the number of requests answered.

After 4 minutes, 20 seconds of execution were registered, where an adaptation request arrived at the

system shortly after the 500th millisecond. The throughput of answered requests during this time, with

a load of 1000 and 1200 client threads, is represented in Figures 4.6 and 4.7. This loads were chosen

because 1000 clients introduced a steady peak performance and 1200 clients introduced a near-peak

performance with an increase in queuing time.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
time (ms)

0

1000

2000

3000

4000

5000

6000

th
ro

u
g
h
p
u
t

(r
e
q
/s

)

reconfigurable

black-box

stoppable

black-box parallel

stoppable parallel

Figure 4.6: Throughput during an adaptation, in an wide-area network, using 1000 client threads.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
time (ms)

0

1000

2000

3000

4000

5000

6000

7000

8000

th
ro

u
g
h
p
u
t

(r
e
q
/s

)

reconfigurable

black-box

stoppable

black-box parallel

stoppable parallel

Figure 4.7: Throughput during an adaptation, in an wide-area network, using 1200 client threads.

As the adaptation takes more time in this network environment the differences in performance

among the different techniques become more apparent. One can note that the adaptation using recon-

figurable and stoppable protocols carry little to no overhead in throughput. On the other hand, solutions

48

using non-reconfigurable protocols carry a penalization in throughput in the moments after an adapta-

tion, because the protocol that ceased to be active continues to operate after the adaptation, until it

depletes the existing queue of incoming requests, hence wasting computational resources. Finally the

approaches that use parallelization present a belly before the executing of the adaptation and a peak

in throughput right after the adaptation is executed. The loss of throughput happens because of the

parallel execution of protocols in these techniques, carrying costs in performance due to the sharing of

resources among both protocols. The peak happens because the new protocol already started ordering

requests as soon as the adaptation command arrived and now it can dispatch in burst all the processed

requests to the clients.

The behaviour of parallelization techniques arises to question if the peak reached after the adapta-

tion compensates the loss of performance before it, when compared to their counterpart techniques that

use no parallelization. In order to answer this question, a graph showing the total amount of requests

answered with the different techniques was derived from the throughput data. The results are presented

in Figures 4.8 and 4.9.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
time (ms)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

a
n
sw

e
re

d
 r

e
q
u
e
st

s

reconfigurable

black-box

stoppable

black-box parallel

stoppable parallel

Figure 4.8: Answered requests during an adaptation, in an wide-area network, using 1000 client threads.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
time (ms)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

a
n
sw

e
re

d
 r

e
q
u
e
st

s

reconfigurable

black-box

stoppable

black-box parallel

stoppable parallel

Figure 4.9: Answered requests during an adaptation, in an wide-area network, using 1200 client threads.

The data shows us that in the case of using black-box protocols the parallelization optimization

reveals itself to be of worth, compensating, in part, the penalization introduced by the use of black-box

protocols when compared to reconfigurable and stoppable ones. Although the difference is only about

100 requests in this experiment, this small differences may add up and impact a long-lived system with

49

0 500 1000 1500 2000
time (ms)

0

5

10

15

20

25

30

35

40
lo

a
d
 (

M
B

/s
)

reconfigurable

black-box

stoppable

black-box parallel

stoppable parallel

(a) With a load of 1000 clients.

0 500 1000 1500 2000
time (ms)

0

5

10

15

20

25

30

35

40

45

lo
a
d
 (

M
B

/s
)

reconfigurable

black-box

stoppable

black-box parallel

stoppable parallel

(b) With a load of 1200 clients.

Figure 4.10: Load introduced in an wide-area network when executing an adaptation

recurring adaptations. On the contrary, when comparing the use of parallelization when using stoppable

protocols the data shows that not always the parallel execution is beneficial. This happens because

using stoppable protocols does not incur in visible losses of performance by itself. So, the issue relies

on if the peak of throughput using stoppable protocols with parallelization compensates the loss of

performance prior to the adaptation because there is no loss of performance to cover, like when using

black-box protocols.

We can see that parallelization surpasses its counterpart when using 1200 client threads, while it

doesn’t when using 1000 client threads. The main difference among them is the time between receiving

an adaptation request and executing it, which is the time that the soon-to-be active protocol executes

tentatively. It’s visible that with a greater time, the parallelization technique has better results. This hap-

pens because the consensus protocols usually have a warm-up time until they reach peak performance,

in the Fast-Smart case its due to the batching behaviour, which benefits with queues which length is near

the maximum batch size. So, with shorter adaptation times, the time spent warming up the new protocol

may not compensate the overall loss of performance due to parallelization. In the conditions of this

experiment, a possible optimization for adapting using stoppable protocols and parallelization would be

to delay the execution of the adaptation so the protocol executes enough time to compensate the overall

drop in throughput, contrary to the intuitive idea of executing an adaptation as fast as possible. Of course

this is a very specific case, where the adaptation is being made only to increase performance, not being

critical or time sensitive as it would be if it was done for security purposes, for example. Furthermore,

the peak throughput of the protocol executing tentatively must be higher than the loss of throughput in

the active protocol when compared to the throughput it would have if no other protocol was executing.

4.2.3 Network Load Overhead of an Adaptation

During the experiments described above, the network load was also collected. The results are

shown in Figure 4.10. Although the differences are amplified due to greater load and adaptation time,

the conclusions are similar to the ones discussed in 4.1.2.

50

4.3 Adaptation Under Heavy Load

All the previous discussed experimental cases assumed a stable execution of the system, this is,

the system was not operating in conditions that aggressively reduced its performance. This leads to

the question: How useful are the the distinct adaptation techniques to bring the system out of a poor

performance situation caused by environmental conditions?

To answer this question, a simulation of several clients becoming faulty, and introducing too much

load, was done to test how the adaptations could help dealing with it. Specifically, the experiment

simulates clients who operate out of the BFT-SMaRt protocol by executing in an open-loop, this is, not

waiting for the answer to request n before sending request n+1. To emulate a possible adaptation issued

by the adaptation manager, a protocol switch to Safe-SMaRt was issued when the system’s latency

degraded beyond 43 seconds. This happened at second 0 in the graph presented in Figure 4.11.

The network conditions are similar to the ones used in 4.2. There were used 1000 clients, where

half of them, 500, were faulty and operating in an open-loop, ignoring the answers of the replicated

server.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
time (s)

0

5

10

15

20

25

30

35

40

45

50

la
te

n
cy

 (
s)

reconfigurable

black-box

stoppable

black-box parallel

stoppable parallel

Figure 4.11: Introduction of an adaptation when the system’s performance is heavily degraded

Note that this experiment does not aim at proving the utility of Safe-SMaRt improve the resilience of

the system to faulty clients, as that falls out the scope of this thesis. This experiment was performed to

compare how each adaptation technique performs when used in heavily degraded system’s performance

conditions.

It is possible to note that using adaptable protocols is again the fastest way to introduce an adap-

tation, being introduced more than 40 seconds before any other technique in this case. This happens

because of the prioritization of adaptation requests, as discussed before. A new insight, not verified

clearly before, is that in this case, the parallelization performs better that non-parallel commutation, both

51

for stoppable and black-box adaptation. Even if they are applied some seconds later, their parallel ex-

ecution helps to bring the system to a good performance much faster. This happens because the new

protocol, executing in parallel, has the chance to be operating during a considerable amount of time,

being able to operate in peak performance for a great amount of time. Moreover, the new protocol is

more resilient to the attack being performed, having better performance than the previous protocol. Note

that, although this is verifiable in this case, in some performance degradation contexts, parallelization

may be worse than non-parallel techniques, specially if the bottleneck in performance is bandwidth or

computing power.

4.4 Flash Adaptation versus Ordered Adaptation

As seen in 3.2.1, when using reconfigurable protocols it is possible to introduce fine-grained adap-

tations. Even more so, some of this adaptations can be performed without the necessity of running

a consensus. This arises the question How great is the advantage of using reconfigurable protocols,

instead of stoppable or black-box, if on wants to perform adaptations that don’t demand coordination?

To answer this, the delay of introducing an adaptation which does not require a consensus (called flash

adaptation) using a reconfigurable protocol versus using other techniques, namely stoppable and pure

black-box protocols. The adaptation introduced aimed at start logging the replicas activity to disk. A

fine-grained adaptation which demands coordination, specifically changing the leader, is also present

in the chart to allow a comparison between a coordination-demanding and a flash adaptation using a

reconfigurable protocol.

The experimental setup follows closely the one used for wide-area performance experiments (Sec-

tion 4.2), but with added latency between the adaptation manager’s replicas and the system’s replicas.

This latency was added using netem, as before, with values between 25ms and 35ms. The time was

measured between issuing the first adaptation command at the adaptation manager’s replicas and it

being applied by a quorum of system’s replicas, which consists in 5 replicas in this context. The last

replica was ignored as it could be faulty, under the system model. The obtained results are presented in

Figure 4.12.

It is visible that flash adaptations, using reconfigurable protocols, are applied much faster than when

the same adaptation is applied with other techniques. This follows what was expected, as when using

stoppable and black-box protocols this adaptations still demand running consensus to switch between

two protocols with different configurations, whereas when using reconfigurable protocols it does not.

The majority of the time taken by the flash technique to apply the configuration is actually the

latency between the adaptation manager’s replicas and the switchers, as applying the adaptation is in

practice achieved with just some simple method calls. On the other hand, when applying a coordination-

demanding adaptation, it takes more time due to the need of a consensus run. The differences among

the other techniques derive from the loss of performance when using parallelization and the queueing

52

0 100 200 300 400 500
Time (ms)

flash

reconfigurable

black-box

stoppable

black-box parallel

stoppable parallel

31.647

217.519

321.425

325.834

436.415

436.149

Figure 4.12: Adaptation time of flash, coordination-demanding, stoppable and pure black-box ap-
proaches.

time, as already previously discussed in 4.2.

Summary

This chapter presented experimental insights of how the different adaptation techniques performed

in practise. As it was shown, in a local network the overhead caused by reconfiguration was negligible,

no matter what technique was used. Therefore, switching between protocols that behave as black-

boxes may be the best solution, given that this is the easiest reconfiguration technique to deploy. On the

contrary, in wide-area networks, switching between black boxes penalises the throughput. Hence, using

stoppable protocols appears to be the best solution for this scenario.

On the other hand, when reducing the delay of the adaptation is critical, the usage of reconfigurable

protocol is advised, as this allows for the fastest transition. This is mainly due to the possibility of

performing a prioritization of the adaptation commands. This is specially relevant if one wants to use

adaptation to bring the system out of a heavily degraded configuration. Reconfigurable protocols also

allow for the fast execution of fine-grained adaptations, while the other techniques do not.

Parallelization revealed itself to be useful if one uses the black-box approach in an wide-area con-

text. Its usage with stoppable protocols is only beneficial if the adaptation takes a significant amount of

time to be applied, due to warm-up time of the protocols. It may be specially relevant if it is applied in a

heavily degraded performance state.

53

5Conclusions
In this dissertation we have addressed the problem of performing dynamic reconfiguration of BFT

systems. We have organized, in a systematic manner, a portfolio of algorithms to switch in run-time

between different protocols. The algorithms have been derived by adapting previous solutions that have

been developed for different fault models.

The algorithms can be applied in different scenarios, depending of the properties of the protocols in-

volved in the reconfiguration. We have classified the target protocols into three main categories, namely:

reconfigurable protocols, stoppable protocols, and protocols without any specific support for adaptation,

that need to be treated as black-boxes. We have also identified several optimizations that can be applied

to the reconfiguration algorithms, such as prioritizing adaptations and using parallelization.

To understand the tradeoffs involved when applying these algorithms in practice, and to obtain a

comparative assessment of their performance, we have implemented them in a common framework,

based on the BFT-SMaRt open source project. We have deployed these implementation in different

settings.

Our results show that in a local network, using target protocols as a black-box reveals itself to

be the best solution given that it presents the same performance as other alternatives and it is the

easiest to deploy. On the contrary, when performing reconfiguration in a geo-replicated system, the use

of black-box protocols presents a significant overhead when compared to other alternatives. Thus, it

may be worth to change to target protocols such that they support at least a stoppable interface. We

have also observed that parallelization is always useful for high-bandwidth networks when using black-

box algorithms. However, if stoppable algorithms are used, parallelization is only beneficial in face of

large network delays. Finally, as expected, if the target protocols are reconfigurable, switching can be

executed with significant savings, namely in terms of latency.

As future work we would like to use the findings reported here to improve adaptation policies for

several concrete applications that can benefit from dynamic reconfiguration, such as geo-replicated dis-

tributed ledgers. Another interesting direction in future work is to combine different switching algorithms

in order to switch between protocols with distinct levels of support for adaptation.

References

Aublin, P., R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić (2015, January). The next 700 BFT

protocols. ACM Transactions on Computer Systems (TOCS) 32(4), 12:1–12:45.

Bessani, A., J. Sousa, and E. Alchieri (2014, June). State machine replication for the masses with

bft-smart. In Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), Atlanta, GA, USA, pp. 355–362. IEEE.

Bortnikov, V., G. Chockler, D. Perelman, A. Roytman, S. Shachor, and I. Shnayderman (2015, Decem-

ber). Reconfigurable State Machine Replication from Non-Reconfigurable Building Blocks. ArXiv

e-prints.

Bracha, G. and S. Toueg (1983, August). Resilient consensus protocols. In Proceedings of the Sec-

ond Annual ACM Symposium on Principles of Distributed Computing (PODC), Montreal, Quebec,

Canada, pp. 12–26. ACM.

Bravo, M., L. Rodrigues, and P. Van Roy (2017). Saturn: A distributed metadata service for causal con-

sistency. In Proceedings of the Twelfth European Conference on Computer Systems (EuroSys),

Belgrade, Serbia, pp. 111–126. ACM.

Carvalho, C., D. Porto, L. Rodrigues, and A. Bessani (2017, October). Adaptação dinâmica de proto-

colos de consenso bizantino. In Actas do nono Simpósio de Informática (Inforum), Aveiro, Portugal.

Castro, M., B. Liskov, et al. (1999, February). Practical byzantine fault tolerance. In Proceedings of

the Third Symposium on Operating Systems Design and Implementation (OSDI), pp. 173–186.

Chen, W., M. A. Hiltunen, and R. Schlichting (2001, April). Constructing adaptive software in dis-

tributed systems. In Proceedings of the 21st International Conference on Distributed Computing

Systems (ICDCS), pp. 635–643. IEEE.

Clement, A., M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche (2009, October). Upright

cluster services. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems

Principles (SOSP), pp. 277–290. ACM.

Clement, A., E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti (2009, April). Making byzantine fault

tolerant systems tolerate byzantine faults. In Proceedings of the 6th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI), Boston, MA, USA, pp. 153–168. USENIX

Association.

Copeland, C. and H. Zhong (2014). Tangaroa: a byzantine fault tolerant raft. Technical report, Secure

Computer Systems Group, Stanford University.

55

Couceiro, M., P. Ruivo, P. Romano, and L. Rodrigues (2015, November). Chasing the optimum in

replicated in-memory transactional platforms via protocol adaptation. IEEE Transactions in Parallel

and Distributed Systems 26(11), 2942–2955.

Diffie, W. and M. Hellman (1976, November). New directions in cryptography. IEEE transactions on

Information Theory 22(6), 644–654.

Fischer, M., N. A. Lynch, and M. Paterson (1985, April). Impossibility of distributed consensus with

one faulty process. Journal of the ACM (JACM) 32(2), 374–382.

Guerraoui, R. and L. Rodrigues (2006). Introduction to Reliable Distributed Programming. Secaucus,

NJ, USA: Springer-Verlag New York, Inc.

Kotla, R., L. Alvisi, M. Dahlin, A. Clement, and E. Wong (2007, October). Zyzzyva: speculative byzan-

tine fault tolerance. In Proceedings of Twenty-first ACM SIGOPS Symposium on Operating Sys-

tems Principles (SOSP), pp. 45–58. ACM.

Lamport, L. et al. (2001, December). Paxos made simple. ACM Sigact News 32(4), 18–25.

Lamport, L., D. Malkhi, and L. Zhou (2008). Stoppable paxos. Technical report, Microsoft Research.

Lamport, L., D. Malkhi, and L. Zhou (2010, March). Reconfiguring a state machine. ACM SIGACT

News 41(1), 63–73.

Lamport, L., R. Shostak, and M. Pease (1982, July). The byzantine generals problem. ACM Transac-

tions on Programming Languages and Systems (TOPLAS) 4(3), 382–401.

Lorünser, T., A. Happe, and D. Slamanig (2014). Archistar - a framework for secure distributed storage.

http://ARCHISTAR.at. GNU General Public License.

Martin, J. and L. Alvisi (2006, July). Fast byzantine consensus. IEEE Trans. Dependable Secur. Com-

put. 3(3), 202–215.

Mocito, J. and L. Rodrigues (2006, August). Run-time switching between total order algorithms. In

Proceedings of the Euro-Par 2006, LNCS, Dresden, Germany, pp. 582–591. Springer-Verlag.

Ongaro, D. and J. Ousterhout (2014, June). In search of an understandable consensus algorithm. In

Proceedings of USENIX Annual Technical Conference (USENIX ATC), Philadelphia, PA, USA, pp.

305–319. USENIX Association.

Rosa, L., L. Rodrigues, and A. Lopes (2007, October). A framework to support multiple reconfiguration

strategies. In Proceedings of the Autonomics (AUTONOMICS), Rome, Italy, pp. 15.

Sabino, F. (2016, September). Bytam: a byzantine fault tolerant adaptation manager. Master’s thesis,

Instituto Superior Técnico, Universidade de Lisboa.

Sabino, F., D. Porto, and L. Rodrigues (2016, September). Bytam: um gestor de adaptação tolerante

a falhas bizantinas. In Actas do oitavo Simpósio de Informática (Inforum), Lisboa, Portugal.

Schneider, F. (1990, December). Implementing fault-tolerant services using the state machine ap-

proach: A tutorial. ACM Computing Surveys (CSUR) 22(4), 299–319.

56

Singh, A., T. Das, P. Maniatis, P. Druschel, and T. Roscoe (2008). Bft protocols under fire. In Proceed-

ings of the 5th USENIX Symposium on Networked Systems Design and Implementation (NSDI),

Volume 8, pp. 189–204. USENIX Association.

Sousa, J. and A. Bessani (2012, May). From byzantine consensus to bft state machine replication:

A latency-optimal transformation. In Proceedings of Ninth European Dependable Computing Con-

ference (EDCC), pp. 37–48. IEEE.

57

