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Abstract

Although many algorithms and implementations of replicated services have been de-
veloped, most have embedded aspects of the replication management in the invocation
protocol. This makes it extremely di�cult to modify the replication protocol without
changing the protocol used by the clients, and causes an undesirable violation of both
transparency and modularity. Our protocol supports the fault-tolerant remote invoca-
tion of replicated services, providing not only the usual location transparency but also
transparency of replication semantics. It is designed as a collection of modular services
which can be con�gured according to the needs of the application.

Our approach is independent of the details of the replica control protocol used to
maintain the consistency of server replicas. We use a lightweight remote invocation
protocol in order to minimize the impact on the client of issues such as scale and repli-
cation consistency maintenance. Distributed retry detection can be optionally invoked
on a per-message basis with three di�erent levels of reliability; even in this case, our
communication extensions allow the client to remain decoupled from the stronger com-
munication requirements of the inter-replica protocols at the server. Furthermore, un-
like most previous systems we provide explicit support for weakly consistent replication
protocols.
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Chapter 1

Introduction

The goal of providing e�ective programming support for distributed applications has
been a research issue for more than two decades. Although often limited in earlier
systems, support for fault-tolerance and replication has been subject to a growing in-
terest in the last few years. Several approaches have been proposed, including many
in the area of remote invocation [7,9,8]. However, most existing systems provide sup-
port for at most a limited set of pre-de�ned replication strategies. Approaches like
problem-oriented shared memory [6,16,11] which allow di�erent replication strategies to
be applied to di�erent objects are a key factor for e�ciency in distributed platforms.

The choice of a replication algorithm for a particular replicated service can be based
on many constraints, most of which depend on some combination of the service se-
mantics and environment. The inevitable evolution of system components or service
requirements is thus likely to a�ect the choice of replication algorithm, and makes the
availability of a wide range of protocol options particularly advantageous.

Unfortunately, in most systems a replicated service can be accessed remotely only via
protocols tailored to its speci�c replication protocol, causing an undesirable violation of
both transparency and modularity; many even implicitly consider clients to be members
of the replicas' communication group. This makes it extremely di�cult to re-implement
the service using a di�erent replication technique without changing the protocol used by
the clients. In addition, the synchronization costs associated with such tightly coupled
systems make it virtually impossible to adequately address issues inherent to large
scale. Thus, embedding knowledge of the protocol in all service clients is in most cases
an unnecessary and undesirable violation of transparency, modularity, and exibility.

In order to maintain the transparency of an object replication scheme, we propose a
fault-tolerant Generic Remote Invocation Protocol (GRIP) which is independent of the
service replication protocol and which places no constraints on the replica consistency
model. Clients use a lightweight remote access protocol which allows them to remain
independent of the details of the replication protocol and of the resulting inter-replica
synchronization. The implementation of the replication management protocol itself
remains almost completely una�ected: service replicas communicate among themselves
using their private replication protocol, and only limited modi�cations are required in
order to take advantage of the GRIP functionality. Distributed retry detection can
be optionally invoked on a per-message basis with three di�erent levels of reliability;
even in this case, our communication extensions allow the client to remain decoupled
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from the stronger communication requirements of the inter-replica protocols at the
server. Additionally, our design provides explicit support for the implementation of
weakly consistent replication schemes. GRIP is thus designed as a collection of modular
services which can be con�gured according to the needs of the application.

The paper is organized as follows: the design goals and the global GRIP system
model are described in Chapter 2. Chapter 3 describes the underlying communication
service and our extensions for e�ciency and to support weak replication. Chapters 4
and 5 describe the interface and protocols of the main service modules, and Chapter 6
illustrates how GRIP can be con�gured and used to support di�erent replication pro-
tocols and discusses some of the implications of your approach. Chapter 7 relates our
model to existing work, and concluding remarks appear in Chapter 8.
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Chapter 2

The GRIP Model

The following sections introduce the GRIP model. We �rst present our basic system
model and assumptions, then provide a brief design overview.

2.1 System Model and Assumptions

We base our protocols on a model of distributed programming with active entities
(processes) which communicate exclusively via message passing. Processes execute on
(possibly heterogeneous) nodes which are in turn connected by a network. Our model of
interaction is one of client-server (see Figure 2.1), where some processes (servers) provide
services to other processes (clients). A client interacts with a server using a remote
invocation protocol, implemented by a pair of client and server communication stubs.
The client stub hides distribution and possibly replication from the client application
by acting as a local representative of the remote service, marshaling the request in a
message and forwarding it to the server stub(s). When a reply is expected, the client
stub waits for a reply from the server stub(s), unmarshals it, and returns the results to
the client.

ProcessesReplicated Services Clients Client Stub

Server Stub

Inter-Replica Channel

Figure 2.1: GRIP Communication Model

As this implies, servers can be replicated. In order to maintain an internally consis-
tent state, replicas communicate over a logically independent channel according to the
semantics of their replica control protocol. This communication is orthogonal to that
presented in our protocol descriptions. However, in order to preserve global consistency
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guarantees, the sharing of a common communication substrate is assumed.

Processes, nodes, and network are all subject to failures, but we assume a com-
munication system which can guarantee reliable delivery and duplicate detection over
point-to-point links in the absence of failures. We assume processes and nodes are
fail-silent. We do not consider arbitrary failures.

We also assume the existence of a group communication substrate capable of pro-
viding a number of services including virtual synchrony and causal reliable communi-
cation [3]1. Such services may involve extra bookkeeping overhead and possible de-
livery delays. However, in cases where the functionality is required it is simpler and
more e�cient to have them implemented by the communication system rather than re-
implemented by each application. We thus include them in our communication layer,
but invoke them only on demand. Chapter 3 describes the communication service in
more detail.

2.2 Design Overview

Our goal was to design a protocol to be run between a client and an arbitrary server
replica with support for the following set of properties.

� fault-tolerance: the client should be able to access the server as long as at least
one replica is accessible.

� at most once semantics: even in the presence of faults, an operation should
be performed at most once on the server. This property is optional on a per-
invocation basis.

� independence from the replication mechanism: the protocol guarantees do
not depend on the internal replica consistency protocol.

� low overhead: for a particular combination of replication and correctness se-
mantics, the protocol should exhibit little or no overhead as compared to dedicated
solutions; in particular, the client is decoupled from inter-replica synchronization.

In order to achieve these goals, our design splits the protocol functionality into
several modular services, represented as logical layers, some of which are optional (see
Figure 2.2). The lowest layer is the communication service. We extend the basic com-
munication model with two optional services which we call respectively transparent
messages and unpropagated messages; these services provide support for e�cient large-
scale operation and weakly consistent replication schemes. We postpone the discussion
of these services to Chapter 3.

Clients contact replicated services by using a lightweight Remote Access Protocol
(RAP) to contact an individual replica. The corresponding RAP server entity relays the
request to its local replica, where it is handled according to the semantics of the chosen

1Although group communication is not strictly necessary, its use simpli�es both the implementation
and the presentation of our protocols.
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Extended Causal Communication

RAP RAP
PRIDERAP

PRIDE

RAP

RAP

Virtual Synchrony

Client

Server 1 replicas Server 2 replicas

Processes

Figure 2.2: Interface Layer

replication protocol; replies are relayed back to the client in a similar manner. The RAP
layer thus contains the core functionality required to support the generic remote invo-
cation protocol; the details are described in more detail in Chapter 4. . Complete and
up-to-date information about the membership of the replicated service is not required,
thus avoiding expensive synchronization among servers and potential clients. Because
it is designed to be light-weight, distributed at-most-once semantics are not explicitly
guaranteed by RAP. If desired, they can be implemented for a particular service with
the help of the optional Protocol for Repeated Invocation DEtection (PRIDE) layer, as
described in Chapter 5.

Although our protocols assume the availability of (logical) reliable multicast and
causal communication among service replicas, our approach explicitly does not require
their use by service clients. This allows servers and clients to operate with low synchro-
nization costs. If required by the application semantics, stronger synchronization can
be established among the relevant layers of the service replicas. This duality is reected
in the structure of the GRIP design.
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Chapter 3

Communication Service

In this chapter we describe the communication system underlying the GRIP protocol.
It is composed of a base system including causal and group communication facilities
extended by additional services. This extended subsystem introduces two novel qualities
of service that improve the overall e�ciency of the system: transparent causal messages
and unpropagated messages.

3.1 On causal communication

In a distributed system, consisting of a collection of processes that communicate by
exchanging messages, the order in which messages are delivered to processes is of major
relevance to the application design. It can be argued that there are cases where the
programmer can use application-speci�c mechanisms to preserve causal relations. In
order to increase the modularity of the application, in GRIP we favor the alternative
approach of de�ning an interface to a causal communication substrate. Since causal
communication platforms are now widely available (a number of systems providing such
services have been developed in recent years, such as ISIS [3], PSYNC/CONSUL [12],
xAMp [15], Transis [2] and Totem [1]), this clear separation allows the programmer
to use o�-the-shelf software components and increases the portability and speed of
prototyping of the resulting systems. Additionally, there is evidence that when causal
delivery properties are necessary, ad-hoc solutions to the problem are usually complex
and hard to prove correct [4]. Finally, since the optimal solution for the problem of
reliable communication is highly dependent on the communications technology (speed,
delays, error rate, etc.), having these services as a detachable module greatly simpli�es
software maintainability.

Despite its advantages, the use of causal communication has been somewhat limited
by the overhead incurred by existing implementations. We can cite some disadvantages
of existing causal communication services [5]: (i) little user control over message pig-
gybacking policies; (ii) mandatory use of reliable communication to avoid blocking of
message delivery. Thus, it is of major relevance to provide in such infrastructures a
better match between the service provided and the application needs. The two new
qualities of service that we will describe in this section, namely transparent causal mes-
sages and unpropagated messages, are intended to increase user control over automatic
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mechanisms that track and preserve causal relations.

3.2 Basic Service Properties

This section describes the properties we assume are provided by our basic communi-
cation service. We note that the basic communication service itself is a building block
rather than a part of our design: we provide the associated description for complete-
ness. We begin by assuming that processes are connected by a multicast communication
network; whether multicast is physically or only logically supported is irrelevant at this
level of abstraction. We assume the existence of two types of multicast channels: reli-
able FIFO channels and cheaper unreliable channels. We also assume that, on top of
these services the communication layer preserves global causal delivery order (based on
the logical precedence relation originally de�ned by Lamport [10]):

Logical precedence: A message m1 is said to precede or to be potentially causally
related to a message m2, represented as m1 ! m2, only if: (i) m1 and m2 were
sent by the same process and m2 was sent after m1, or (ii) m1 had been delivered
to the emitter of m2 before m2 was sent, or (iii) m3 exists such that m1 ! m3 and
m3 ! m2.

Additionally, we assume that group communication and membership services are
optionally available. The membership service is responsible for giving each process in
a group information, also called views, about the operational processes in the system.
We assume that views are linearly ordered, i.e., that in case of network partitions, only a
majority partition remains active and continues to receive views. Group communication
follows the virtually-synchronous model as de�ned in [19]:

vs-multicast: Consider a group g, a view vi(g), and a messageM multicast to a subset
D of members of group g. The multicast M is vs-multicast in view vi(g) i�: if
9p 2 D � vi(g) which has deliveredM in view vi(g) and has installed view vi+1(g),
then all processes q 2 D � vi(g) which have installed vi+1(g) have delivered M

before installing vi+1(g).

Using a sequencing mechanism, a total order protocol can be easily implemented on
top of vs-multicast, yielding a vs-atomic service:

vs-atomic: Let M1 and M2 be two vs-multicasts addressed to D and delivered in view
vi(g) (with D � vi(g)). We say that M1 and M2 are vs-atomic if 9p2D�vi+1(g) :
delivp(M1) < delivp(M2)) 8q2D�vi+1(g) : delivq(M1) < delivq(M2).

Finally, we assume the existence of a stronger quality of service that does not delivers
a message until there is a guarantee that the message will be delivered to all correct
processes. This service is called uniform [18] multicast and can be de�ned as follows:

vs-uniform: Consider a group g, a view vi(g), and a message M multicast to a subset
D of members of group g. The multicast M is vs-multicast in view vi(g) i�: if
9p 2 D � vi(g) which has delivered M in view vi(g), then all processes q 2 D �

vi(g) which have installed vi+1(g) have delivered M before installing vi+1(g).
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Note that this de�nition is similar to that of vs-multicast except that it enforces the
delivery of M to all processes that install a new view as long as some process delivers
M , even if that process does not install the new view.

3.3 Communication Extensions

To avoid the costs inherent in the use of causal communication in large-scale systems,
we use a novel scheme which permits batching of unpropagated messages and which
also distinguishes two categories of messages: (normal) opaque causal messages and
transparent causal messages.

3.3.1 Unpropagated messages

Many systems take advantage of particular application semantics to improve perfor-
mance by selectively weakening the consistency constraints on replicated data. This
generally results in non-identical replicas, which although it may not violate the replica-
tion semantics nevertheless means that two consecutive invocations to di�erent replicas
can produce possibly inconsistent results1. In order to provide a client view consis-
tent with causality without sacri�cing the performance bene�ts of weak replication, we
extend our basic communication service to include the management of unpropagated
messages (UMs).

An unpropagated message is a message that is logically sent but not physically
propagated into the network. When the transmission of a UM is requested a dependency
is created at the communication system level as for any normal (opaque) message, but
rather than being transmitted the corresponding update is cached at the application
level for future transmission. However, whenever an opaque message is prevented from
being delivered because of a dependency on one or more UMs, the communication
system automatically detects this and requests the originator of the UM to ush its
cache to the network in order to guarantee progress.

Our protocols use piggybacking of messages as an optimization to reduce the num-
ber of messages physically exchanged. The unpropagated messages technique gives the
application control of the piggybacking policy without the responsibility for the book-
keeping of the associated precedence information. In particular, techniques for reducing
the amount of information required to enforce causality are the exclusive responsibility
of the communication layer. We will show that our approach is extremely useful for
avoiding violations of causality in the implementation of weakly consistent replicated
services.

3.3.2 Transparent messages

One of the criticisms made of causal multicast communication systems [5] concerns the
mandatory reliability requirement. Once a message introduces a causal dependency,

1There is usually an implicit assumption that any particular client always accesses the same replica,
and thus sees an internally consistent view of the state.
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that message must be reliably delivered; otherwise, successive messages will be prevented
from being delivered. In some cases the delivery of a causal message is delayed until
there is a guarantee that the message will be successfully delivered at all destinations;
the sender may even be prevented from sending new messages until this guarantee is
obtained.

To avoid this problem, we propose a scheme that distinguishes two types of messages:
(normal) opaque causal messages and transparent causal messages. Transparent causal
messages are messages that are delivered in causal order with respect to (normal) opaque
messages but that do not themselves introduce causal dependencies. Thus:

� no message is ever delayed by a transparent message;

� no reliability constraints are imposed on the transmission of transparent messages.

The delivery order for transparent messages with regard to opaque messages is
summarized in the following table (where opaque messages are represented in upper-
case, transparent messages in lower-case, and right-arrows, !, represent the logical
precedence relation as de�ned in Section 3.2).

relation delivery order relation delivery order
M1 !M2 M2 after M1 m1 !M2 unde�ned
M1 !m2 m2 after M1 m1 ! m2 unde�ned

The implementation of transparent messages is fairly simple and any causal commu-
nication protocol can be adapted to provide this service at almost no cost. We present
a possible implementation in Section 3.5.

3.4 Communication subsystem interface

Table 3.1 presents the interface of our communication extensions for managing un-
propagated and transparent messages. We use the type �eld in our interface tables to
di�erentiate between upcalls (represented in the table with up), and default procedure
calls (represented with down). We use this notation in interface tables throughout the
document.

� c transp takes a destination list and a message as arguments, and sends the
message using an inexpensive unreliable mode. A transparent message depends on
all previous opaque or UMmessages, but nomessage ever depends on a transparent
message.

Note: If there are UMs pending from the initiating process to any of the destina-
tion processes of a transparent message, a c sync call will inevitably be triggered
(since the transparent message depends on the pending UMs). For e�ciency rea-
sons, this call is logically activated before the transparent message is sent, and the
actual transmission of the transparent message is delayed until the synchronization
data is sent.
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Name Type Parameters

Communication

c transp down PidList dest, Mesg m
c vsmulticast down Group g, PidList dest, Mesg m
c vsatomic down Group g, PidList dest, Mesg m
c vsuniform down Group g, PidList dest, Mesg m
c um down PidList dest, Mesg m
c receive up Pid src, Mesg m, Serv qos, PidList sync, PidList miss
c sync up PidList need

Membership

g join down Group g
g leave down Group g
g view up Group g, PidList view

Table 3.1: Communication Service Interface

� c vsmulticast/c vsatomic/c vsuniform take a destination list and a message as
arguments, and send the message according to the semantics of the communication
service guarantees. The message is assumed to logically contain all previous UMs
\sent" to any of the destination processes from the initiating process.

� c um logically sends a unpropagated message. Since no real data is actually sent
to the network only the destination addresses need to be speci�ed in order for the
communication layer to enforce causality.

� c receive is an upcall invoked by the communication layer during the processing
of an incoming message. If all preceding messages have been successfully delivered
it invokes the receive routine provided by the next higher layer with the message
and the identi�er of the message source. If it had to contact any sites to request
data corresponding to UMs in the message's causal history, it provides the list in
sync; if any of these sites have failed, the corresponding process ids are provided
in miss.

� c sync is an upcall invoked by the communication system in order to request that
an application process ush its cache of unpropagated messages. The list of pro-
cesses which need the data (need) is provided, and a opaque message (logically
containing the results of all relevant unsent messages) should be sent by the appli-
cation to these destinations. This call is provided only as an optimization; failure
to initiate a message as requested does not compromise correctness, since the next
opaque message sent will implicitly include all previous unpropagated messages.

� c join allows a process to become a member of a group;

� c leave removes a process from a group;

� c view informs a group member of changes in the membership.

Many protocols exist to enforce causal delivery. Some well-known examples of sys-
tems that provide such guarantees for both point-to-point and multicast communication
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are enumerated in Section 3.1; any of these can be extended to take into account the
management of unpropagated and transparent messages. In the following section, we
illustrate our scheme by sketching one possible implementation of such an extension.

3.5 An implementation

In this section, we choose a simple scheme for enforcing causal delivery [14] in order
to illustrate how transparent and unpropagated messages can be easily implemented as
extension to an existing algorithm. We note that several optimizations are possible, but
we present a simpli�ed case for reasons of clarity.

For the description of the algorithm, we make use of the multicast channels provided
by the underlying network. We denote by net mul unreliable the unreliable multicast
channels and by net mul fifo the reliable FIFO channels.

In the original protocol, each process maintains state information which describes
its view of the global system state: a vector representing messages delivered, and a
matrix representing messages sent. We extend the original protocol by adding extra
state information for unpropagated messages. This information is represented by three
variables, where the combination of V SENT and RSENT correspond to the single
SENT matrix in the original protocol, and n is equal to the number of cooperating
processes:

DELIV: array [1..n] of integer;
VSENT: array [1..n, 1..n] of integer;
RSENT: array [1..n, 1..n] of integer;

At initialization all elements are set to zero. The notationDELIVi[j], V SENTi[j; k],
and RSENTi[j; k] indicates the variables local to process i, with j and k as indices of the
arrays. V SENT and RSENT are matrices where for each process i a row j represents
process i's view of messages sent (but not necessarily delivered) by j to each other pro-
cess k; RSENT corresponds to normal (opaque) messages, and V SENT corresponds
to the total number of messages logically sent, both opaque and unpropagated (UMs).
DELIV is an array where each element j corresponds to the number of messages from
process j which have been delivered at process i. We distinguish between reception of a
message, when the communication system receives it, and delivery of a message, when
the local state is updated and it is delivered to the application.

The system state is updated on each process when a opaque message is sent, when
an unpropagated message is virtually sent, when a (opaque) message is received, and
when a received message is delivered to the application.

Sending an Opaque Message: When a message M is sent from process i to a set of
processes J (see Figure 3.1), each (opaque) message sent is timestamped with the
current values of RSENTi and V SENTi; after the message has been sent, 8j2J
both RSENTi[i; j] and V SENTi[i; j] are set to the old value of V SENTi[i; j]
incremented by one. Thus, after a send, the opaque and unpropagated message
counters are always resynchronized.
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//Sending (from process i to processes J )
opaque:

net mul fifo (M , V SENTi, RSENTi) to J
8j2J :

set V SENTi[i; j]; RSENTi[i; j] := V SENTi[i; j]+ 1
unpropagated (UM):
8j2J :

set V SENTi[i; j] := V SENTi[i; j] + 1
transparent:
optimization:

if 9j2J V SENTi[i; j] > RSENTi[i; j] then
call c sync (J ) and wait for synchronization message to be sent

net mul unreliable (M , V SENTi, RSENTi) to J

Figure 3.1: Message Sending Protocol

Sending an Unpropagated Message: When a unpropagated message (UM) is sent
from process i to a set of processes J (see Figure 3.1), no data is actually trans-
mitted, and 8j2J only the the V SENTi[i; j] matrix �elds are incremented; the
values in the RSENTi matrix are left unchanged, since they correspond to the
values at the time the last opaque message was sent.

Sending a Transparent Message: When a messageM is sent from process i to a set
of processesJ (see Figure 3.1), each transparent message sent is timestamped with
the current values of RSENTi and V SENTi. These vectors are left unchanged. If
there are local UMs pending to J , for e�ciency reasons the message is promoted to
opaque so that the UMs can be piggybacked and only a single message is required.
In this case the message is sent using the opaque send procedure described above.

Since transparent messages do not generate dependencies, they do not consume
space in the causal history. This observation also applies to this implementation
if compression techniques are applied to the timestamps. For instance in [3] it is
shown that a message only needs to be timestamped with the �elds of the vector
matrix that have changed since the last multicast. Consider for instance the case
of a pure client in our GRIP protocol. Since the client exlusively uses transparent
messages to contact the replicated service, its row of the matrix never changes
and can thus be omitted in all message exchanges.

Receiving a Message: When a messageM (along with the corresponding V SENTM

and RSENTM matrices) is received from process i at proccess j (see Figure 3.2),
the communication system must verify that all messages that causally precede the
received message are delivered before it can deliver M . In the original protocol,
it is su�cient to wait until each element of DELIVj is greater than or equal to
the corresponding element of V SENTM [i], the row corresponding to the sending
process.

For our extended case, it is possible that the values in V SENTM [i] have been
incremented by the sending of UMs. In order to prevent blocking for such un-
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//Receiving ( at process j from process i)
delay delivery of M until:
8k 6=iDELIVj[k] � V SENTM[k; j]^DELIVj[i] = RSENTM[i; j]

optimization:
8ks:t:RSENTM[k; j] < V SENTM [k; j]
request initiation of c sync at process k

Figure 3.2: Message receive Protocol

propagated messages, we keep in RSENTM the values corresponding to the last
opaque message sent. As in the original protocol, the communication system must
wait until any messages on which the current message is causally dependent have
been delivered locally (8k 6=iDELIVj [k] � V SENTM [k; j]); when k = i only the
last real message must have been received (DELIVj[i] = RSENTM [i; j]), since
any subsequent UMs will automatically be included with the current message.

However, since when k 6= i some of the counter values can represent UMs, in
some cases the relevant messages have not necessarily been physically sent. To
minimize the waiting time, the process therefore checks whether RSENTM [k; j] <
V SENTM [k; j] for any k. The communication system may then optionally choose
to initiate the invocation of the c sync upcall on process k (shown at the end of
Figure 3.2) in order to explicitly request the propagation of the missing messages;
or, it can simply wait for the next opaque message from process k. In either
case, in the absence of failures it is necessary to wait for the delivery of a message
logically containing these updates to be delivered before delivering M .

//Delivering ( at process j from process i)
set DELIVj[i]; VSENTj[i; j]; RSENTj[i; j] := V SENTM[i; j] + 1
8k;l s.t. k 6= i^ l 6= j
V SENTj[k; l] := max(V SENTj[k; l]; VSENTM[k; l])
RSENTj[k; l] := max(RSENTj[k; l]; RSENTM[k; l])

Figure 3.3: Message Delivery Protocol

Delivering a Message: We next consider the delivery at process j of an (opaque)
message (M , V SENTM , RSENTM) sent from process i. Once the delivery cri-
teria have been met, the communication system must update its local state (see
Figure 3.3) and then deliver the message to the application.

First, updates corresponding speci�cally to the delivery of the message are per-
formed. The ith element of theDELIVj array is set to the value of V SENTM [i; j]+
1, which corresponds to the total number of messages known to have been sent
to the receiver by the sender, incremented by one for the current message. In the
original protocol this update always corresponded to a simple increment, since
only opaque messages were sent. With the introduction of UMs, it is possible for
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many unpropagated messages to be logically delivered in one physical message.
Since delivery is constrained to respect causality, at the time of delivery we can be
sure that all messages, opaque and unpropagated, known to have been sent by the
sender prior to the current message must have already been received and delivered;
thus, it is necessary to update the delivery record accordingly. V SENTj[i; j] and
RSENTj[i; j] are also set to the same value, since sending a opaque message from
process i implicitly includes all previous UMs sent by i. All other �elds of the
V SENT and RSENT matrices are set to the maximum of the local value and
that in the message timestamp.

The information provided by the management of UMs can also allow optimizations
in other layers of the system. For example, the RAP server tries to minimize synchro-
nization by inspection of the c sync indications. Since every receive upcall provides
an indication of the nodes that had to ush their caches of unpropagated messages,
when the RAP server detects that the delivery of a request required a cache ush it can
redirect the client to the relevant replica via the switch parameter2.

We also note that although we assume that the communication service can guaran-
tee the absence of holes in the causal history for normal messages3, we could make a
weaker claim with respect to UMs. Since the application can introduce relaxed consis-
tency semantics, we could also relay the blocking decision: when a strict interpretation
of causality would require processing to block because of the inaccessibility of a site
from which updates are required, we could refer �nal failure detection decisions to the
application. However, this would be allowed only for the case of missing UM data; the
absence of normal messages would still prevent delivery of any pending message(s).

3.6 Optional services: GUM

The un-propagated message mechanism o�ered by the communication system allows
the application to select the caching and piggy-backing policies for updates generated
during processing. In most cases, the application will take explicit control over these
mechanisms, using semantic knowledge to optimize the size and number of the messages
exchanged. For instance, a replication service can easily implement a lazy propagation
scheme by marking an un-propagatedmessage for each update and later sending a snap-
shot of the replica state containing all previous unpropagated updates (more examples
will be given in section 6). However, a number of pre-de�ned message caching mech-
anisms can be o�ered as library functions, simplifying the application design. In this
section we give a simple example of one such mechanism, called Grouped Unpropagated
Messages (GUM).

GUM exports three primitives to manage un-propagated messages, as illustrated in
Table 3.2: the upcall gum rec is used to deliver a message to the user; gum isend

(immediate send), sends a opaque message to the network, automatically piggy-backing

2However, any decision made by RAP can always be overruled by an explicit switch request from the
local replica.

3Known solutions, e.g. k-resiliency [3], can provide this modulo an associated cost even in the case of
failures.
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Name Type Parameters Returns
gum rec up Pid src, Mesg m none

gum isend down PidList dest, Mesg m none

gum gsend down PidList dest, Mesg m none

gum ush down PidList dest none

Table 3.2: GUM Service Interface

all previous unpropagated messages with an intersecting destination set; gum gsend

(grouped send), registers the message as an unpropagated message and stores it to send
later to the speci�ed destination set; and gum ush sends all bu�ered unpropagated
messages in a opaque message to the speci�ed destination set. GUM is also in charge of
intercepting c sync requests from the network and automatically sending all requested
unpropagated messages.

A naive implementation of GUM is presented in �gure 3.4. Our purpose is to
illustrate the functionality and not to optimize the protocol. Messages exchanged among
GUM entities logically contain a collection of user messages in the order they were
generated. When sending a opaque message to a destination list dest, GUM piggybacks
all unpropagated messages whose destination list intersects dest, adds a gum identi�er,
and sends the collection. The receiving entity detects the gum identi�er, and if necessary
splits the GUM messages into the complete set of user messages, delivering all messages
addressed to the local entity in order of transmission.

3.7 Discussion

The communication extensions discussed in this chapter provide a mechanism for the
controlled relaxation of causal and tightly synchronized communication. In particular,
this approach acknowledges the di�erence between client and server and provides a
much needed means of decoupling their reliability requirements. These new qualities
of service thus provide the basis for most of the remainder of our system modules, and
permit a great deal of exibility and which is not often available in more typical tightly
integrated systems.
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Initialization:
define type vmsg = (Msg,PidList);
define function gumPiggyback ( PidList dest ) returns vmsgList, PidList

vmsgList col := nil;
PidList add := nil;
8 elem in cache

if ( (elem.dest \ dest) 6= ; ) then do

append (elem, col);
add : = add [ elem.dest;
elem.dest := elem.dest - dest;
if elem.dest = ; then delete (elem, cache); od;

return (col, add);
declare vmsgList cache := nil;

Body:
when gum gsend ( PidList dest, Msg m ) invoked do

append ( (dest, m), cache );
c send um ( dest ); od

when gum isend ( PidList dest, Msg m ) invoked do

(col, add) := gumPiggyback ( dest );
append ((m,dest), col);
c send opaque ( col, add ); od

when gum ush ( PidList dest ) or c sync ( PidList dest ) invoked do

(col, add) := gumPiggyback ( dest );
c send opaque ( col, add ); od

when c rec ( Pid src, Msg m, ... ) invoked do

if (gum message) then
call gum rec for all grouped messages addressed to this process

else

call gum rec directly with entire message

Figure 3.4: GUM Pseudo-Code
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Chapter 4

Lightweight Remote Access

In our approach, clients of a (possibly) replicated service use a lightweight Remote
Access Protocol (RAP) to contact an individual replica. The main characteristic of
RAP is that it does not enforce the use of expensive communication primitives or tight
synchronization between the client and the service replicas. In fact, complete and up-
to-date information about the membership of the replicated service is not required
and unreliable transparent messages are used. However, RAP guarantees that a client
contacts a correct replica if at least one such replica is reacheable and provides the
mechanisms to redirect the service contact when another more suitable replica exists.
The services of RAP may be extended by the optional PRIDE layer, which is run only
on the servers, as described in Chapter 5.

The RAP protocol distinguishes three types of messages, requests, replies and end
markers. Requests are uniquely identi�ed by the the client id plus a uniqui�er; replies
include the corresponding request identi�er and a switch parameter whose purpose will
be described in the following text. An end marker is used by a client to indicate the
termination of an ongoing interaction with a server1.

Name Type Parameters Returns

r invoke down Mesg request [, ReqId id] Status s, Mesg reply

r req up ReqId id, Mesg req, Bool undef, PidList contacts none

r reply down ReqId id, Mesg reply [, Pid switch] none

Table 4.1: RAP Interface

The primitives o�ered by RAP are summarized in Table 4.1:

� r invoke sends a request to the replicated service. The optional message identi�er
allows application clients to explicitly de�ne the semantics of a retry. A status
report is returned, along with the reply if the request was successful.

� r req is an upcall which forwards a request to the local replica along with a
(possibly null) list of any previously contacted processes.

1The end marker is automatically generated by the client stub and its use is not mandatory for
correctness; however, it can be used by the server to compress bookkeeping information.
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� r reply is invoked by a replica to forward a reply to the client. An optional
switch parameter allows the replica to indicate an alternate replica as the new
rep contact for this client.

A pseudo-code description of the protocol can be found in Figure 4.1. We assume
that a given client makes one request at a time (parallel threads are modeled by di�erent
clients). In normal operation RAP maintains a list of contacted replicas for each invoca-
tion which provides hints to the server about the retry status of the request. However,
the application may disable this functionality and take responsibility for de�ning its
own retry semantics by providing the optional id parameter2; if it chooses this option,
GRIP represents the request state as undef and does not modify the contacts list.

The RAP client initializes its state by obtaining a hint on the service membership;
this hint is provided as a list of replica address identi�ers, and does not need to be fully
up-to-date. The RAP client parses the list in order to choose a rep contact3 with which
it will establish a connectionless point-to-point interaction; once chosen, it moves the
rep contact to the head of the list.

Each application invocation supplies the RAP client with a request message and
an optional message id. If a value is speci�ed for the id parameter, the undef ag is
set to TRUE. Otherwise, an id is supplied by the RAP client and the undef ag is
set to FALSE. The request is then forwarded to the selected replica. The RAP client
waits for the reply during a prede�ned timeout period; since unreliable communication
is used, when a request times out, the request is retransmitted before another replica
is contacted. When a pre-de�ned number of retries is exceeded, the contact is consid-
ered inaccessible. The identi�er of the inaccessible replica is added to a contacts list
(initialized to nil at each invocation) unless the undef ag is set, in which case the
contacts list remains empty. The state of a request can thus be determined from the
values of the undef and contacts parameters (e.g., original requests can be identi�ed
by the combination of a FALSE undef ag and an empty contacts list).

The RAP client continues contacting replicas until either a reply is received or the list
of service members is exhausted. If the list is exhausted and no reply has been received,
either a new hint is obtained and the process recommences, or an error is returned to
the client. With each reply the server includes a hint, the switch parameter, indicating
a suggested contact replica for the client. The client may update its rep contact based
on this information4. This mechanism allows the replication service to control its own
replica allocation and load balancing.

On the server side, RAP waits for requests and uses the r req upcall to forward
them, with their associated status information, to the local replica. The replica reply is
then forwarded back to the RAP client via the r reply routine. The reply includes an
optional switch parameter which can be used as a hint to optimize service response: it

2The application speci�ed msgid parameter provides support for scenarios such as replicated clients
executing in lock-step, where only via an application speci�ed message id can the set of requests be
recognized as logically equivalent.

3Criteria for replica selection are orthogonal to the protocol, but can consider factors such as load
balancing for performance optimizations.

4Although the update is optional and does not a�ect correctness, for simplicity the pseudo-code
assumes the update always occurs.
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Client
Initialization:

PidList hint := getHint ();
Pid r contact := selectContact (hint);
Int gl uid := 0;
Pid src := myself;
Request req := nil;
Bool undef := FALSE;
PidList contacts := nil;
Int retries :=0;

Body:
for each r invoke ( req data, [cl uid] )

if cl uid exists then do

uid := cl uid; undef := TRUE; od
else do

uid := gl uid; gl uid := gl uid + 1; undef := FALSE; contacts := nil; od;
until return do

req:= [ src, uid, rq data, undef, contacts ];
retries := 0;
until ( [src, uid, switch, reply data] received or retries = MAX RETRIES ) do
c transp ( r contact, req );
retries := retries + 1;

od

if [src, uid, switch, reply data] received then do

r contact := switch; return reply data to client; od;
else do

if (undef = FALSE) then append (r contact, contacts);
r contact := nextContact (r contact, hint);
if r contact = nil then get new hint or return with error; od;

od //until return
Termination:

c transp ( r contact, [src, END] );

Server
Body: // (for each request)

when receive (src, uid, data, undef, contacts) do
r req ( uid, data, undef, contacts);
switch := selectSwitch ( ); od; // default is myself

when r reply ( uid, reply, [s switch]) do
if switch speci�ed then switch := s switch;
c transp ( src, [uid, rpl data, switch] ); od;

Figure 4.1: RAP Pseudo-Code
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could be used, for example, as a part of a mechanism for load balancing across server
replicas, or to optimize message tra�c by co-locating requests from di�erent clients that
are accessing the same data.

The RAP protocol is thus extremely light-weight, but nevertheless o�ers support
both for dynamic re-binding via the switch parameter and for client semantic control
via the client-speci�ed msgid parameter. It explicitly does not address the complex issue
of distributed retry management. In the following section we present our Protocol for
Repeated Invocation DEtection, which when layered on top of RAP optionally provides
this functionality.
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Chapter 5

Distributed Retry Detection

PRIDE is a protocol that can be run among a set of server replicas to guarantee at-
most-once semantics for client requests. Note that since point-to-point links are reliable,
for each individual replica local at-most-once properties are guaranteed a priori: PRIDE
extends the at-most-once guarantees to the replica set as a whole. PRIDE's semantic
guarantees are optional on a per-service and a per-invocation basis. Thus, there is
negligible overhead for requests which do not require retry detection. The replication
protocol is assumed to be responsible for any internal propagation of results according
to its own semantics.

Since the protocol tolerates failures, three variants of at-most-once are available: (i)
reliable, which guarantees that the request is executed by at most one correct replica
(although it may have been previously executed by a failed replica); (ii) propagated,
which causes knowledge of the request to be propagated to a designated set of repli-
cas and guarantees that if at least one of these replicas receives the information and
remains correct the request will not be re-executed by any other replica; (iii) and uni-
form, which guarantees that the request is executed by at most one replica even if that
replica fails. Providing these di�erent qualities of service allows the application to make
performance/functionality tradeo�s based on its operation semantics. An advantage of
PRIDE is that the selection of the appropriate detection semantics can be made (or
upgraded) on an operation by operation basis, independently of the internal replication
protocol, and at any point during the computation until the reply is sent to the client.
This provides extra exibility to the implementor of the replication scheme.

p status oneof (original, executing, unknown, blocked)
Types p act oneof (ignore, register, disamb)

p repmode oneof (send, reg, reg send)

Name Type Parameters Returns
p request up ReqId msgid, Msg rq, p status stat p act act

Functions p reply down ReqId msgid, Msg reply, p repmode action[, Pid switch] none
p propagated down ReqIdList msgids, Msg msg, PidList dest, Bool delegate none
p uniform down ReqIdList msgids, Msg msg, Bool delegate none

Table 5.1: PRIDE Interface
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5.1 PRIDE Interface

In the following paragraphs, we describe the interactions between PRIDE and its ad-
jacent layers: RAP (below) and the replicated application (above). We �rst reiterate
our assumption that the underlying communication service provides causally ordered
communication and virtual synchrony, and recall that client requests use lightwieght
transparent point-to-point communication to reduce unnecessary communication over-
head. We note that the complexity inherent in such a distributed retry detection scheme
is greatly reduced by the functionality of our communication service, as will become clear
in the subsequent discussion.

The PRIDE interface is summarized in Table 5.1. PRIDE receives incoming requests
from RAP (via the r req upcall) and forwards them to the replication scheme using the
p request upcall. Original requests (for which the contacts list is de�ned and empty)
are forwarded without any additional processing. This guarantees optimal behavior in
the usual case.

Otherwise (the contacts list is either unde�ned or nonempty) PRIDE searches locally
for a record of the request (PRIDE peer entities periodically exchange information about
executed requests). If a record exists, then if a reply has already been generated PRIDE
re-sends the reply to the client and exits without invoking the application layer. If no
reply has been generated, or if no local record exists, PRIDE forwards the request to
the application with a ag indicating the request status.

In the request indication, the status ag can assume one of the following values: (a)
original, the request has not been delivered to any other active replica; (b) executing, the
request is being executed by at least one active replica; (c) unknown, a search among
the replicas needs to be performed to obtain more information; (d) blocked, a failed
replica has propagated the knowledge of the request to at least one active replica (using
propagated semantics) or the request was declared as uniform and no reply is promised
by any active replica.

The return value of the p request primitive is used to signal the application deci-
sion to PRIDE: register, ignore, or disamb. If at-most-once semantics are desired,
retry detection is activated with register; this implicitly activates retry detection with
the semantic guarantees set to reliable. If at-most-once semantics are desired but the
request indication is unknown, the application can use disamb to instruct PRIDE to
disambiguate the state by performing a search among the replicas for a record of this
request. In this case the application implicitly discards the request; PRIDE is respon-
sible for re-submitting it, if appropriate, as soon as the search ends.

Once a request has been registered with PRIDE, the semantic guarantees may op-
tionally be upgraded to propagated via the p propagated primitive, which propagates
the relevant PRIDE record(s) to each of the processes in dest (usually by piggybacking
the information on msg, which provides a vehicle for opaque application data). If the
delegate ag is TRUE, each of the destination processes is responsible for independently
producing a reply for the request. When the ag is set to FALSE, only the invoking node
is responsible for (eventually) producing the reply. When this primitive returns, the
associated request(s) is (are) guaranteed not to be re-executed as long as at least one
of the processes in the dest list receives the propagated PRIDE record(s) and remains
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correct.

Alternatively, the semantic guarantees may be upgraded to uniform with the p uniform

primitive. This works in much the same manner as p propagated, except that the prop-
agation uses the uniform quality of service and is sent to the complete replica set. Use
of this quality of service guarantees that as long as some process receives the message
associated with the p uniform primitive no other process will re-execute the request.

The reply can then be generated by the active replica(s) at any point during request
execution. It is registered with the PRIDE layer, for possible future propagation, with
the p reply primitive (which also optionally forwards the reply to RAP to relay to the
client).

5.2 PRIDE Protocols

In this section we describe the PRIDE retry detection protocols. In order to prevent the
re-execution of requests, PRIDE keeps a record for each request for which retry detection
has been activated1 Since RAP guarantees that a given client does not forward a new
request before receiving the reply for the previous one, at most one record must be kept
for each client: receipt of a request more recent than the one recorded implicitly allows
the old record to be deleted. The contents of the accounting record are as follows:

define type p type = oneof ( reliable, propagated, uniform )
RECORD Request BEGIN

Uniqui�er id; // the uniqui�er of the request
p type tp; // the type of guarantees provided
Msg rpl; // the reply if generated
Msg reqst; // the request if no reply yet
Pid srch; // the initiator of a search
PidList exec; // executing set
PidList prop; // propagated set
PidList sent; // sent set

END;

A record is created for a request on activation of retry-detection or search, and
is updated when the reply is registered, when the the quality-of-service is upgraded,
or when the search completes. Replicas also exchange local records among themselves
to optimize the retry detection process. When sending an opaque message to another
replica, PRIDE automatically piggybacks all relevant (i.e. unsent) request records with
their corresponding data updates; it also appends the destination to the sent �eld of
each record2. Upon message reception, PRIDE strips all records appended by its peer
entity and updates its local state as necessary (see Figure 5.1).

Before describing in detail how these records are used, we summarize the function-
ality of PRIDE interface management primitives (see Figure 5.2).

1In the presence of loosely synchronized clocks and assumptions about the maximum lifetime of mes-
sages in the network it is possible to garbage collect last-ack records using a timeout scheme.

2This information is usually piggybacked on the normal inter-replica application message tra�c, al-
though in the absence of such tra�c a dedicated message can be generated by PRIDE to disseminate the

24



define procedure pridePiggyback ( Msg m, PidList dest )
8 record r: if ( dest - r.sent 6= ; ) then do

r.sent := r.sent [ dest; piggyback r on msg; od;

define procedure prideStrip ( Msg m, PidList dest )
8 record rnew 2 msg do rloc := localRec ( rnew.id );

if (rloc = nil) then add rnew to local;
else // update rloc �elds

if ((rnew.rpl 6= nil) ^ (rloc.rpl = nil) then
rloc.rpl := rnew.rpl;

if (rnew.tp > rloc.tp) then do

rloc.tp := rnew.tp; rloc.exec := rloc.exec [ rnew.exec;
rloc.prop := rloc.prop [ rnew.prop;
rloc.sent := rloc.sent [ rnew.sent;od;

Figure 5.1: Record Dissemination

// from RAP layer
when r req (msgid, request, undef, contacts) invoked do

pFilterRequest (msgid, request, undef, contacts);

// from local replica
when p reply (msgid, reply, action[, switch]) invoked do

if ((action = reg) _ (action = reg send)) then do

rec := localRec ( msgid );
if ((rec = nil) _ me =2 rec.exec then exit with error
rec.rpl := reply; rec.sent := ;; od

if ((action = send) _ (action = reg send)) then do

r reply (msgid, reply[, switch]); od // relay reply to client

when p propagated (msgids, m, dest, delegate) invoked do

8mid2msgids :
Request rec := localRec (mid); rec.tp := propagated;
rec.sent := ;; rec.prop := dest;
if : delegate then rec.exec := me; else rec.exec := dest;

c vsmulticast (mygroup, dest, m) ; // outstanding recs will be piggybacked

when p uniform (msgids, m, delegate) invoked do

8mid2msgids :
Request rq := localRec ( mid ); rq.tp := uniform;
rec.sent := ;; rec.prop := all replicas;
if : delegate then rq.exec := me; else rq.exec := all replicas;

c vsuniform ( mygroup, all replicas, m ); // outstanding recs will be piggybacked

Figure 5.2: PRIDE Interface Management
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� r req is invoked from the RAP layer; it invokes pFilterRequest to �lter the request
before invoking p request to pass to the application.

� p reply performs some combination of reply registration and transmission, ac-
cording to the the value of the action parameter. If registration is indicated,
the routine retrieves the request record, updates the reply �eld, and reinitializes
the sent list to ensure propagation of the new information. If transmission is
indicated, it then invokes r reply. Only a replica which is a member of the
exec set may register a reply; furthermore, a reply may be registered only if the
corresponding local request record already exists.

� p propagated upgrades requests from the reliable to the propagated quality of
service. It stores in the prop �eld the list of nodes to which the records are
being propagated and, as above, reinitializes the sent list to ensure propagation
of the new information; it also sets the exec �eld according to the delegate

parameter to indicate the replica(s) responsible for producing a reply. Then, after
piggybacking any relevant records (including the current request), the associated
msg is vs-multicast to the replicas speci�ed in dest.

� p uniform upgrades requests from the reliable to the uniform quality of service.
As above, initializes the sent and exec �elds. Then, after piggybacking any
relevant records (including the current request), the associated msg is disseminated
using vs-uniform to the all replicas.

define procedure pFilterRequest (id, req, undef, contacts)
if ((undef = FALSE) ^ (contacts = ;)) then // process

if (p request (id, req, original) = register)
then do // create a local replica
rec := newRequest (id); rec.reqst := req;
rec.tp := reliable; rec.exec := me; od

else // potential retry
rec := localRec (id); // lookup record
if (rec = nil) then // no record available

if (p request (id, req, unknown) = disamb) then do

rec := newRequest (id); rec.reqst := req;
rec.tp := reliable; rec.exec := ;;
prideSearch (id); od

else // record available
pProcessRecord ( rec, search done = FALSE );

Figure 5.3: PRIDE Request Filter

We now describe the request �ltering mechanism, illustrated in Figures 5.3 and 5.4.
When RAP delivers a request to PRIDE (via pProcessRequest) it indicates the list of
previously contacted replicas (when undef = FALSE). When the list is empty, PRIDE
immediately forwards the request to the application. Otherwise, PRIDE looks for a

records.
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local record. If no such record exists, the request is delivered marked as unknown. A
request with unknown status can result in a request to trigger a global search among
the replicas to concretely determine the request status; such a search is performed by
the call to prideSearch.

define procedure pProcessRecord ( rec, search done )
if (rec.rpl 6= nil) then
r reply (id, rec.rpl); // relay existing reply to client

else if (rec.exec \ r view 6= ; ) then
p request (id, rec.reqst, executing);

else if (rec.prop \ r view 6= ;) then
p request (id, rec.reqst, blocked);

else if rq.type = uniform then

return blocked; // replica unreachable
else if (rec.srch 2 r view ^ rec.srch 6= me) then
p request (id, rec.reqst, executing);

else if (search done = TRUE) then do// treat as original
p request ( id, rec.reqst, original );
rec.tp := reliable; rec.exec := me; od

else if (p request (id, rec.reqst, unknown) = disamb) then
prideSearch (id);

Figure 5.4: PRIDE Process Record

If a record does exist, it is examined in the procedure pProcessRecord in order to
determine the appropriate action to take. If a reply is already available (the request
has been served and recorded), it is resent to the client. If a reply is not available,
the other �elds are analyzed: if an active replica is already executing or has initiated a
search to disambiguate the request's status, the request is delivered with an executing

indication; if the request record has been propagated to an active replica or upgraded
to uniform but no site responsible for execution is alive, it is delivered as blocked3. At
this point, if pProcessRecord has been invoked at the end of a search procedure, the
request is resubmitted to the application with a status of original. Otherwise, it is
delivered as unknown.

Whenever a request is submitted as unknown, the application may choose to disam-
biguate this result. A p request return value of disamb activates the PRIDE guarantees
and implies the activation of the reliable quality of service. Disambiguate requires a
search among all relevant replicas for records of the associated request. In some cases,
such as that of a replicated client operating in lock-step (undef = TRUE), it is impos-
sible to know of the existence of previously contacted replicas; in this case, it is possible
for more than one replica to receive a request with a status of unknown and request a
search to disambiguate the request status. Thus it is possible for multiple replicas to
initiate concurrent searches for a given request.

The prideSearch process is illustrated in Figure 5.5. It �rst checks whether all
the replicas in the contacts list are in the current replica view. If so, the search need

3Virtual synchrony, which is used to establish the views of reachable replicas, ensures that when a site
is removed from the current view there are no messages pending from that site.
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define procedure prideSearch (id)
if (8p2contacts : p 2 r view) then
vs-atomic ( [SEARCH, id, me] contacts );
else vs-atomic ( [SEARCH, id, me], all replicas );

wait for a SEARCH-ACK from each active destination replica;
// strip remote records from SEARCH-ACK and merge with local record
prideProcessSearch (id);

define procedure receiveSearch ( id, searcher)
rec:=localRec(id);
if ( (rec = nil) then do

rec := newRequest ( id ); rec.exec := ;;
rec.tp := reliable; rec.srch := searcher; od

else if ( rec.srch 62 r view) then
rec.srch := searcher;

c vsmulticast ( mygroup, searcher, [SEARCH-ACK]);
// piggyback local record on SEARCH-ACK

define procedure prideProcessSearch (id)
rec := localRec ( id ); // lookup search result
pProcessRecord ( rec, search done = TRUE );

Figure 5.5: PRIDE Search Functions

only be addressed to those replicas, since if any processing has been intiated it must
have been by one of them. If any of these replicas have been removed from the current
replica view, or if the contacts list is unde�ned, then the search must be addressed to
all replicas. The search itself is initiated with a virtually synchronous atomic request
for information to all relevant replicas. The process then waits for the results and
analyzes them with the prideProcessSearch routine. As discussed previously, this
processing may result in the request being resubmitted to the application. The use of
the atomic service is required to serialize concurrent search operations: the �rst search
to be received for any given request wins the competition.

On receiving a search request, a replica processes it with the receiveSearch routine.
This routine searches for a local record; in order to achieve deterministic results, a search
implicitly creates a request record at each replica if one does not already exist. This
record is initialized with the exec �eld empty, to indicate that its execution status is
unknown (such a record is also created when a replica registers a submitted request,
but with the exec �eld initialized to contain the registering replica). The srch �eld of
the new record is used to store the identity of the searcher; if a local record does exist,
if the srch �eld contains a replica which is no longer in the current replica view then
the current searcher replaces the existing one. Finally, the updated local record then
forwarded to the searching process using a point-to-point reliable message.
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5.3 Membership changes

PRIDE is particularly robust with respect to membership changes because each replica
always takes the conservative approach of starting a search when no local record exists
for a given request, such as for example in the case of a potential retry. Thus, no special
operation needs to be performed in order to integrate new replicas at the PRIDE level 4:
if a new replica receives a potential retry, it simply starts a search for the associated
record. In particularly unreliable networks, where retries are likely to be frequent, it
might prove worthwhile to initialize new replicas with recently updated records in order
to avoid potential searches. This however is optional and is not required for correctness.

define procedure prideViewChange ( new view )
if ( (new view - r view) 6= ; ) then // new members
// optionally, send recent records to new members
r view = new view;
8rec : rec.exec \ new view = ; do

prideSearch (rec.id); // optional eager recovery

Figure 5.6: PRIDE View Change

Similarly, if there is a group change due to the failure/disconnection of one or more
replicas, PRIDE need take no special action since it can simply wait for RAP to gen-
erate a new retry for the request. As soon as the retry is received, the failure of any
executing replica(s) will be detected in the pFilterRequest procedure and the appro-
priate corrective action will be executed (if possible, the request will be re-submitted to
another replica). As an alternative to this lazy recovery approach, PRIDE can start an
immediate search for all records of requests potentially depending on failed replicas5 as
soon as the failure is detected (see �gure 5.6). This is functionally equivalent to receiv-
ing a retry for these requests: the prideSearch routine is invoked to check whether the
request needs to be re-submitted. This eager approach provides a faster recovery from
failures.

4Naturally, an application level protocol must be run to initiate the new replica, but this is transparent
to PRIDE.

5If more than one record exists, several search procedures can be merged in a single operation.
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Chapter 6

Examples

In this chapter we illustrate how our protocols can be used to implement di�erent
replication schemes. We consider two schemes, covering extremely di�erent consistency
semantics: a very strict state machine approach and a weak scheme which periodically
propagates updates based on internal semantics.

The �rst example, illustrated by Figure 6.1, shows how a replicated state-machine
can be implemented using GRIP/PRIDE support. All read requests are executed locally
by any receiving replica without any additional synchronization. An update request that
is an original is registered with PRIDE by returning register; it is then atomically
multicast in a special RELAY message to the entire replica set using p propagate, up-
grading the retry detection to propagated. The delegate ag is set to TRUE, indicating
that all designated receivers should execute the enclosed request. If the update status
is unknown, then disamb is returned in order to trigger a global search for informa-
tion: this implicitly results in a new p request invocation if execution is an option.
Otherwise, ignore is returned since all other cases are irrelevant to the state machine's
consistency semantics. Finally, when the RELAY message is received, each receiving
replica sets the p reply action ag according to its identity and then executes the
request: only the replica that received the original client request returns the reply.

when p request ( id, rq, stat ) invoked and rq is a read do

response := ignore; reply := execute ( rq );
r reply ( id, reply ) // no �ltering required

when p request (id, rq, stat) invoked and rq is a write do
if stat = original then
response := register;
p propagate (id, RELAY [id, rq], all replicas, true );

else if stat = unknown then response := disamb;
else response := ignore;

when RELAY [id, rq] received from some replica R do

reply:= execute (rq);
if (me = R) then p reply (id, reply, reg send );
else p reply ( id, reply, reg )

Figure 6.1: State-machine implementation
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The second example, illustrated in Figure 6.2, shows the implementation of a weak
replication scheme. Read operations are assumed to be idempotent and are executed
without further processing. In this scheme, updates are executed at the receiving replica,
and may be legally re-executed at another replica as long as the results of the update
have not been propagated to any active replica. Each replica can execute updates from
concurrent clients in parallel; updates are only exchanged from time to time, according
to the semantics of the replication policy. The re-execution of these requests after
propagation is prevented by using the propagated quality of service of PRIDE.

when p request ( id, rq, stat ) invoked and rq is read do

response := ignore; reply := execute ( rq );
r reply ( id, reply ) // no �ltering required

when p request ( id, rq, stat ) invoked and rq is write do
if stat = original then // safe to execute
response := register; idlist := idlist + id;
reply := execute (rq ); di�s := addDi�s();
c send um (all replicas); p reply ( id, reply, reg send );

else if stat = unknown then response := disamb;
else response := ignore;

when time to propagate to dest _ c sync ( dest ) do
p propagate ( idlist, dest, di�s, false );
di�s := 0; idlist := 0;

Figure 6.2: Weak propagation

As in the state machine example, if the request status is original it is safe to
execute, and in the unknown case the receiver returns a disamb to request further
information. If the request is known to be executing at an active replica or is blocked,
the receiver chooses to discard the request. In this example, the propagation of updates
is delayed arbitrarily according to internal semantics. Thus, during the processing of a
request any relevant updates are registered with the extended communication service
using c send um, and the id of the request is added to a local list of unpropagated
updates. When request processing is complete, the reply is registered with PRIDE and
sent to the application client, but is not necessarily propagated to any other replicas.
Propagation is performed asynchronously by the periodic invocation of the p propagate
primitive, providing the list of unpropagated update ids as an argument and specifying
the list of replicas to which the updates should be sent. Here, the collection of updates
(diffs) is sent as p propagate's msg parameter. The diffs and idlist variables are
reinitialized to zero after each p propagate request.

The last example, presented in Figure 6.3, shows the implementation of a primary-
backup replication scheme, where all updates must be committed at all active replicas
before a reply is disseminated. Read requests are executed locally (at any replica) as
usual. Updates are executed only at the primary replica; if a backup receives an update
request, it forwards it to the primary1. The primary commits each update using the
p uniform quality of service of PRIDE, ensuring that the request is not re-executed and

1In some cases it may also be desirable to change the client contact at the same time, although if the
client tra�c is primarily read requests such a change may not be optimal.
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that all backups record the update. It then forwards the reply to the client.

when p request ( id, rq, retry ) invoked and rq is read operation do

reply := execute (rq ); r reply ( id, reply )
when p request ( id, rq, retry ) invoked and rq is write operation but I'm not PRIMARY do

send RELAY [id, rq] to PRIMARY; exit;
when p request ( id, rq, retry ) invoked and rq is write operation and I'm PRIMARY or

when RELAY[id,rq] received do

if retry = false _ p search ( id ) = execute then

reply[id] := execute (rq); p reply ( id, reply[id], dosend := false );
p uniform ( id, update[id], all replicas, delegate := false );
// wait until propagation is assured
p reply ( id, reply[id], dosend := true, switch := me ); //commited

when update[id] received from PRIMARY do

if I'm PRIMARY then do nothing
else store update

when PRIMARY fails do
select new PRIMARY;

Figure 6.3: Primary-backup implementation

Although we present only a few examples, it is of course possible to express others
in a similar framework. We note also that optimistic applications which have no need
for retry detection mechanisms can also invoke the lightweight RAP layer directly.
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Chapter 7

Related Work

To our knowledge there are few examples in the literature of remote invocation protocols
designed to interoperate with multiple replication strategies. Most existing approaches
are designed with a speci�c replication scheme and thus are not concerned with some
of the problems that our protocols tackle. Here we relate our work to some of the more
relevant examples of replicated invocation protocols.

One of the �rst examples was presented by Cooper in [7]. The protocol allows
invocation of a troupe of replicas, but is more restrictive than ours; it requires programs
to be completely deterministic and it assumes that all troupe members receive and
process all requests.

ISIS[3] o�ers a multicast communication system that supports virtual synchrony and
preservers global order across groups. Other communications systems have also success-
fully applied this approach [13,15,2,1]. In this paper we pursue this line of research, but
in order to avoid the synchronization costs required to enforce reliable multicast commu-
nication between clients and replicated services we only require virtually synchronous
communication among replicas. Additionally, we add the concept of unpropagated mes-
sages to maintain causality in the presence of weak replication schemes.

Lazy replication [9] is similar to our scheme in that it relies on inexpensive point-
to-point interactions between clients and the replicated service. Global consistency
is achieved by collecting and exchanging multipart timestamps; we achieve the same
e�ect implicitly by relying on the services of the underlying communication service.
However, our approach is not restricted to a single replication model: the unpropagated
messages mechanism allows us to achieve the same bene�ts as lazy replication with
more transparency for the client and more control for the server. Furthermore, with
our approach compression mechanisms can be automatically and transparently applied
by the communication system [3,17].

More recently, [21] presented a replicated RPC running on top of Amoeba in which
point-to-point RPC was used to contact a designated replicated service coordinator.
This is primarily due to the closed nature of Amoeba groups, but the authors also
stress the transparency advantages inherent in this approach. However, contrary to our
generic approach, the contacted replica assumes a state-machine like replication scheme
and always reliably broadcasts the request to the entire server group. Our approach
allows the replication scheme to decide when the request should be propagated, and also
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allows dynamic selection of coordinators on a per-request basis, thus avoiding potential
performance bottlenecks.

Recent work [20] also addresses the need for dynamic exibility in distributed and
replicated systems. Although not speci�cally stressed in this presentation, support for
dynamic evolution and for large scale were strong motivating factors for the decoupling
of clients from the implementation details of services.
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Chapter 8

Conclusions

The GRIP protocol provides exible support for the construction of replication-transpa-
rent remote invocation of replicated services. Unlike the functionality provided by most
existing systems, it leaves the semantics of the replication protocol transparent to the
remote invocation protocol and provides support for dynamic reconnection and client
semantic control; moreover, it introduces explicit support for weakly consistent replica-
tion strategies and provides optional per-invocation distributed retry detection. GRIP
addresses issues of dynamic evolution and large scale by keeping the client process in-
sulated from any internal server evolution, and also ajusting readily to replica group
membership changes. Our communication extensions for transparent causal messages
introduce a much needed intermediate solution between causal and non-causal com-
munication for weakly coupled communicating peers. Such transparency is of critical
importance to the future development of fault-tolerant distributed applications, partic-
ularly for large-scale environments.

We are currently implementing the GRIP protocols in the context of the ROMANCE
system [16] in order to enable further optimization and experimentation.
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