A Classification of Middleware to Support Virtual Machines Adaptability in IaaS

José Simão (INESC-ID/ISEL), Luís Veiga (INESC-ID/IST)

Paper available @ http://dl.acm.org/citation.cfm?doid=2405679.2405684
Introduction

- Virtual machines everywhere
 - Resource consolidation and efficiency, coarse grained resource management
- VMs adapt resource management at runtime
 - Monitor, Decision, Action
 - Guided by metrics inside the codebase or instructed by others
- How to analyze the quality of adaptation?
 - Responsiveness, Comprehensiveness and Intricateness
Agenda

- Virtualization fundamentals
- Adaptability techniques
- A classification framework
- Systems and their classification
- Conclusions
Virtualization at different layers

- Native app
- Native app
- Operating systems
- Hardware (CPUs, Memory, I/O, devices)
- C1 ... C2
- HLL VM
- Hardware
- Virtual Machine Monitor
- Hardware
- HLL VM
- Virtual Machine Monitor
- Hardware
System VMs

- Computations as a resource
 - Emulation of different Instruction Set Architectures (ISA)
 - CPU Scheduling
 - Enforces user level shares (or weights) and caps

- Memory as a resource
 - Generalizations of OS techniques using shadow pages
 - Pages can be shared across guests
 - Transparently transfer pages between guests using memory ballooning
Adaptability loop

- Collect data from sensors
- Event based, threshold checking
- What needs to be changed
- Decisions made inside or outside the VM determine the complexity of the process
- Act according to decision using the available effectors
- Change Parameters, algorithms
System VM techniques

- System VMs
 - Memory management
 - Monitoring
 - Page utilization
 - Page contents
 - Application performance
 - Share based
 - Linear optimization
 - Analysis and decision
 - Page share
 - Page/Memory transfer
 - CPU consumed by VCPU
 - Action
 - Virtual clock
 - Linear optimization
 - Application performance
 - Feedback control
 - Statistical analysis
 - CPU management
 - Analysis and Decision
 - Number of CPUs
 - Number of VCPUs
 - Action
 - CPUs share
 - Number of processes/threads
Introduction to the framework

- The RCI framework goal – understand and compare different adaptation processes
 - Responsiveness: how fast can the system adapt?
 - Comprehensiveness: which is the breadth and scope of the adaptation process?
 - Intricateness: which is the depth/complexity of the adaption process?

- The RCI conjecture
 - A given adaptation technique aiming at achieving improvements on two of these aspects, can only do so at the cost of the remaining one.
 - Similar to other tradeoffs in system research
 - Consistency, Availability, and tolerance to Partitions.
 - P2P: High Availability, Scalability, and support for Dynamic Populations
System VM deployments

- Friendly Virtual Machine [49]
 - Virtual time clock; Feedback control; Number of processes/threads
- HPC computing [36]
 - CPU consumed by each VCPU; Share based; Number of VCPUs assigned to CPU
- Ginko [28]
 - Application's performance; Linear optimization; Page/memory transfer
- AutoControl [34]
 - Application's performance; CPU consumed by each VCPU; Feedback control; Change shares or caps
- PRESS [20]
 - CPU consumed by each VCPU; Statistical analysis; Change shares or caps
- VM³ [30]
Different systems have a different RCI coverage
Intricateness seems to dominate but responsiveness is also strong
Systems with larger R and I are less comprehensive
Characteristics of the Adaptability loop
Conclusions

- Cloud infrastructures depend on VMs to provide support for multiple tenants
- Resource management is crucial and there is no one-fits-all strategy
 - VMs must adapt to their guest changing or being instructed to change their parameters or strategies

This work
- Surveys different adaptation techniques regarding resource management in VMs
- Proposes a classification framework to better understand the benefits and limitations of each one
- Surveys different systems and frames then into the classification framework

In the future
- New systems and new techniques can be added to enrich the analysis
- Values regarding the RCI of techniques should also depend on measurable aspects (e.g. ratio of functional and monitoring code)
References

