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ABSTRACT

With the advent of Chip-Multiprocessors, Transactional
Memory (TM) emerged as a powerful paradigm to simplify
parallel programming. Unfortunately, as more cores become
available in commodity systems, the scalability limits of a
wide class of TM applications become more evident.

Hence, online parallelism tuning techniques were proposed
to adapt the optimal number of threads of TM applications.
However, state-of-the-art solutions are exclusively tailored
to single-process systems with relatively static workloads,
exhibiting pathological behaviors in scenarios where mul-
tiple multi-threaded TM processes contend for the shared
hardware resources.

This paper proposes RUBIC, a novel parallelism tuning
method for TM applications in both single and multi-process
scenarios that overcomes the shortcomings of the preciously
proposed solutions. RUBIC helps the co-running processes
adapt their parallelism level so that they can efficiently space-
share the hardware.

When compared to previous online parallelism tuning so-
lutions, RUBIC achieves unprecedented system-wide fair-
ness and efficiency, both in single- and multi-process scenar-
ios. Our evaluation with different workloads and scenarios
shows that, on average, RUBIC enhances the overall perfor-
mance by 26% with respect to the best-performing state-of-
the-art online parallelism tuning techniques in multi-process
scenarios, while incurring negligible overhead in single-process
cases. RUBIC also exhibits unique features in converging to
a fair and efficient state.

Categories and Subject Descriptors

D.1.3 [Software|: Programming Techniques—Concurrent
Programming
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Figure 1: Intruder’s throughput deteriorates after 7 par-
allel threads.

1. INTRODUCTION

Transactional Memory (TM) has emerged as a powerful
paradigm to simplify parallel programming. Building on the
abstraction of atomic transactions, and freeing the program-
mer from the complexity of conventional synchronization
schemes, TM has proven capable of simplifying the devel-
opment and verification of concurrent programs by avoiding
the pitfalls of manual, lock-based synchronization, enhanc-
ing code reliability and boosting productivity. After intense
research during the last decade, TM has reached the matu-
rity required for mainstream adoption. Notable evidences of
this trend include the software implementations in the gcc
compiler [1], the upcoming version of the C++ standard [2],
and best-effort hardware TM support in mainstream and
high-end processors from major chip manufacturers.

Unfortunately, as more and more cores become available
in commodity systems, the scalability limits of a wide class of
TM applications become more evident. Taking STAMP [3]
as a well-known benchmark suite, most applications reach a
performance peak after a certain number of threads; to make
things worse, many such applications even observe perfor-
mance drops after such a peak [4]. For example, Figure 1
shows Intruder achieves the highest speed-up with only 7
parallel threads on a 4-socket 64-core machine, without us-
ing any explicit thread placement policy, and on average
of 50 runs. As the number of threads goes beyond the peak
point, the performance deteriorates such that, at 64 threads,
the throughput becomes less than half of the sequential ex-
ecution’s throughput.

The limited scalability of the parallel workloads on mod-
ern multi/many-core processors implies 3 important obser-
vations: (i) running a parallel workload with as many
threads as the number of hardware (h/w) contexts can lead
to a significant waste of the hardware resources; (ii) there
must be a mechanism that finds the optimal number of
threads for a given workload and maximizes the speed-up;



(iii) to fully utilize the hardware, co-locating multiple TM
parallel applications will become increasingly common [5, 6].

Recently, a number of works have proposed online tech-
niques that aim at finding optimal parallelism level in mal-
leable TM applications [7, 8, 4, 9]. Malleable applications are
flexible applications and can set their parallelism level prior
to or during their execution [10]. These constitute the vast
majority of the applications that are found in the reference
TM benchmarks [3, 11]. Online solutions usually employ on-
line feedback-driven techniques together with hill-climbing
techniques to learn about the workload and find its optimal
parallelism level. In contrast to offline approaches, online
solutions are particularly appealing because they are well-
suited for workloads that are not known a priori or dynamic
execution environments.

Nevertheless, the current state-of-the-art in online par-
allelism tuning techniques is designed for and evaluated in
single-process scenarios. Although such techniques are im-
plicitly assumed to also work well in multiple-process situa-
tions, our experimental results (presented in Section 4) show
that they actually exhibit alarmingly poor performance when
multiple TM processes run concurrently in the same ma-
chine. This pathological behavior is explained by some fun-
damental issues that arise when one considers a system of
multiple parallel processes instead of a single one, as follows.

Oversubscription: a system becomes oversubscribed
when its total number of computationally-intensive
software (s/w) threads exceeds the number of h/w contexts.
In an oversubscribed system, the overall performance de-
grades, mainly due to frequent context switches and in-
creased cache trashing. Apart from this, a TM-application,

specially, suffers from oversubscription due to prolonged trans-

action execution time and increased conflict likelihood, hence
losing throughput[12]. In a single-process scenario, a paral-
lelism tuning technique can easily avoid oversubscription by
putting a hard limit on the number of s/w threads. However,
in a multi-process environment, things are not that straight-
forward, as all the co-running processes need to somehow
coordinate to keep the total number of s/w threads below
the oversubscription point.

System-wide optimization: for a single process, the
obvious goal is to simply maximize some performance met-
ric (e.g., throughput, speed-up, etc.). However, in a multi-
process system, the main goal is to optimize the whole sys-
tem’s performance. With such a system, the overall perfor-
mance is usually defined as an aggregate function of each
process’ performance. Considering the limited hardware re-
sources (i.e. h/w contexts), to maximize a given overall
performance function, some processes may be required to
give up some of their resources to the other processes (e.g.
to those that achieve higher speed-up). Sacrificing a sin-
gle for the sake of a whole is not aligned with the goals of
the current parallelism tuning methods, where each process
greedily tries to maximize its performance, regardless of the
system’s overall performance (Section 2 elaborates on this
behavior).

Fairness: when it comes to resource allocation, estab-
lishing fairness immediately becomes a major issue. While,
intuitively, in a fair system, all processes must receive enough
resources to make some progress, defining and quantifying
fairness is far from trivial. There exist several definitions for
fairness and choosing each one affects the system’s perfor-
mance differently. For instance, one can define fairness as
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equality, while another actually finds equality unfair and al-
locates more resources to processes that contribute more to
the system’s overall performance (a.k.a. proportional fair-
ness). In the context of resource allocation, for a given
definition of fairness, the system’s performance function is
defined in such a way that it reflects the fairness require-
ments of that system as well [13, 14]. Nonetheless, as the
state-of-the-art parallelism tuning methods do not consider
maximizing any system-wide performance function, the fair-
ness characteristics of such methods, when applied in multi-
process environments, is totally unknown.

This paper proposes RUBIC, a highly adaptive online par-
allelism tuning method for malleable TM applications that
overcomes all of the aforementioned shortcomings of the cur-
rent tuning techniques in single and multi-process environ-
ments. We believe this is a key breakthrough, as it enables
elastic systems composed of multiple TM-based applications
that adaptively space-share h/w contexts amongst them-
selves, efficiently and fairly, at no extra cost with regard
to the state-of-the-art techniques.

Inspired by the well-studied problem of flow/congestion
control in data networks, RUBIC employs a sophisticated
online feedback loop control within each running process
that makes unilateral decisions only based on that process’
local observations. That is to say that our solution does
not rely on a central entity, nor does it require any sort of
communication between running processes.

Our experimental results show that RUBIC can substan-
tially boost the system’s overall performance when com-
pared to solutions previously proposed to single-process set-
tings. At the same time, RUBIC is highly responsive to
changes in the system and its convergence to an efficient
and fair allocation is impressively fast, unlike the state-of-
the-art methods.

Although this paper focuses on TM workloads, our solu-
tion is not limited to TM applications. In fact, any malleable
parallel application can benefit from RUBIC.

The rest of this paper is structured as follows. Section 2
elaborates on the shortcomings of the state-of-the-art meth-
ods and illustrates the rationale behind RUBIC. Section 3
describes RUBIC in detail. Section 4 shows how our pro-
posed method acts in practice and how it outperforms the
state-of-the-art. Finally, Section 5 surveys related work and
Section 6 concludes.

2. THE NEED FOR SPEED AND FAIRNESS

In this section, we explain why the existing solutions, orig-
inally designed for single-process environments, are not suit-
able for multi-process systems. Then, we describe the ratio-
nale behind RUBIC to understand what makes RUBIC an
adequate solution for parallelism tuning in multi-process en-
vironments.

Online parallelism tuning techniques usually employ a feed-
back loop to control the parallelism. A controller loop con-
stantly monitors a performance metric (e.g. throughput)
and makes the appropriate decision regarding the new par-
allelism level (i.e. number of s/w threads), based on the re-
ceived feedback from the last decision. A decision can be ei-
ther increasing or decreasing the parallelism level. Depend-
ing on the decision, the new level Ly is obtained through the
functions finc and fprc, which are used for increasing and
decreasing the parallelism level, respectively. Both functions
accept the current level, L¢, as the input parameter.
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Figure 3: The expected behavior of an AIMD-based
model (o = 0.5) on a 64-core machine (the dashed line
represents the average thread count).

The choice of functions frnc and fprc defines the be-
havior of a parallelism tuning technique.

Existing solutions rely on simple linear functions for both
increasing and decreasing purposes [4, 7]. At each step, the
parallelism level is additively increased or decreased by a
constant value Al, which is usually set to 1. Therefore,
we refer to this model as ATAD (additive-increase/additive-
decrease).

ATAD gives the controller excellent capabilities to gradu-
ally explore the solution space and to find the optimal par-
allelism level in a single-process environment. However, in
the following, we question the capabilities of ATAD-based
schemes in multi-process environments, and show why such
models do not converge to a system-wide fair and efficient
state.

2.1 Additive vs. Multiplicative Decrease

Figure 2a shows the behavior of ATAD in a two-process
system. Starting from an arbitrary point Xy, which is in
the undersubscribed region, both processes additively in-
crease their parallelism level. Therefore, the system’s state
moves along, at an angle of 45°, to point X1, which is above
the oversubscription line, and the system becomes oversub-
scribed. As a result, both processes shall notice some per-
formance loss and additively reduce their parallelism level.
Consequently, the system’s state moves back, along at an
angle of 45°, to the starting point, Xo, and the same addi-
tive increase phase happens. Therefore, the system’s state
oscillates between points X and X; and never converges to
the optimal point, at which the resources would be fairly
allocated to both processes.

Inspired by congestion control techniques in data net-
works [15], we can solve the convergence issue by replac-
ing the additive decrease phase with a multiplicative de-
crease (MD) one. In other words, instead of decreasing the
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Figure 5: The expected behavior of a CIMD-based model
(a =0.5,38 =0.1) on a 64-core machine. CIMD has a fast
convergence due to its initial probing phase and achieves
higher average utilization than AIMD (the dashed line
represents the average thread count).

parallelism level by one, the new level is obtained by mul-
tiplying the current level by a positive constant factor, «,
where 0 < o < 1. We refer to this model as AIMD.

Figure 2b shows how switching from AIAD to AIMD af-
fects the convergence behavior of the system. Starting from
the same point, Xo, similarly to AIAD, the system’s state
moves to point X;. However, as the system becomes over-
subscribed, both processes multiplicatively reduce their par-
allelism level and the system’s state moves toward the line
joining X and the origin to point X2, which is below the
oversubscription line. This cycle repeats and, eventually, the
system’s state oscillates around the optimal point, which is
the goal.

Therefore, in order to have multiple processes converge to
a fair and efficient state, the linear decrease function that is
used by the state-of-the-art solutions should be replaced by
a multiplicative decrease one.

2.2 Additive vs. Cubic Increase

Multiplicative decrease in parallelism level solves the con-
vergence issue. Nevertheless, it introduces a new problem
to the system: the oscillations around the optimal point are
expensive and cause overall undersubscription.

Figure 3 shows the behavior of a single highly-scalable
process, using an AIMD controller (o« = 0.5), running on
a 64-core machine. Each time the parallelism level exceeds
64, the controller detects some performance drop and mul-
tiplicatively decreases the parallelism level. Therefore, the
new parallelism level is set to 32 (or close to it). At this
point, the system is half-loaded and the controller, again,
incrementally increases the parallelism level until it goes be-
yond 64 and the system oscillates around the optimal point
(i.e. 64).

In this example, the average parallelism level is 48, de-
picted by the dashed-line in Figure 3, which means 25% of
the h/w cores (16 out of 64) are left unused. In other words,
the system is undersubscribed rather than operating at full
capacity, due to using a multiplicative decrease function.



To enhance the system utilization, we can resort to a new
growth function: a cubic function that was initially used
in the context of congestion/flow control techniques in data
networks [16]. More specifically, the growth function is ob-
tained by the following equation:

Lcubic = Lmax + /B(Atmam - 3\/ Lmaac X O1/5)3 (1)

where Ly,q; depicts the last parallelism level at which a
performance loss was observed and At denotes the time
since that performance loss; « is a constant multiplication
factor that reduces the parallelism level to aLq. (as in
AIMD); and, finally 8 is a constant scaling factor that con-
trols the growth rate of the parallelism level.

Figure 4 shows the growth behavior of a cubic function af-
ter an MD phase at Lmaz, based on Equation (1). The par-
allelism level increases very fast upon an MD phase. Then,
its growth slows down as it gets closer to L,qz; becoming
almost zero when the parallelism level reaches Ly,q,. This
phase is the steady state phase. During this phase, the con-
troller tries to stabilize the parallelism level and to keep it
close t0 Liqe (i-€. near the oversubscription point).

As the time passes and the parallelism level exceeds Laz,
the controller increases the growth rate and starts the prob-
ing phase. The probing phase indicates the possibility of free
resources in the system. During this phase, the controller
looks for a new oversubscription point, by taking longer and
longer steps.

Figure 5 shows the expected behavior of a single and
highly-scalable process, using a controller with cubic-increase-
/multiplicative-decrease (CIMD) functions, on a 64-core ma-
chine. At the beginning, Ly,qz is set to 1. As the parallelism
level gets away from 1, the probing phase starts until the
first performance loss, due to oversubscription, is observed
around 64 threads. At this point, Lmq. is set to the ob-
served oversubscription level, an MD phase occurs, and the
steady state phase keeps the parallelism level close to Limax
(e.g., 64). In this example, the average parallelism level is
close to 60, which implies the system utilization is enhanced
from 75% with AIMD to 94% with cubic growth.

Based on what we discussed in this section, we claim that
to enable the fair and efficient parallelism tuning in both
single- and multi-process environments, the growth and re-
duction functions used in the state-of-the-art solutions must
be revised. More specifically, we propose to replace the
ATAD scheme used in the current solutions with a CIMD
scheme.

3. PARALLELISM TUNING WITH RUBIC

In this section, we present RUBIC: the first parallelism
tuning solution that is tailored for both single- and multi-
process environments.

We assume each process includes a pool of s/w worker
threads and runs a malleable parallel workload. The pro-
cess’ parallelism level can be tuned by activating or block-
ing the threads inside the thread-pool. As soon as a s/w
thread completes its current task, it picks a new task from a
task queue, until all tasks have been completed. The worker
thread can then terminate, or block until there are new tasks
available. In order to access shared data, tasks use transac-
tions that ensure safe synchronization of concurrent accesses
to the data.
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3.1 The RUBIC Algorithm

Each process runs a monitoring thread that is responsi-
ble for running the RUBIC controller. This thread is cre-
ated with a higher priority than other threads inside the
thread-pool. This ensures that the monitoring thread gets
to perform its duty even when the system is oversubscribed.

The controller periodically measures the process’ through-
put (e.g., commit-rate) and updates the T, variable, in a
loop. At the end of each iteration, the value of T, is stored
in Ty, to be used in the next round (i.e., iteration).

We assume the time between two measurements is long
enough so an active worker thread can finish at least one task
within that time. To measure the throughput, each worker
thread maintains a local counter. Upon finishing a task, a
worker thread increases its counter by one. At each round,
the monitoring thread reads all the thread-local counters
from the thread-pool and calculates T.. This determines the
process throughput in the period that is just completing.

It is worth noting that, for each thread-local counter vari-
able, only that thread can update such counter; the mon-
itoring thread only reads from those counters. Therefore,
maintaining the thread-specific throughput counters is very
lightweight; no atomic instructions are necessary.

After each measurement, the controller compares T. with
T,. Should T¢ be greater than or equal to T}, the controller
increases the parallelism level according to the cubic growth
function in Equation 1. Conversely, in the case of a per-
formance loss, a multiplicative reduction function calculates
the new level.

Algorithms 1 and 2 show how the monitoring thread and
the other threads inside the thread-pool co-operate in order
to change the parallelism level.

To change a process’ parallelism level, we augment each
worker thread’s metadata with a semaphore and a unique
integer identifier tid € [0..S — 1], where S is the size of that
process’ thread-pool. The number of active threads is main-
tained in a process-wide global variable, named Lrugic.
The monitoring thread adjusts the parallelism level by chang-
ing the value of Lrugrc-

At the application initialization, the parallelism level is
set to minimum (1 thread). This means that only the first
worker thread (i.e., tid = 0) is allowed to run tasks at the
beginning and the rest must be blocked. Also, all thread
semaphores are initialized to 0 (lines 2-5 in Algorithm 1).

Before acquiring a task from the task queue, each thread
compares its tid with the global variable Lruprc. If tid is
greater than Lryugic, it means the thread must be blocked.
Hence, the thread waits on its semaphore, which was initial-
ized to 0, and blocks (lines 8-10 in Algorithm 1). Otherwise,
the thread acquires a task, if any, and executes.

It is noteworthy that the normal task acquisition flow does
not include any system calls and the Wasit call only happens
when a thread must block.

3.2 The Increase Function

The lines 6-15 in Algorithm 2 show how RUBIC increases
the parallelism level, based on Equation 1 in Section 2.2.

In the round immediately after a cubic growth, the con-
troller runs an additive increase phase and increments the
parallelism level just by one. This enables the controller to
compare two adjacent levels and to make more accurate de-
cisions. The variable growth is used to interleave cubic and
linear growth phases, in Algorithm 2.



Algorithm 1 Applied changes to the legacy instrumenta-
tion

1: procedure INITIALIZATION
LruBrc =1
for each thread do
thread.semaphore = 0
end for
end procedure

SR wN

7: procedure ACQUIRETASK(thread)
8: if (thread.tid > Lruprc) then
9: Wait(thread.semaphore)

10: end if

11: //The rest remains unchanged...
12: end procedure

Finally, the controller signals the blocked worker threads
that must be awakened in this round. It also stores the
value of T¢ in T} to be used in the next round (lines 20-23
in Algorithm 2).

3.3 The Reduction Function

Should the throughput drop, RUBIC decreases the paral-
lelism level (lines 25-35 in Algorithm 2).

The reduction function also interleaves two phases: a mul-
tiplicative phase and a linear one. This hybrid technique is
used to avoid unnecessary multiplicative phases as much as
possible. The main rationale behind this is as follows. A
performance drop can be due to: (i) passing the workload’s
optimal parallelism level in the growth phase; or (ii) dynamic
changes in the running workload or available hardware re-
sources. This happens when, for example, a new process
joins the system.

Whenever there is a performance drop, RUBIC first as-
sumes the slowdown is caused by passing the workload’s op-
timal parallelism level. Therefore, it linearly decreases the
parallelism (lines 31-32), instead of a multiplicative decrease.

If a linear decrease does not produce the desired outcome,
and the performance loss still persists in the next round, a
multiplicative decrease happens (lines 26 to 29).

The variable reduction enables the interleaving between
the two phases above.

4. EVALUATION

In this section we evaluate RUBIC. The purpose of this
evaluation is to thoroughly analyze the behavior of our tech-
nique in static/dynamic and single-/multi-process environ-
ments. The main examined features are: performance, ef-
ficiency, fairness and adaptability. Throughout our experi-
ments, we show how RUBIC outperforms the existing solu-
tions in all the above features.

4.1 The System’s Performance Function

As stated earlier in Section 1, in a multi-process envi-
ronment, one must consider two main factors for optimal
resource allocation: (i) the system’s overall performance,
rather than each process’ performance alone; and (ii) fair-
ness to ensure all processes get some fair share of the system
and no process starves.

Therefore, we must define the system’s overall perfor-
mance function so that it reflects both aforementioned fea-
tures. To do so, we resort to Nash’s solution for the bar-
gaining problem (NSBP) [13].
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Algorithm 2 Adaptive parallelism algorithm in the moni-
toring thread

1: growth <- CUBIC, reduction <~ LINEAR, T}, < 0
2: while running do

3:  Sleep(TIME_PERIOD)

4: T, <+ CalculateCurrentThroughput()

5: if (T. > Tp) then

6: L, + LruBIc

7 if (growth = CUBIC) then

8: Atmaz < Atmar + 1

9: Leubic <

10: Lpmas + B(At'ma:t - \3/ Lmaxz X a/B)r;
11: LruBrc < max(Leuvic, LruBrc + 1)
12: growth < LINEAR

13: else

14: Lrupic < LruBic +1

15: growth < CUBIC

16: end if

17: if (Tp # 0) then

18: reduction < LINEAR

19: end if

20: for each thread where L, < tid < Lruprc do
21: Signal(thread.semaphore)

22: end for

23: Tp < T.

24: else

25: Atpmaz < 0

26: if (reduction = MULTIPLICATIV E) then
27: Liaz < LruBIC

28: Lrubic < aLruBIC

29: reduction < LINEAR

30: else

31: Lrubrc < Lrubrc —2

32: reduction < MULTIPLICATIVE
33: end if

34: growth «+ LINEAR

35: T, < 0

36: end if

37: end while

For a process p, running a parallel workload w, we define
the speed-up function of the process p (S,(w)) as the ratio
between the process’s obtained throughput (7,(w)), and the
measured throughput of a sequential execution of the work-

load w, in a single process configuration (Tseq(w)). In other
Tp(“)

Tseq(w) ’

Based on NSBP, in a system with N running processes,

where each one is running workload w,, the system’s overall

performance is defined as the product of all process’ speed-
. N

up (ie. Hp:l Sp(wp))-

For example, it can be easily shown that in a contended
system running identical processes, equally sharing the hard-
ware between the processes maximizes the system’s overall
performance.

4.2 The Efficiency Function

We also define a process’s efficiency (E) as the ratio be-
tween its achieved speed-up (S) and its parallelism level (L)
(i.e. the number of active threads)[17]. Thus, for a process
_ Sp(w)

- L;,(w) :

Similarly to the system’s performance function, we define
the systems’s total efficiency as the product of all running
process, which is expressed as: Hf,v:1 E,(wp)

words, S,(w) =

p, running a workload w: E,(w)

4.3 Allocation Policies

We compare our results to those gathered by different poli-
cies referred as Greedy, EqualShare, F2C2 [4], and EBS [7].
EBS and F2C2 are almost identical and they both imple-
ment an ATAD-based controller. The only difference is that,



Intruder++

Normalized throughput

0 8 16 24 32
Threads

40 48 56 64

Figure 6: The scalability graph of the evaluated work-
loads.

F2C2 benefits from an initial exponential growth phase for
faster convergence to the optimal level. By this mechanism,
the controller initially doubles the parallelism level instead
of increasing it by 1. After the first performance loss, F2C2
halves the parallelism level and switches to pure ATAD until
the end, as in EBS.

With Greedy, each process tries to take over all the hard-
ware by spawning as many parallel threads as the h/w con-
texts.

In EqualShare, each process takes an equal share of the
h/w context, regardless of its workload. This policy relies
on a central entity to decide upon the number of threads
in each process. It is the simplest heuristic we could use to
avoid oversubscription. Nevertheless, EqualShare is naive,
since it ignores the running workloads and provides each
process with the same amount of h/w contexts, even if some
processes actually do not require those many contexts.

Finally, in our implementation of RUBIC, the a and [
constants, in Equation (1) from Section 2, are set to 0.8 and
0.1, respectively, to obtain the best results.

4.4 Methodology and Workloads

We evaluated the policies in a 4-socket machine consisting
of AMD Opteron 6272 CPUs, each with 16 cores, where each
core runs one thread, resulting in 64 h/w contexts and total
memory of 32GB, running Linux kernel 3.2.0-58.

The monitoring thread measures the commit-rate every
10 milliseconds.

We have implemented all the policies and incorporated
them into the RSTM transactional framework [18], using
SwissTM [19] as the underlying TM runtime. We consider
three different benchmarks: Vacation and Intruder from the
STAMP benchmark suite [3] and the Red-Black-Tree mi-
cro benchmark (with 64K elements and 98% look-up oper-
ations). These well-known benchmarks are chosen to repre-
sent applications from a wide scalability spectrum, ranging
from poorly to highly scalable workloads.

Furthermore, for the sake of simplicity, the thread place-
ment is left to the OS’s default policy.

Figure 6 shows the scalability graph of each benchmark.
In this graph, we measure the throughput in terms of trans-
action commit-rate as the number of parallel threads grows
from 1 to 64. To make the results from each benchmark
comparable, the values are normalized relatively to the peak
throughput that was measured in each workload.

It should be noted that the choice of the host machine,
underlying parallelism runtime and the benchmark does not
affect the conclusions we draw next. This observation stems
from the fact that our techniques only depend on the scal-
ability curve defined by each running process. The only
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requirement is that the scalability graph of the workloads
must monotonically increase until its peak point.

The metric we use to calculate throughput is commit-rate,
measured by the number of commits per second for each pro-
cess. We use the throughput values to calculate the perfor-
mance and the efficiency metrics that are previously defined
in sections 4.1 and 4.2.

Each experiment lasts for 10 seconds and performance re-
sults are the average of 50 repeated experiments to minimize
the evaluation noise.

We run the experiments in both pairwise and single-process
settings. In the pairwise execution, two co-running processes
run distinct workloads, with the same starting time. This
results into three pairs of workloads. In a single process
setting, a single process runs either of the workloads.

4.5 Performance Results

We now present the obtained performance results of all
allocation policies.

4.5.1 Pairwise Execution

Figure 7 depicts the system’s overall metrics for the pair-
wise execution of the workloads.

Figure 7a shows the system’s total speed-up with each
workload pair and the geometric average of all three pair-
wise experiments. It is evident that for all workload pairs
and also on average, RUBIC achieves the best results, while
Greedy proves to be the worst policy. The poor performance
of Greedy is due to ignoring the running workloads and over-
subscribing the system, as expected.

EqualShare performs poorly too, as it also neglects the
running workloads. This is especially evident in the work-
load pairs that include Intruder, where the 32 h/w con-
texts allocated to this workload cause severe performance
loss for the running process and the system’s overall per-
formance, consequently. EqualShare performs better with
the Vac/RBT pair. This is because both running workloads
scale up to 32 threads. Hence, no workload suffers from
performance loss, due to over-allocation. Nonetheless, even
with this workload pair, EqualShare is not the best policy,
as it still suffers from ignoring the running workloads and
improper resource allocation.

Surprisingly, unlike what we initially expected, EBS and
F2C2 perform very differently. With all workload pairs, EBS
outperforms F2C2. Furthermore, with the Int/Vac pair,
EBS’s performance is comparable to RUBIC’s. This is be-
cause, with this pair, running both workloads at their peak
parallelism level does not oversubscribe the system. There-
fore, the greedy characteristic of EBS neither oversubscribes
the system nor leads to unfair resource allocation. However,
this situation is not the case for the other pairs, where RU-
BIC outperforms EBS because of EBS’s unfair allocation
and oversubscription.

On average over all pairwise experiments, RUBIC enhances
the system’s overall performance by 26% and 500% with re-
gard to the second-best policy (EBS) and the worst policy
(Greedy), respectively.

The total numbers of running s/w threads in the system
are depicted in Figure 7b. We expected all adaptive policies
to keep the total number of threads below the oversubscrip-
tion line (the dashed line). Perhaps surprisingly, only RU-
BIC meets our expectation. In fact, except for the Int/Vac
pair, where EBS maintains the total number of threads be-
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Figure 7: The system’s overall metrics in pairwise execution of the workloads.
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Figure 9: Process-specific metrics for single-process execution of the workloads (in graph (c) lower is better).
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low 64, EBS and F2C2 cannot keep the system’s overall
state below the oversubscription line. This is caused by the
greedy nature of these policies, where co-running processes
with scalable workloads get involved in a race over resources
and oversubscribe the system.

Due to higher performance and lower resource consump-
tion, RUBIC is theoretically expected to be the most effi-
cient policy as well. The total efficiency results in Figure 7c
confirm that expectation. As in the performance results,
EBS comes after RUBIC as the second-most efficient policy,
while Greedy is the least efficient one.

On average over all pairwise experiments, RUBIC proves
to be 2 and 66 times more efficient than the second-most
efficient policy (EBS) and the least efficient policy (Greedy),
respectively.

Figure 8 demonstrates the per-process statistics of the
pairwise execution of the workloads. This information helps
us better understand the superior overall performance of
RUBIC. In the graphs, each workload pair is specified by a
rectangle and each 2-bar group represents a whole pairwise
experiment.

Interestingly, in Figure 8a (and unlike Figure 7a), Greedy
does not always lead to the worst speed-up. In fact, the
RBT workload always achieves the highest speed-up with
Greedy, when compared to other policies. However, tak-
ing a look at RBT’s counterparts in the pairwise execution,
Greedy achieves very low speed-up for both Intruder and
Vacation workloads. This justifies Greedy’s very low overall
performance.

Comparing RUBIC’s per-process speed-up statistics, in
Figure 8a, to EBS’s, they both have comparable speed-up
gains running the Int/Vac pair. Nevertheless, RBT’s coun-
terparts always gain higher speed-up with RUBIC. This is
due to the fairness characteristic of RUBIC. In other words,
RUBIC slightly sacrifices a very scalable process’ perfor-
mance to achieve a much higher speed-up gain on a less
scalable process (e.g., 1% of RBT’s speed-up in exchange for
10% improvement in Intruder). Figure 8c shows how RU-
BIC allocates less threads to RBT to reduce the pressure
on its Intruder and Vacation counterparts. Consequently,
both Intruder and Vacation experience a performance boost,
which highly affects the system’s overall performance.

This interesting feature of RUBIC is also known as propor-
tional fairness, which is a well-studied topic in the context
of resource allocation in distributed systems [14].

Furthermore, Figure 8b proves RUBIC to be the most
stable adaptive policy. In this figure, the lowest standard
deviation in resource allocation, across all 50 repetitions of
each experiment, belongs to RUBIC. On the contrary, F2C2
is the most unstable adaptive solution.

It is worth nothing that the unexpected poor performance
and low stability of F2C2 stem from the initial exponential
growth phase. By this initial phase, a process can fall onto a
performance plateau, where the AIAD-based technique can-
not exit from, preventing the controller from ever converg-
ing. This is visible, for example, when running the workload
pair Int/Vac, since Vacation’s parallelism level goes beyond
the number of h/w contexts and never falls back (Figure 8c).

4.5.2 Single-process Execution

Although RUBIC originally targets multi-process environ-
ments, it is also relevant to evaluate it in single-process sce-
narios.
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It should be noted that in single-process scenarios, Equal-
Share and Greedy become identical, as they both give all
the hardware to a single running process.

Figure 9a depicts the achieved speed-up of all the policies,
running either of the workloads. For all the workloads and
also on average, RUBIC’s speed-up is always comparable
with the best performing policy.

Figure 9b shows that RUBIC achieves the aforementioned
speed-up by allocating slightly less threads to the running
process. However, RUBIC’s thread allocation is always the
closest one to the best performing policy (i.e. EBS).

Furthermore, on average, RUBIC is the most stable pol-
icy, by having the lowest standard deviation in its alloca-
tion results throughout the repeated experiments, depicted
in Figure 9c. Nevertheless, the same figure suggests that
EBS’s stability is very comparable to RUBIC.

4.6 Convergence

This section analyzes the convergence behavior of RUBIC
and the other parallelism tuning solutions.

To do so, we conduct the following experiment: two pro-
cesses, P1 and P2, run an identical workload. However,
these process have different arrival times. P2 arrives 5 sec-
onds after P1 starts running and the whole experiment lasts
for 10 seconds.

We record each process’ parallelism level during the ex-
periment. Then we see how P1 behaves before P2’s arrival
and how both processes behave as P2 joins the system.

To make the running processes actually fight over resources,
we chose to use a conflict-free red-back-tree workload (i.e.
100% read-only transactions). This workload is highly scal-
able and scales up to the number of h/w contexts, in a single-
process scenario. However, with 2 running processes a fair
and efficient allocation state is when the processes equally
share the hardware and each uses 32 s/w threads.

Figure 10 shows the behavior of different online policies
in the aforementioned experiment. We see that each policy
behaves very differently from the others.

In Figure 10a, F2C2 exhibits a pathological behavior: nei-
ther before, nor after P2’s arrival, the system converges to
an efficient state. The initial growth phase exponentially
increases the parallelism level to beyond the number of h/w
contexts. Then, the F2C2 controller gets stuck on a per-
formance plateau, and very slowly decreases the parallelism
level, but never converges to 64 threads. As P2 arrives, P2
falls into the same plateau. Interestingly, upon P2’s arrival,
P1 changes its behavior and starts slowly increasing its par-
allelism level, as well as P2. In fact, after P2’s arrival, both
processes fall into a race and greedily increase their resource
usage.

In Figure 10b, EBS performs the best before P2’s ar-
rival (unlike F2C2). P1’s parallelism level gradually con-
verges to 64 threads and remains steady at that level. But,
as P2 joins the system, both processes behave rather ran-
domly and they do not converge to the optimal allocation,
which is 32 threads per process.

Figure 10c depicts RUBIC’s impressive convergence be-
havior. In the beginning, P1 runs the initial probing phase
and quickly converges to 64 threads. From this point on, P2
oscillates around the optimal level (e.g., 64) until P2 joins
the system. P2’s cubic probing phase coincides with several
multiplicative decreases from P1’s side. Therefore, both pro-
cesses, almost immediately, get close to 32 threads and both



start oscillating around the optimal allocation line (i.e. 32
threads), until the end of the experiment, unlike the other
tuning policies.

5. RELATED WORK

While not a new topic, the problem of adaptive parallelism
tuning has received stronger attention in recent years due to
the emergence of multi/many-core architectures.

Didona et. al. [7] propose an exploration-based scaling
(EBS) method to dynamically find the best parallelism level
for TM applications. They use transaction commit-rate as
the performance measure and try to maximize the through-
put by dynamically changing the number of active threads,
taking a hill-climbing approach. Recently, Ravichandran et.
al. [4] introduced F2C2-STM, another adaptive parallelism
method. F2C2-STM is similar to Didona’s work, except for
an initial exponential-growth phase that allows a faster con-
vergence. We compared our results of RUBIC to those of
EBS and F2C2-STM in Section 4.

Heiss et. al. [20] also take a similar hill-climbing ap-
proach to find the optimal parallelism level in transactional
database systems.

Ansari et. al. [8] and Chan et. al. [9] suggest techniques
to increase the efficiency of TM applications by limiting
the wasted computational power caused by aborted trans-
actions. These methods try to keep the ratio of committed
transactions above a predefined threshold by dynamically
changing the number of active threads. However, such tech-
niques are not targeted at maximizing the system through-
put neither in single-process nor in multi-process environ-
ments, as they only limit the amount of wasted work.

Mohtasham et. al. [21] propose an online parallelism tun-
ing technique that is based on additive increase and mul-
tiplicative decrease phases. However, as discussed in Sec-
tion 2, this method is unstable and underutilizes the system.

Pusukuri et. al. [22] introduce a kernel-level solution to
find the near-optimal number of threads for a single parallel
application. This method is based on profiling the applica-
tion offline to find its best parallelism point. However, as
it is offline, it is not able to cope with dynamic changes in
workload or available hardware resources.

Also, there exists a body of research trying to improve the
performance of TM by introducing contention management
or transactional scheduling elements to a transactional run-
time [23, 24, 25]. Although these approaches may share the
concept of scheduling with our work in a broad sense, they
focus on rescheduling transactions (threads) inside a single
process, while we focus on the interferences between multiple
processes. In fact such research works are orthogonal and
complementary to ours.

Mohtasham et. al. [26] formalize and solve the resource
allocation problem for co-existing transactional memory ap-
plications, by introducing FRAME. FRAME is a centralized
and offline method; hence to obtain the optimal allocation,
it requires thorough knowledge of the co-running workloads,
which is far from trivial. Similarly, Creech et. al. [17] solves
the resource allocation problem for co-running OpenMP pro-
cesses with SCAF.

Rughetti et. al. [27, 28] use machine learning techniques
to predict the best parallelism level in software and hardware
transaction memory. These techniques need a learning phase
and are not completely online. Also, due to their dependence
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on the learning phase, such techniques may only perform
well in single-process scenarios.

There is significant work on adaptive parallelism tuning
for data-parallel languages, which shares some goals with
our proposal [29]. However, there are crucial differences be-
tween such context and the one that this paper considers.
Most importantly, contention across tasks within a job in
data-parallel programs is rare or inexistent; whereas TM
applications inherently share data, thus their threads are
highly prone to interferences such as data conflicts. More-
over, where TM applications typically run a pool of active
threads that is mostly stable, data-parallel programs dy-
namically unfold a directed acyclic graph of tasks, hence can
quickly oscillate between different parallelism levels. There-
fore, the assumptions underlying adaptive scheduling tech-
niques for data-parallel languages are not directly applicable
to the TM programs.

Furthermore, in the context of task scheduling and aside
from the classic schedulers [30], there exists a plethora of
contention-aware scheduling techniques [31, 32, 5]. Such
methods try to come up with an efficient solution to map
software threads to hardware cores and minimize the cross-
thread interferences. These methods are orthogonal to the
parallelism tuning problem. That is to say, contention-aware
schedulers do not change the number of threads in the par-
allel processes and, given a fixed set of active threads, these
methods merely aim at finding the best thread-to-core map-
ping. Therefore, our solution can complement such sched-
ulers with the ability to limit the total number of active
software threads in the system.

6. CONCLUSION AND FUTURE WORK

Transactional memory has proved itself as an elegant and
easy-to-use alternative to traditional lock-based methods.
Although TM solutions are known to be scalable on multi-
core processors, due to the inherent workload contention,
many TM applications cannot scale up to the ever-increasing
parallelism available on commodity many-core machines. In
fact, most TM workloads not only stop scaling after peaking
at a certain parallelism level, but also start losing perfor-
mance after that peak.

Hence, it becomes increasingly important to devise ef-
fective approaches to dynamically tune each process’ par-
allelism in order to reach the maximum throughput.

This problem has received recent attention. However, the
state-of-the-art solutions are tailored to and evaluated con-
sidering single-process scenarios, thus neglecting the dynam-
ics of the system, the running workload and fairness in mul-
tiprocess environments.

This paper proposes RUBIC: a decentralized method for
adaptive parallelism tuning for co-located transactional multi-
threaded processes. Our evaluation with different workloads
and scenarios shows that RUBIC enhances the system’s per-
formance compared to the state-of-the-art parallelism tun-
ing solutions in multi-process environments, while exhibiting
considerably faster convergence and higher fairness.

Although this paper focuses on the specific case of pro-
grams based on the transactional memory paradigm, RU-
BIC is extensible to any type of malleable application. The
key insight is that, as long as there are meaningful and pre-
cise ways of measuring the throughput of each process, it
can serve as the input to RUBIC. In future work, we plan
to extend RUBIC to support a wider range of the target



applications, including non-transactional and non-malleable
parallel applications.
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