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Abstract—As the technology trend moves toward manu-
facturing many-core systems with hundreds of processing
cores, the problem of efficiently managing multiple parallel
jobs on such massively parallel systems becomes increasingly
important. With traditional time-sharing each process assumes
it is the only running process. This assumption can easily
lead to system oversubscription and thereby, losing overall
performance due to frequent context switches.

Space-sharing techniques allocate a certain number of hard-
ware cores to each process and by that malleable processes can
set their parallelism level to their allocated number of cores,
hence avoiding oversubscription. However, finding the optimal
spatial allocation is not a trivial task.

In this paper we propose FRAME, a resource allocation
technique to maximize a system’s overall utility and fairness,
running multiple malleable processes with CPU-bound work-
loads. First, we formalize the resource allocation problem as
an NP-hard problem. Then, we use approximation techniques
and convex optimization theory to find the optimal solution to
the formulated problem, in pseudo-polynomial time.

Our evaluation results show that our method is very fast
and efficient in finding the optimal solution to the resource
allocation problem. Also, the results suggests that the found
solution increases the system’s overall utility by 48%, in
average, with regard to the best alternative allocation policy.

Keywords-Parallel programming, oversubscription, resource
management, space-sharing, convex optimization

I. INTRODUCTION

The processor industry is converging to an important
technology shift: to go for more, yet simpler, cores per chip.
Multi-core architectures are already the norm for most of the
commodity computing devices. But, in a near future, many-
core chips with hundreds of cores are expected to be an
affordable reality [1].

Effectively harnessing such increasingly-parallel ma-
chines calls for parallel workloads. As recent studies have
observed, there are trends that suggest modern multi/many-
core machines will most likely run multiple parallel pro-
cesses together, rather than a single parallel process alone
at a time [2], [3], [4].

The classical approach to collocate multiple processes
is through traditional thread schedulers, which time-share
the available hardware cores amongst the threads that each
process spawns [5]. Time-sharing is transparent to the run-
ning processes and allows process to assume it is the only
running process in the system. This can easily lead to system
oversubscription, when the number of computational inten-
sive threads exceeds the number of hardware cores. In an
oversubscribed system, time-sharing incurs non-negligible

costs. These costs are due to frequent context switches
between different threads and more cache-trashing. Addi-
tionally, the system’s throughput can be highly damaged
when, for example, a running thread that holds a lock is
preempted while the other running threads cannot move
forward because they are waiting for that lock to be released.

More recently, new solutions have proposed a distinct
approach to the problem: space-sharing together with time-
sharing [6]. In this 2-level approach, first, the hardware cores
are spatially divided between the processes. Next, the cores
allocated to each process are time-multiplexed between the
threads inside that process [6], [7].

This strategy fits particularly well with malleable appli-
cations with CPU-bound workloads. Such applications are
flexible and can set their parallelism level at the beginning
or throughout their execution [8]. Knowing the number of
allocated cores, a malleable application simply adjusts its
parallelism level to its hardware share and amortizes the
aforementioned negative effects of time-sharing.

Hence, it is desirable to solve the following problem:
to fairly allocate hardware cores to processes in such a
way that system overall utility is maximized. Intuitively,
an allocation is fair when no process starves and, more
importantly, resources that a process receives correspond to
its demand. Also, a system’s overall utility is defined as a
function of each process’s utility in that system.

In order to find a fair allocation that meets the applica-
tions’ processing demands, the applications must provide the
scheduler with the information about their workloads [7].
Such information can be gathered through an online or
offline profiling phase. However, given such information,
finding the optimal core allocation is not trivial for two
main reasons: (i) it requires solving an NP-hard optimization
problem, and (ii) quantifying and ensuring fairness is not
trivial.

To have more insights about the time complexity of
finding the optimal core allocation for co-exiting processes,
assume a 64-core system running multiple parallel processes
with known workloads. Depending on the resource allo-
cation, each process exhibits a throughput which can be
translated into that process’s utility. The goal of resource
allocation is dividing the 64 cores between the processes
in a way that the system’s overall utility is maximized.
Figure 1 shows the time needed by a brute-force search to
explore all the feasible domain of this following example.
The values are in logarithmic scale. Assuming each iteration
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Figure 1: The cost of exhaustive search to find the
optimal resource allocation.

takes only 1 nanosecond (in practice it is more than couple
of microseconds), an exhaustive search to find the optimal
core allocation for 24 concurrent processes takes up to 75000
years. In fact, the number of iterations is equal to C

(P+C)
P ,

where P and C denote the number of concurrent processes
and hardware cores, respectively, and C is the combination
function.

In this paper, we make the following contributions:
• We use the utility and the fairness notions of Nash
bargaining solution (NBS) [9] to propose a first formal
definition of the core-allocation problem for multi-process
parallel systems that takes both utility and fairness into
account.
• By relying on convex optimization theory [10], we propose
FRAME, an efficient and fast method to find the solution
to the formalized problem, in pseudo-polynomial time, for
malleable parallel applications whose scalability curves are
concave.
• By experimental evaluation we show that FRAME leads
the system to a configuration that yields both maximized
utility and fairness an increases the system’s overall utility
by 48%, on average, with regard to the best alternative
allocation policy.

The remaining of the paper is structured as follows. Sec-
tion II surveys the related work. Section III then introduces
the formal notions that allow us to cleanly define the problem
of core allocation. Section IV transforms the formulated
problem into an approximated problem that makes it pos-
sible for us to use convex optimization theory. Section V
solves the approximated problem and proposes an iterative
algorithm to find the optimal solution. Section VI then eval-
uates the proposed solution, comparing it to currently well-
known techniques. Finally, Section VII draws conclusions
and discusses future work.

II. RELATED WORK

The problem of finding the optimal core allocation has
been studied by the research community in the last couple
of years.

PACORA [11] is a general resource allocation framework
for manycore machines. This framework can be used to
allocate different types of resources to the processes. In
PACORA, each process defines a penalty function and then
the resource allocator minimizes the total aggregated penalty
in the system. The minimization is done using the convex
optimization theory. However, apart from being too generic,
the aggregation approach taken by PACORA may lead to an
unfair allocation where some processes starve.

Creech et. al. [4] propose SCAF. SCAF is a core allo-
cation framework that was proposed to efficiently allocate
cores to malleable parallel processes. The core allocation in
SCAF is done by maximizing the system’s overall utility.
SCAF prevents starvation by making sure that each process
receives at least one processing core. However, this cannot
be interpreted as fairness and SCAF’s problem formulation
imposes a very weak notion of fairness. For example, in
a system with hundreds of cores, allocating just a single
core to a multi-threaded process could be highly unfair.
Furthermore, SCAF assumes a simple scalability model,
in which all processes are scalable up to the number of
available cores. In many real applications, parallel workloads
may stop scaling at a certain level, due to synchronization
overhead and contention over shared resources [12].

Kazi et. al. [13] propose a core allocation technique for
co-existing processes with parallel loops. Their method is
limited to completely scalable loops without loop-carried de-
pendencies. Also, this method does not assure fair allocation
of cores to co-existing processes.

Harris et. al. [3] introduce Callisto, a resource manage-
ment level for parallel runtimes. Callisto prevents processes
from interfering with each other in terms of claimed hard-
ware resources. Paralell applications announce their hard-
ware demands and divide the resources collaboratively. One
of the root blocks of Callisto is a spatial allocation policy,
which the authors leave as an open option. FRAME can be
used as the spatial allocation algorithm in Callisto, thereby
leveraging Callisto with optimal and fair spatial allocation.

Didona et. al. [14] have proposed an adaptive method
to dynamically find the best parallelism point for shared-
memory transactional memory and distributed transactional
memory. They use transaction commit-rate as the perfor-
mance measure and try to maximize the throughput by
dynamically changing the number of active threads, taking
a hill-climbing approach. In Section VI, we compare our
results to those of this method as a state-of-the art dynamic
mechanism to find the optimum parallelism level.

III. THE FAIR RESOURCE ALLOCATION PROBLEM

To discuss fairness, first, we need to define the fairness
criterion. Our definition of a fair system is based on what
was proposed in Nash bargaining solution (NBS) [9].

In a system with P running processes, each running
workload wp, we define the utility of process p (Up), as the
ratio between the process’ current throughput (Tp(wp)), and
the maximum achievable throughput for the workload wp,
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in a single process configuration (T ∗(wp)). In other words,
Up(wp) = Tp(wp)

T∗(wp)
. Up is always positive and is equal or less

than 1.
Based on NBS, a fair resource allocation maximizes the

system’s overall utility. This utility is defined by the product
of all process’ utility value (i.e.

∏P
p=1 Up(wp)). For example,

it can be easily shown that in a contended system running
identical processes, equally sharing the hardware between
the processes maximizes the system’s overall utility.

A. Resource Allocation Model

The resource allocation environment is modeled as fol-
lows. We consider a parallel system with C hardware cores,
where P collocated processes run.

We assume that the workloads are generally CPU-bound
and so each software thread is able to completely use a single
hardware core. Hence, in a multi-process environment, com-
putational power (i.e. hardware cores) is the main resource
that is to be allocated to co-existing processes.

Each process pi wishes to execute a given workload, wi,
with Mi parallel threads. Mi is the number of parallel
threads by which pi reaches its maximum throughput run-
ning workload wi in a single-process environment (optimal
parallelism level). However, since resources are limited, the
system might not provide pi with the desired number of
processing cores. More precisely, we consider that, at each
moment, process pi is allowed to run τi active threads, where
0 ≤ τi ≤Mi.

An allocation shows the number of threads in all pro-
cesses in vector form by ~τ = (τi, i = 1, ...,P). Similarly,
the vector ~M = (Mi, i = 1, ...,P) shows the optimal
parallelism levels for the process’ workload in the single-
process mode.

The utility function of each process pi is represented as a
function of the number of threads allocated to that process
Ui(τi), where τi ∈ [0,Mi], Ui ∈ [0, 1].

We consider workloads that scale sub-linearly until their
optimal parallelism level. However, sub-linear scalability is
more common due to the increases in contention between
parallel threads or thread management overhead and many
real-life workloads fall into this category [12], [15]. There-
fore, for a given workload wi, its utility function Ui(τi) is
strictly increasing, when τi ∈ [0,Mi].

We assume that there is a central entity responsible for
allocating cores to the parallel processes. This entity knows
about the number of processes and each process’ workload
and makes decisions based on this information.

The goal of resource allocation is to ensure that a set
of parallel processes leaves exactly one software thread
pinned to each core, while the overall utility of the system is
maximized. In other words, the resource allocator efficiently
allocates C hardware cores to P parallel process, where the
total number of software threads does not exceed C. Also,
the resource allocator makes sure that no process receives
more cores than its corresponding Mi. These constraints

can be expressed as:
P∑
i=1

τi ≤ C, (1)

τi ≤Mi, i = 1, ...,P. (2)

For the sake of notation, we rewrite constraints (1) and
(2) in vector form as:

~1ᵀ~τ ≤ C, (3)

~τ ≤ ~M, (4)

where ᵀ denotes a transposed vector/matrix.

B. Problem Formulation
The goal of the resource allocation is to maximize the

system’s overall utility. Since the maximization should be
done over the feasible region, which is characterized by (4)
and (3), the optimization problem can be formulated as:

maximize
~τ

P∏
i=1

Ui(τi)

subject to ~1ᵀ~τ ≤ C and ~τ ≤ ~M,

(5)

where Ui denotes the ith process’s utility function.
Considering each Ui(τi) being strictly increasing on

[0,Mi], we use a logarithmic monotonic transform and,
without loss of correctness, the problem (5) is rewritten as:

maximize
~τ

P∑
i=1

lnUi(τi)

subject to ~1ᵀ~τ ≤ C and ~τ ≤ ~M.

(6)

This problem is an integer linear programming (ILP) prob-
lem, which is NP-hard and can not be solved in polynomial
time, in its general case.

In order to find the solution to (6), we use convex
optimization theory [10].

IV. APPROXIMATION TO THE PROBLEM

In this section we describe how we transform the above
formulated problem into an approximated problem that
makes it possible for us to use convex optimization theory.

A. Approximation Function
To efficiently solve Problem (6), first, we need to approx-

imate Ui(τ) with a well-behaving function, Hi(τ).
As stated earlier, a workload wi scales sub-linearly and

its utility function, Ui, is a strictly increasing function and
ranges from 0 to 1.

The above features suggest that an ideal approximation
function H must be strictly increasing and concave (i.e.
twice-continuously differentiable).

It is easy to prove that with such an approximation
function, Problem (6) admits a unique maximizer [10].
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Using the aforementioned features, a good candidate is
the cumulative distributed function (CDF) of exponential
distribution, which is defined as: 1− e−λx.

In this paper, we use the generic form of the exponential
distribution’s CDF to define H:

H(x, α, β, γ) = γ − e−α(x−β), (7)

where α, β and γ are approximation parameters.

B. Deriving Approximation Parameters

In order to approximate Ui withHi, approximation param-
eters should be selected so as to minimize the error between
Ui and Hi. Toward this end, several error metrics can be
employed. We used mean square error (MSE), which is a
well-known error metric [16]. We define the MSE as the
square difference between the original function (i.e. Ui) and
its approximated function (i.e. Hi):

MSE(U ,H) =
∫
D

(
(U(x)−H(x, α, β, γ)

)2
dx, (8)

where D is the domain of interest and for Ui, Di is equal
to [0,Mi] and D ⊂ Z (Z is the set of all integers).

Based on MSE(U ,H) defined above, the approximation
parameters α, β and γ can be found as the solution to the
following optimization problem:

minimize
α,β,γ

MSE(U ,H). (9)

Even if there exists a closed form universal solution to
(9), it is quite cumbersome and challenging. Furthermore,
MSE(U ,H) might not be a convex function for all Ui func-
tions over all desired Di domains. Therefore, we consider
Problem (9) as a non-convex problem, which can not be
solved by convex optimization theory in general case.

Since Problem (9) is unconstrained, we can apply iterative
methods to solve it. Amongst iterative methods, the gradient
descent method and its variants are simple and computa-
tionally efficient. However, as Problem (9) is a non-convex
problem, there is no guarantee to find the global optima.
Instead, in order to solve Problem (9), we resort to using
randomized methods, such as particle swarm optimization
(PSO) [17].

C. The Approximated Problem

With the above approximation and finding the approxi-
mation parameters, αi, βi and γi, for each process’ utility
function, Ui, Problem (6) can be rewritten as:

maximize
~τ

P∑
i=1

ln
(
γi − e−αi(τi−βi)

)
subject to ~1ᵀ~τ ≤ C and ~τ ≤ ~M.

(10)

In the following section we find the solution of Prob-
lem (10), using convex optimization theory.

V. FINDING THE OPTIMAL SOLUTION

In this section, we solve Problem (10) using convex
optimization theory and dual-based approaches. To do so,
first we need to prove that Problem (10) is a convex problem
in its domain.

A. Concavity
In order for Problem (10) to admit a unique maximizer

and to find that maximizer by convex optimization theory,
each lnHi(τ) should be a concave function throughout
its domain. Since ln is a strictly increasing and concave
function, the ln transformation preserves the concavity.
Therefore, we only need to proof the concavity of the Hi
functions.

For Hi(τ) to be concave, we need to prove that Hi(τ)
is twice-continuously differentiable and its second derivative
must be negative within its domain, which is shown in the
following:

d2Hi
dτ2

=
d2(γi − e−αi(τ−βi))

dτ2

= −α2
i e
−αi(τ−βi) < 0; αi 6= 0.

(11)

Since Hi(τ) is strictly concave, we deduce that H(~τ),
which is the non-negative weighted sum of strictly concave
functions, is strictly concave.

Also, the constraints in Problem 10 include affine func-
tions, hence they are convex.

By this, we deduce Problem 10 is convex problem. Since
the feasible set is compact and the objective is strictly
concave, there exists a unique maximizer for Problem 10.

B. Optimality Conditions
To derive optimality conditions, we write the Lagrangian

of Problem (10) as follows [10]:

L(~τ , ~µ, ν) =
P∑
i=1

lnHi(τi)−~µᵀ(~τ− ~M)−ν(~1ᵀ~τ−C), (12)

where ~µ = (µi, i = 1, ...,P) is the vector of positive
Lagrange multipliers associated with Constraint (4) and,
similarly, ν is a positive Lagrange multiplier associated with
Constraint (3).

The answer for a convex optimization problem must
satisfy the Karush-Kuhn-Tucker (KKT) conditions [10]. The
KKT conditions for optimal primal variable ~τ∗ and dual
variables, ~µ∗ and ν∗, are:

∇~τL(~τ∗, ~µ∗, ν∗) = ~0, (13)

~µ ≥ ~0 and ν ≥ 0, (14)

~µ∗ᵀ(~τ∗ − ~M) = 0 and ν∗(~1ᵀ ~τ∗ − C) = 0, (15)

where ~0 is a vector with all zero. Condition (13) ensures
there is no feasible directions that improves the objective
function. Conditions in (14) depict dual feasibility, which
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say the dual variables (a.k.a. shadow price) are non-negative
values. Finally, conditions in (15) tell us if a dual variable
is positive, then the associated primal constraint must be
binding and if a primal constraint fails to bind, then the
associated dual variable must be zero.

Solving (13) to find the stationary points of the La-
grangian yields:

∂L

∂τi
=

αie
−αi(τi−βi)

γi − e−αi(τi−βi)
− µi − ν = 0. (16)

After solving (16), for optimal primal variable τ∗i , we
have:

τ∗i = βi −
1

αi
ln

(
γi(µi + ν)

αi + µi + ν

)
. (17)

In order to solve Problem (10) using its dual, we have
to obtain the Lagrange dual function. The dual function
D(~µ, ν) is defined as the maximum of Lagrangian L(~τ , ~µ, ν)
over the primal variable ~τ , for given ~µ and ν. Thus, D(~µ, ν)
can be expressed as:

D(~µ, ν) = max
~τ

L(~τ , ~µ, ν). (18)

Based on KKT conditions and using (17), for D(~µ, ν) we
have:

D(~µ, ν) = L(~τ∗, ~µ, ν). (19)

Then, the dual problem is formulated as [10]:

minimize
~µ≥~0, ν≥0

D(~µ, ν) (20)

In the next section, we solve the above dual problem,
using iterative methods.

C. Solving the Dual
In this section we solve the dual problem (20) using

gradient projection algorithm. Gradient projection algorithm
is an iterative method that adjusts ~µ and ν in the direction
to the gradients of dual function, i.e. ∇D(~µ, ν). To be more
specific, in the kth iteration, the iterative algorithm updates
the dual variables µ(k)

i and ν(k) as follows:

µ
(k+1)
i =

[
µ
(k)
i −ψ

∂D(~µ(k), ν(k))

∂µi

]+
; i = 1, ...,P (21)

and

ν(k+1) =

[
ν(k) − ψ∂D(~µ(k), ν(k))

∂ν

]+
, (22)

where [z]+ = max{z, 0} and ψ > 0 is a sufficiently small
constant step-size.

Using Danskin’s theorem [18], partial derivatives of
D(~µ, ν) are given by:

∂D(~µ, ν)

∂µi
=Mi − τi (23)

and

∂D(~µ, ν)

∂ν
= C −~1ᵀ~τ = C −

P∑
i=1

τi. (24)

Substituting (23) and (22) in (21) and (22, respectively,
yields:

µ
(k+1)
i =

[
µ
(k)
i − ψ

(
Mi − τ (k)i

)]+
(25)

and

ν(k+1) =

[
ν(k) − ψ

(
C −

P∑
i=1

τ
(k)
i

)]+
, (26)

where τ (k)i is obtained using (17), given µ(k)
i and ν(k).

Algorithm 1 The iterative algorithm
Initialization:

1: Calculate (αi, βi, γi);

Main Loop:
2: repeat

3: ν(k+1) =

[
ν(k) − ψ

(
C −

∑P
i=1 τ

(k)
i

)]+
4: for i = 1 to P do

5: µ
(k+1)
i =

[
µ
(k)
i − ψ

(
Mi − τ

(k)
i

)]+
6: τ

(k+1)
i = βi − 1

αi
ln

(
γi(µ

(k+1)
i +ν(k+1))

αi+µ
(k+1)
i +ν(k+1)

)
7: end for
8: until max

∣∣∣τ (k+1)
i − τ (k)i

∣∣∣ < ε

Output:
Let every process knows about its thread count.

D. The Iterative Algorithm

In this section we propose an algorithm based on the
iterative solution obtained in the previous section. From the
proposed solution, equations (17), (21) and (22) are jointly
used in the proposed algorithm. Equation (17) calculates the
optimal number of threads in each process and the later two
are used to update Lagrange multipliers.

Algorithm 1 shows how the iteration algorithm works.
At the initialization step, the approximation parameters
(α, β, γ) are calculated for each process, solving Problem (9)
described in Section IV.

Then using the approximation parameters, the iterative
algorithm proceeds as follows. At iteration step k, the
Lagrange multipliers are updates using equations (21) and
(22). Then, the optimal number of threads for each process is
updated, based on the new Lagrange multipliers value, using
(17). The algorithm keeps repeating this procedure until it
converges to the optimal point.

The final allocation comprises integer values. Hence, ~τ∗ is
rounded down, and the remaining hardware cores are divided
between the processes that were rounded down the most.
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Figure 2: The scalability/utility graph
of the experimental workloads. Each
workload is marked with its optimal
parallelism level.
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Figure 8: Relative commit-rate in each process-set.

VI. EXPERIMENTAL EVALUATION

Our method is applicable to any set of processes with
CPU-bound workloads. The only requirement for the work-
loads is the concavity of their scalability/utility curve. Al-
though this requirement may narrow down the types of the
workloads we can use, there is still a wide range of parallel
workloads that fit into this category. This stems from the
fact that most of the parallel workloads monotonically scale
(sub)linearly up until they reach their maximum throughput.

Nevertheless, there are cases when a workload loses its
monotony because of some external factors, such as NUMA
effect, when a process starts using a new socket on a NUMA
machine. In such cases, the approximated functions and

thereby the final solution lose their accuracy.
The workloads used in our evaluation are generated by

running a red-black tree benchmark on top of the NORec
STM [19], as the underlying parallelism runtime.

In this benchmark, each transaction either looks up, inserts
or deletes an element in the red-black tree. By changing the
ratio of look-up transactions against those that update the
tree, we change the contention level and hence the natural
parallelism level.

We consider three different workloads, named A, B and
C. Figure 2 shows the scalability graph of these workloads.
These graphs are obtained by running the workloads in
a host environment consisting of 4x AMD Opteron 6272
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CPUs, each with 16 cores, where each core runs one thread,
resulting in 64 hardware cores and total memory of 32GB,
running linux kernel 3.2.0-58.

In the scalability graphs, we measure the throughput, in
terms of transaction commit-rate, as the number of parallel
threads grows from 1 to 64. To obtain the utility functions,
the values are normalized relatively to the peak throughput
that was measured in each workload. Each graph is also
marked with its optimal parallelism level, at which the
workload exhibits its highest throughput in a single-process
environment.

It should be noted the choice of the host machine, the
parallelism runtime and the application does not affect our
results’ correctness. It stems from the fact that our technique
is only concerned with the utility function acquired by any
arbitrary parallel application with any workload running and
it finds the optimal resource allocation for that combination
that maximizes the system’s overall utility.

A. Workload Approximation Functions

As discussed earlier in Section IV, we use PSO to solve
an MSE problem to find the best fitting function for each
workload’s utility graph.

Our PSO implementation is a simple one with no paral-
lelism and each iteration takes almost 250 microseconds.

Figure 4 shows the convergence of PSO in solving the
MSE minimization problem for each workload. Although
PSO is an evolutionary method, the observed convergence
behavior suggests the fact that PSO performs very fast in
order to find the best fitting approximation function. For each
workload, PSO almost converges in less than 60 iteration
steps which translates into 15 milliseconds.

Furthermore, Figure 3 shows the high accuracy of the ap-
proximation functions found by PSO. All the approximation
functions highly fit the corresponding original ones.

B. Core Allocation Policies

We compare FRAME’s results to those gathered by the
following allocation policies:
• Greedy: This is the simplest baseline policy which is used
by many parallel systems. In this policy, each process tries
to take over the whole hardware by defining as many parallel
threads as hardware cores.
• WLOptimal: Using this policy, each process sets its
parallelism level to its workload’s optimal level, depicted
in Figure 2. It is worth mentioning that, this policy is not
the optimal policy and like with the Greedy policy, the total
number of software threads can easily go beyond the number
of hardware cores.
• EqualShare: In this policy, each process takes an equal
share of the hardware, regardless of its workload. To be
more specific, in a system with C hardware cores and P
concurrent processes, each process receives

⌊ C
P
⌋

cores. This
policy ensures that the total number of software threads
never exceeds the number of hardware cores.

• Adaptive: We use an adaptive parallelism technique, pro-
posed in [14], as a state-of-the-art policy, which is described
previously in Section II.

C. Evaluation Configurations

In order to measure the efficiency of different allocation
policies, we evaluate them in a heterogeneous environment
and with a varying number of parallel processes.

For the sake of heterogeneity, in each experiment, the
parallel processes are divided into three sets of processes
with the same size. Hence, the total number of coexisting
processes is a multiple of three. Each process-set is associ-
ated with either of the workloads A, B or C. All processes
inside a process-set are homogeneous and they execute the
associated workload, but the each process-set runs a distinct
workloads.

Throughout different experiments, we vary the number of
total processes from 3 to 24, which means 1 to 8 processes
inside each process-set.

D. Convergence of the Iterative Method

The convergence of the Lagrange multiplier shows how
Algorithm 1 converges to the optimal solution to the core
allocation problem.

Figure 5 shows the evolution of the Lagrange multiplier,
where the iterative algorithm is set to find the optimal
solution. In this experiment, the system runs 24 concurrent
processes (i.e. 8 processes in each process-set).

The algorithm converges to the optimal solution after
almost 50 iteration steps. This convergence is considerably
faster than the equivalent exhaustive search algorithm, which
needs to take about 23× 1020 cases into account to find the
optimal solution.

The step-size, ψ, is set to 0.0001.

E. Core Allocation Results

Figure 6 depicts the resource allocation results of
FRAME. This figure represents the total number of threads
(cores) allocated to each process-set for a single policy. We
can see that FRAME has a notion of fairness where neither
of the processes starve even in a highly contented configu-
ration with 24 processes. Also, more demanding processes
(e.g., Process-set C) receive more resources comparing to
the other processes, while the less demanding ones still get
their own share of the system and do not starve.

F. Performance Results

In all the performance graphs, the values are divided by
those measured by the FRAME policy.

Figure 7 shows the system’s total utility employing either
of the policies. This figure shows that FRAME and Equal-
Share, which strictly keep the total number of threads equal
to or less than the number of h/w cores, perform much better
than the other core allocation policies. Also, from this figure,
it is evident that FRAME always reaches the highest utility
level. In fact, FRAME increases the overall system’s utility
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up to 127%, and 43% in average, compared to the second
best policy, which is EqualShare.

Also, Figure 8 depicts the effect of employing either of
the discussed policies on each process-set’s throughput (i.e.
commit-rate).

In this figure, for all the workloads, FRAME either
exhibits the best throughput or it performs comparable to
the best policy.

It is noteworthy that in the 3-process configuration (i.e.
1 in each process-set), WLOptimal leads to the optimal
resource allocation, since it does not oversubscribe the
system. This justifies the fact that WLOptimal performs as
well as FRAME in this configuration.

These performance results prove that in fact FRAME is
the best core allocation policy to date,

VII. CONCLUSION AND FUTURE WORK

Current trends suggest that modern parallel machines are
likely to run multiple parallel processes together. Hence,
it becomes increasingly important to devise effective ap-
proaches to adjust each process’ parallelism in order to
maximize the system’s overall utility while ensuring fairness
between the parallel processes. However, the state-of-the-
art solutions are simply tailored to maximize the overall
throughput and neglect the fairness requirement of a system.

In this paper, we proposed FRAME as a fair resource
allocation method for multi-process environments. We used
the notion of utility and fairness from the Nash bargaining
problem and we formalized the core allocation problem
for computationally intensive co-existing parallel processes.
In this problem hardware cores are to be allocated to the
parallel processes in a way that the system’s overall utility is
maximized, while fairness is preserved. Then, we solved the
core allocation problem by employing convex optimization
theory and we proposed an iterative algorithm that can be
used to solve this problem in practice.

By evaluating against the state-of-the-art policies, we
showed how FRAME increases the system’s overall utility
by 48%, in average, with regard to the best alternative
allocation policy.

Although our evaluation uses transactional memory as the
underlying parallel runtime, FRAME is easily applicable
to any parallel programming paradigm. The key insight is
that, as long as there are meaningful and precise ways of
measuring the utility function of each process, it can serve
as the input to our method.
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