
easy-City: a route search system for public transport users∗

Fábio Pereira and João Barreto
Instituto Superior Técnico, Technical University Lisbon / INESC-ID Lisbon

[fabio.pereira, joao.barreto]@ist.utl.pt

ABSTRACT
This paper addresses the hard problem of route searching
on public transport transportation. easy-City is a decen-
tralized collaborative system that takes advantage of pub-
lic transport users’ mobility and observations to provide a
route searching service. Users’ mobile phones and deployed
infra-structure devices establish a delay-tolerant network to
efficiently disseminate information about routes and other
events occurring on the public transportation network. We
introduce a novel message dissemination protocol that ex-
ploits estimates of each user’s future locations to make in-
formed forwarding, message aggregation and buffer manage-
ment decisions.

A simulation-based evaluation of easy-city with geograph-
ical and public transport data shows that, in a realistic sce-
nario, the system aids users to find best route options even
in the presence of unpredictable events. A simulation with
468 nodes shows that easy-City often provides better options
than a typical journey planning application based on static
knowledge about the transportation network.

Keywords: public transport systems, delay-tolerant net-
works, ubiquitous computing, store-carry-forward

1. INTRODUCTION
As population densities in big urban centers grow, sustain-

able mobility is assuming more and more importance. Grad-
ually, more public transport alternatives are made available
to citizens. While this change substantially improves one’s
mobility, it also makes it more complex to take advantage
of public transports efficiently. The central question that
public transport users repeat routinely is “what is the best
way to get from A to B by a combination of public trans-
ports?”. Finding an adequate answer to the question in a
reasonable amount of time is crucial to the perceived quality
of the public transport service.

Given two points in a city, there are typically several ways

∗This work was partially supported by FCT (INESC-ID
multi-annual funding) through the PIDDAC Program funds

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
M-MPAC’2011, December 12th, 2011, Lisbon, Portugal.
Copyright 2011 ACM 978-1-4503-1065-9/11/12 ...$10.00.

to travel from one point to the other. Alternatives can vary
in many ways, like means of transportation (e.g., subway,
train, tram, bus, ferries), operators, estimated durations,
prices, number of tickets needed to completion, etc. All
those aspects are important for public transport users and
they can have a massive impact on the effective outcome of
their routing choices.

An ideal solution to this problem should fulfil two main
requirements. First, it should provide the user with the best
route option in terms of duration, price and number of times
the user needs to change transport (or a possible conjugation
of these factors, according to user requirements). Second, it
should maximize the availability of the route search service,
if possible, allowing its usage anytime, anywhere.

However, a number of fundamental challenges push cur-
rent state-of-the-art systems away from the ideal solution.
Information about the transportation network is typically
numerous and complex. So, delegate the responsibility of
finding the best option to the user is not a good choice.

Not surprisingly, public transport journey planners be-
came very popular due to the automatic route computation
performed by these systems. However, journey planners are
often centralized systems, which can be accessed by an Inter-
net connection, or off-line using locally cached information
about the public transportation environment.

Furthermore, the information is often dynamic, it changes
constantly and those applications often use static sources of
information. Hence, real-time unpredictable events are not
reflected on the decisions taken by these journey planners.
To overcome this challenge, several public transport oper-
ators started to introduce sensors on the infrastructure, to
gather real-time information about their services (waiting
times, estimated durations, traffic jams, accidents, service
interruptions). This information is typically disseminated
through the infrastructure to be available where it is neces-
sary. However, these solutions are very expensive to install
and maintain [7]. So, the coverage of these solutions is usu-
ally limited (few sensors, few access points). Furthermore,
the information gathered is typically related to one specific
operator instead of all the public transport offer. So, these
systems usually inform the user about the best route option
concerning the services of the system owner.

This paper advocates that users should be involved in the
route planning system, not only as interested consumers but
also as collaborative feeders of dynamic information they
gather on their journeys. As we show later on, leveraging
an existing infrastructure-based system with the informa-
tion provided by crowds of users can substantially enrich
the ability of the system to propose adequate routes.

In this paper we introduce the easy-City middleware. To
the best of our knowledge, easy-city is the first collabora-
tive decentralized route planner for public transport users,
based on an ad-hoc networking approach. In easy-city, com-
modity wireless devices carried by users work together with
inexpensive wireless devices installed in public transport ve-
hicles, stations and stops. Users gather information about
real-time journey times. Stop nodes produce infra-structure
warnings about the public transportation network, like ac-
cidents, traffic jams and service information. Vehicles ex-
change messages with users to inform them when they enter
or exit them.

Using the gathered information and a transport network
map, easy-City lets users ask for routes between two given
points. Maps have information provided by operators about
the public transport offer on a city, like travel times, waiting
times and pedestrian times. Then, the knowledge on the
map is complemented by the gathered information through
time estimative calculations. The gathered information is
divided in individual observations and they are organized
on an observations base.

easy-City relies on a message dissemination protocol which
uses estimates of each node’s future locations to make for-
warding, buffer management and message aggregation deci-
sions.

Based on simulations with real world city maps, we show
that users aided by easy-City frequently (20 to 49% times)
finish their journeys substantially earlier than they would if
they relied on using traditional static journey planners.

The remainder of this document is arranged as follows.
Section 2 surveys related work. Section 3 describes easy-City
and the underlying mechanisms. Section 4 then presents
the results obtained by simulating easy-City in different real
world scenarios. Finally, Section 4.2 draws conclusions.

2. RELATED WORK
In this section we describe the traditional approaches to

solve the route planning in public transportation problem.
Some of these approaches have been in use for years, others
are more recent ones.

In the most primitive solution to the problem, the public
transport user performs all the tasks of route planning in
public transportation. Using static sources of information,
the user behaves as an optimizer, performing cognitive tasks
to find a route option to travel between two given points.
However, this approach has clear limitations. The main issue
is that, typically, humans do not perform well in finding the
best route option between two given points [15]. This issue
becomes more problematic when the complexity of available
options increases.

An evolution on state-of-the-art solutions was brought by
the introduction of infra-structure sensors by operators on
public transportation networks (e.g. RATP geographical lo-
cation system [20], CTA’s BusTracker [2], the Tube elec-
tronic displays [18]). Typically, these sensors capture infor-
mation about the environment. Then, captured information
is made available on different information sources (e.g., elec-
tronic panels, SMS, email). By accessing these information
sources, users have more and better information to base their
decisions. However, in this approach the user still performs
the main tasks on finding the best route option. Neverthe-
less, the error probability is still high which can drive to bad
decision making.

With the growth of Internet popularity, the emergence
of automatic Internet-based route planning in public trans-
portation (e.g. Google Transit [10], London Journey Planner
[17]) happened naturally. However, the need for an Internet
connection is an important limitation. Since route optimiz-
ers are more useful when users are travelling or about to
travel, the use of such systems comes often with a consider-
able cost, both in terms of monetary fees and battery con-
sumption. Furthermore, these systems often do not use real-
time information about the transportation network. Hence,
they fail to reflect the effects of events like accidents, traffic
jams and service interruptions on the route planning sugges-
tions.

The field of Vehicular Ad-Hoc Networking (VANET) deals
with problems such as road warning applications and navi-
gation systems, which share important resemblance with the
problem that we address in this paper. Many VANET so-
lutions are based on delay-tolerant networking [6], possibly
backed up by some road-side infra-structure [16]. The main
challenge on delay-tolerant networking is the communica-
tion between nodes. Due to the lack of simultaneous reliable
end-to-end communication paths between nodes, typically, a
Store-Carry-Forward mechanism is used to deliver messages.
The effectiveness of such systems depends strongly on ad-
equate message forwarding and dissemination mechanisms
[25, 8, 9, 24, 23, 14, 3, 22, 26], buffer management policies
[4, 13] and data aggregation mechanisms [1, 16, 19].

However, there are some differences between those VANET
solutions and our scenario. Users may migrate between ve-
hicles during their route, rather than relying on the same
vehicle for the whole journey. The mobile devices that users
carry have significantly higher energy constraints than the
devices deployed in vehicles. Users have less predictable
routes, because their movement patterns are not limited to
road infrastructures. Finally, most means of public trans-
port obey to schedules, instead of purely continuous traffic
as in automobile traffic.

3. EASY-CITY
In this section we start by describing the system model ex-

plaining the basic assumptions, rules and components nec-
essary for the deployment of the easy-City system. We then
introduce easy-City, starting by its basic features, and then
detailing more advanced mechanisms of our solution.

3.1 System Model
There are three node types: users, vehicles and stops.

User and vehicle nodes are mobile. They represent, respec-
tively, public transport users and public transport vehicles.
Stop nodes are a representation of a specific stop point on the
transportation network (stations, docks, bus stops). Nodes
are able to communicate in short-range opportunistic inter-
actions through some wireless communication protocol, such
as Bluetooth [21].

As user nodes move through the transport network, they
approach stops and enter vehicles. When users intersect stop
nodes, they receive location-time messages. Location-time
messages have a location associated to a temporal instant.
A location-time message reports that an user, that receives
it, is standing on the reported location, on the report time
instant.

When users intersect vehicle nodes, they receive vehicle-
time messages. Vehicle-time messages have a vehicle identi-

fier and a temporal instant. A vehicle-time message reports
that an user enters, is standing at or leaves the vehicle iden-
tified by the contained identifier.

The main role of stop nodes is to introduce observations
reporting consequences of unpredictable events that occur
on the transportation network. For example, when a ser-
vice interruption occurs, the waiting time for the service
increases. Stop nodes affected by the interruption introduce
observations reporting that the waiting time for that service
increased.

3.2 Basic Solution
easy-City is a collaborative decentralized system. It estab-

lishes a delay-tolerant network between nodes. The goal of
easy-City is not only to be a one-time searching application,
but also a real-time advisor, reporting changes on the envi-
ronment, including invalidations on the current best route
option and fresher best options. As we explain next, the
key insight of easy-City is that each user node voluntarily
contributes to enrich easy-city’s ability to provide accurate
and up-to-date route suggestions.

Each user node maintains the following state:

• a map with information about the transportation net-
work, like stop locations, vehicle-travelling times, walk-
ing times and estimated time of arrival;

• information about services on the transportation net-
work, like transport schedules and routes;

• an observation base (explained next).

At any time, the user can access his node to request a route
between two given points. The node uses the knowledge
present on the map and the observations present on the ob-
servation base to compute an answer. Later, we explain how
this task is performed.

A map is a weighted graph representing the transporta-
tion network, where nodes are points on a city, stations or
stops, and edges are transitions between nodes which cor-
respond to the action of moving from one node to another.
There are three kinds of edges: waiting edges, vehicle edges
and pedestrian edges. Waiting edges represent the action
of waiting for a transport. Vehicle edges represent the ac-
tion of travelling between two stops or stations on a vehicle.
Pedestrian edges represent the action of moving between ge-
ographical points on the city by walking. The weight of an
edge represents the time it takes to move from the source to
the destination node of the edge.

3.2.1 Observations
An observation is a tuple that represents the time between

two events, as observed by some user node. There are two
kinds of observations: waiting time observations and travel
time observations. A waiting time observation represents
the time from the moment where the user arrived at a given
stop and the instant where he got in the vehicle he was
waiting for. Waiting times are constructed by combining
the location-time message the user received from the stop
and the first vehicle-time message the same user received
once he entered the vehicle.

In contrast, travel time observations report travelling times
between consecutive stops while a user is ridding a transport.
Travel time observations are captured by measuring the de-
lay between the reception of different location-time messages
when the user is inside a vehicle.

All user nodes travelling through the transport network
create observations about their journeys, reporting experi-
enced travel and waiting times. Figure 1 illustrates a route
option being travelled by an user node and the correspon-
dent reported times through observation messages dissemi-
nation.

Figure 1: A-B Route and observed times

The waiting time in A (te) is given by the delay between
the reception of the first location-time message from A and
the vehicle-time message from the vehicle that user wants to
take. The first travel time is given by the delay between the
reception of the vehicle-time message and the reception of
the next stop’s location-time message. The following travel
times are measured by the delay on the reception of different
location-time messages.

User nodes disseminate created and received observations.
We show later on, how user nodes perform dissemination.

3.2.2 Route Planning
When the user at a given node wants to find the best

route option between two given points, its node uses the
map together with the observation base and a graph search
algorithm. Tuples on the observation base are used to up-
date the times (weight of edges) on the map. This way, we
enhance the base map with the flexibility to reflect possible
changes on the environment. On the updated map, we apply
Dijkstra’s search algorithm [5] to find the best path.

For each waiting edge or travel edge on the local map of a
user node, there is a correspondent tuple on the observation
base. An observation base is a set of entries in the following
form:

ob
o1
o2
o3
...

where ob represents a base observation, part of the node’s
initial knowledge about the transportation network. The
remaining entries are observations created on-the-fly either
by the user node itself or by some other user nodes.

When an user node receives an observation, it adds an
entry on the correspondent register on the observation base.

The current estimate of a time on the map is calculated as
a weighted average of all known observations for that time,
as follows.

t =

∑n
i=1 Piti∑n
i=1 Pi

× (1 − α) + tb × α

Static times (tb) have a weight of α on the weighted av-
erage. The α value is configurable. A high value represents
a high weight for the static component on the calculation of
estimated times. If there are no user observations, about a
given segment on the map, the static component weight is
1.

The weight of user observations is not uniformly distributed.
A recent observation is more reliable to represent the cur-
rent state of an edge. Older observations must be carefully
used, because they can become inaccurate.

The following function computes the weight of an obser-
vation:

P (i) =

{
tval→i − tc : tval→i > tc
0 : tval→i ≤ tc

The weight of an observation is given by the difference
between the expiration instant (tval) and the current instant
(tc).

After the computation of the weighted average, the re-
turned result is used on the searches for the best route op-
tion. To keep the user in track of public transport network
changes, in this basic solution the best route option is cal-
culated in each observation message reception, using the Di-
jkstra algorithm.

For example, to the following register:

300

1294(tval = 1360)
1365(tval = 1211)
266(tval = 2900)

...

the current time (tc = 900) estimate is given by:

t =
1294 × 490 + 1365 × 311 + 266 × 2000

490 + 311 + 2000
×(1−α)+300×α

This example may represent a waiting time edge of a stop
that suffered some delay (1294, 1365) due to a service inter-
ruption and now returned to normal operation (266).

3.3 Advanced Mechanisms
When deployed on a realistic scenario, easy-City needs to

deal with important resource constraints, where resources
such as memory, CPU, bandwidth and battery limitations
that are common to many mobile devices and networks.
This section introduces the mechanisms that make easy-City
appropriate for the scenarios that this paper addresses.

3.3.1 Message Dissemination
We introduce a dissemination mechanism that uses con-

text information to take more efficient forwarding decisions.
Each node has a transport buffer to store observation mes-

sages. When a node meets another, our protocol works like
Epidemic Routing [23]. They exchange summary vectors of
their transport buffers. A summary vector identifies which
messages a node contains on his buffer. This way, both nodes
can find out which messages they do not share. Finally, they
start sending messages.

The computation result is then used to decide if a message
is stored in the transport buffer. When creating or receiving
a message, our scheme uses a relevance function to decide
if a message is stored in the transport buffer. Relevance
function results are contained on the interval [0,1]. A low
value indicates that a message has low relevance, and the
probability of encounter with nodes interested in the mes-
sage content is low. An high value represents a message with
high relevance, and the probability of encounter with nodes
interested in the message content is high.

A relevance function is a configurable parameter in easy-
City. For example, a flooding-based protocol can be imple-
mented by the following relevance function:

Frel(m) = 1

ie, all messages are qualified with the same relevance.
A simple gossip-based [11] solution can be expressed by

the following relevance function:

Frel(m) =

{
1 : Random(0, 1) > 1 − β
0 : Random(0, 1) ≤ 1 − β

where β is the probability of adding a message to the trans-
port buffer.

Future-Location-Aware Relevance Function
It is possible to implement relevance functions that take into
account information about node’s mobility and interesting
message destinations. An observation message has a pair
of locations, or a segment, reporting travel or waiting times
experienced during an user journey. Observation messages
are particularly interesting at the source location (first lo-
cation of the contained pair). We call the source location as
message destination.

The following expression specifies a relevance function,
which tries to take advantage of knowledge about future
locations of the user:

Frel(m) =

ttla(m)−(t(A,B)+t(B,d(m)))

ttli(m)
× MDEV −t(B,d(m))

MDEV

if ttla(m) ≥ t(A,B) + t(B, d(m))&MDEV ≥ t(B, d(m))
0, otherwise

where A is the node current location, B is the nearest
location to the message destination (d(m)), from the node’s
future locations; MDEV is maximum tolerated travel time
between B and d(m); ttli(m) is the message’s initial time-to-
live; and ttla(m) is the message current time-to-live. This
relevance function takes into consideration the value of the
message when it reaches the destination (first factor) and
penalizes the deviation of the current node’s path to the
message destination (second factor).

3.3.2 Buffer Management
easy-City is meant to be executed on mobile devices (e.g,

mobile phones) which, typically, have important physical
memory restrictions. So, it is important to define appropri-
ate buffer management policies. Transport buffers need to
be maintained deleting old messages. The observation base
and the transport buffer share the same data structure, so
the detection and deletion of old messages removes the cor-
respondent entries on the observation base.

It is important to specify what happens when a node runs
out of buffer space. easy-City maintains transport buffers
in the following way: when a transport buffer becomes full,
the node drops the less relevant message. We adopt this
mechanism because relevancy indicates the probability of
timely delivering a message. This way, we try to minimize
the impact of dropping a message to the system. If a node
has several messages with the same relevancy, we employ a
simpler approach, such as FIFO, Most-Forward of Less-TTL
[4], as a tie-breaker.

3.3.3 Message Aggregation
Several nodes may observe and report the same event. So,

these multiple reports originate similar messages. Similar
messages contribute to a wasteful usage of network and node
resources.

Hence, we developed a simple mechanism to detect and
delete those similar messages. Two messages are similar if,

and only if, they report the same locations pair and they
have sufficiently close creation and experienced times.

easy-City message aggregation mechanism works as fol-
lows: i) When a node receives a message verifies if it contains
a similar message on its buffer; ii) If the node has a simi-
lar message, it drops the received message; iii) Otherwise, it
adds the message to its transport buffer.

3.3.4 Route Re-Computation
The basic solution, presented in Section 3.2, assumes that

a node recomputes the best route option on each observation
message reception. This strategy is potentially problematic
on a realistic scenario because the searching algorithm is
frequently executed even when no significant change has oc-
curred. A more sensible approach consists on recomputing
the best route option when a different location-time message
(a location-time message that changes current node loca-
tion) is received and the observation base has been changed.

4. EVALUATION
We now evaluate easy-City.

4.1 Methodology
In this paper, we simulated the execution of easy-City on

the extended version of the ONE simulator [12]. We used
HelsinkiMedium scenario provided with the simulator. We
built a simulation scenario with 468 nodes running easy-
City, consisting on 200 public transport users, 76 vehicles
and 192 stations.

User nodes choose a random starting location and a ran-
dom destination. They are organized in three groups. Group
1, with 50 users, starts moving on the starting instant of the
simulation. Group 2, with 50 users, starts moving after 2200
seconds of simulation. Group 3, with 100 users, starts mov-
ing after 4200 seconds. Each node has a wireless interface
for communication. In this simulation, we used a simple ab-
straction of Bluetooth Class 1 and 2 devices. We ran the
simulation for approximately 4.5 hours on an area of ap-
proximately 8Km per 7Km. We used two operation modes
of easy-City. Mode 1 consists on a single access to the map
on the initial instant, when the users start the journey. This
is the typical usage scenario of a journey planning appli-
cation. Mode 2 consists on normal operation of easy-City,
as previously explained. easy-City recomputes periodically
the best route option, to keep the user informed of unpre-
dictable events. easy-City is evaluated by comparing mode
1 and mode 2 operation in three distinct scenarios. The first
scenario consists on an ideal scenario without traffic jams,
accidents and service interruptions. The second scenario
consists on a more realistic scenario with several traffic jams
affecting services. We affect the fastest transport options to
check the ability of user nodes to find better alternatives.
The third scenario consists on a more problematic scenario
where several services fail, due to service interruptions. In
this scenario, we affect several services for a long period, to
test the effectiveness of the infra-structure’s warnings and
the user nodes reaction. Our goal is to show that easy-City
is particularly useful on a real-life scenario where unpre-
dictable occurrences are common. On these evaluation sce-
narios, users always accept best route suggestions provided
by easy-City.

4.2 Obtained Results

In the ideal scenario, we obtained identical results running
both modes. As expected, static information provided by
operators is similar or identical to the information captured
by user nodes. So, the best route option obtained in the first
access to the map is return in each map access performed
by easy-City mode 2.

In the second scenario, easy-City mode 2 obtained better
results than easy-City mode 1 in terms of travel times. easy-
City mode 2 gives the users crucial information to avoid the
negative impact of traffic jams on journeys, by suggesting
alternative best route options. Figure 2 shows the obtained
travel times difference comparing both modes. Negative val-
ues correspond to situations where nodes running mode 2
arrived earlier on their destination.

Figure 2: Difference between times obtained using
mode 2 and times obtained using mode 1 on the
second scenario

Analyzing the results we conclude that users running easy-
City mode 2 arrived earlier on destination for 20% of jour-
neys. In 70% of journeys, users observed similar travel times
to mode 1 users. Finally, 10% of journeys, users running
mode 1 arrived earlier.

In the third scenario, as we expected, easy-City obtained
better results than easy-City mode 1. Users aided by easy-
City mode 2 generally avoided the problematic services and
finished their journeys earlier than users aided by easy-City
mode 1. Figure 3 shows the obtained travel times difference
comparing both modes.

Figure 3: Difference between times obtained using
mode 2 and times obtained using mode 1 on the
third scenario

In this scenario, users aided by easy-City mode 2 arrived
earlier on destination 49% of journeys. 35% of journeys,
they registered similar travel times to mode 1. Finally, 16%
journeys, users running mode 1 arrived earlier.

5. CONCLUSIONS
In this paper we presented easy-City, a collaborative route

search system for public transport users. easy-City estab-
lishes a delay tolerant network between mobile devices (e.g.,
mobile phones), carried by public transport users, and a
simple infra-structure, installed on vehicles and on some
stations, to disseminate information. We introduced easy-
City’s architecture and the evaluation of a developed imple-
mentation on a simulation environment. In the future, we
will keep working on easy-City, with particular emphasis on
exploring different usage scenarios to evaluate the system
behaviour. Furthermore, we will proceed with the evalua-
tion of the dissemination protocol described in this paper,
comparing it with other popular solutions.

6. REFERENCES
[1] Shabbir Ahmed and Salil S. Kanhere. Hubcode:

message forwarding using hub-based network coding
in delay tolerant networks. In Proceedings of the 12th
ACM international conference on Modeling, analysis
and simulation of wireless and mobile systems,
MSWiM ’09, pages 288–296, New York, NY, USA,
2009. ACM.

[2] Chicago Transit Authority.
http://www.transitchicago.com/, 2010.

[3] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine.
Maxprop: Routing for vehicle-based
disruption-tolerant networks. In INFOCOM 2006.
25th IEEE International Conference on Computer
Communications. Proceedings, pages 1 –11, april 2006.

[4] Hong-Tai Chou and David J. DeWitt. An evaluation
of buffer management strategies for relational
database systems. In Proceedings of the 11th
international conference on Very Large Data Bases -
Volume 11, VLDB ’1985, pages 127–141. VLDB
Endowment, 1985.

[5] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271,
1959. 10.1007/BF01386390.

[6] DTNRG. Delay tolerant networking research group.
http://www.dtnrg.org/, 2011.

[7] Andreas Festag, Alban Hessler, Roberto Baldessari,
Long Le, Wenhui Zhang, and Dirk Westhoff.
Vehicle-to-vehicle and road-side sensor communication
for enhanced road safety, 2008.

[8] Roy Friedman, Daniela Gavidia, Luis Rodrigues,
Aline Carneiro Viana, and Spyros Voulgaris. Gossiping
on manets: the beauty and the beast. SIGOPS Oper.
Syst. Rev., 41:67–74, October 2007.

[9] Wei Gao and Guohong Cao. User-centric data
dissemination in disruption tolerant networks. In
INFOCOM, 2011 Proceedings IEEE, pages 3119
–3127, april 2011.

[10] Google. Google transit. http://google.com/transit/,
2010.

[11] Zygmunt J. Haas, Joseph Y. Halpern, and Li Li.
Gossip-based ad hoc routing. IEEE/ACM Trans.
Netw., 14:479–491, June 2006.

[12] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. The
one simulator for dtn protocol evaluation. In
SIMUTools ’09: Proceedings of the 2nd International
Conference on Simulation Tools and Techniques, New

York, NY, USA, 2009. ICST.

[13] A. Lindgren and K.S. Phanse. Evaluation of queueing
policies and forwarding strategies for routing in
intermittently connected networks. In Communication
System Software and Middleware, 2006. Comsware
2006. First International Conference on, pages 1 –10,
2006.

[14] Anders Lindgren, Avri Doria, and Olov Schelén.
Probabilistic routing in intermittently connected
networks. SIGMOBILE Mob. Comput. Commun.
Rev., 7:19–20, July 2003.

[15] Bing Liu. Intelligent route finding: Combining
knowledge, cases and an efficient search algorithm. In
In Proceedings of the 12th European Conference on
Artificial Intelligence, pages 380–384. Wiley and Sons,
Ltd, 1996.

[16] Christian Lochert, Björn Scheuermann, Christian
Wewetzer, Andreas Luebke, and Martin Mauve. Data
aggregation and roadside unit placement for a vanet
traffic information system. In Proceedings of the fifth
ACM international workshop on VehiculAr
Inter-NETworking, VANET ’08, pages 58–65, New
York, NY, USA, 2008. ACM.

[17] Transport For London. Journey planner.
http://journeyplanner.tfl.gov.uk/.

[18] Transport For London. Tube.
http://www.tfl.gov.uk/modalpages/2625.aspx.

[19] Ramesh Rajagopalan and Pramod K. Varshney. Data
aggregation techniques in sensor networks: A survey.
Comm. Surveys & Tutorials, IEEE, 8:48–63, 2006.

[20] RATP. Ratp site. http://www.ratp.fr/, 2010.

[21] Bluetooth SIG. The official bluetooth technology info
site. http://www.bluetooth.com/, 2010.

[22] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and
Cauligi S. Raghavendra. Spray and wait: an efficient
routing scheme for intermittently connected mobile
networks. In Proceedings of the 2005 ACM SIGCOMM
workshop on Delay-tolerant networking, WDTN ’05,
pages 252–259, New York, NY, USA, 2005. ACM.

[23] Amin Vahdat and David Becker. Epidemic routing for
partially-connected ad hoc networks. Technical report,
2000.

[24] Hui Ye, ZhiGang Chen, ZuoQun Xia, and Ming Zhao.
A data dissemination policy by using human mobility
patterns for delay-tolerant networks. In
Communications and Mobile Computing (CMC), 2010
International Conference on, volume 1, pages 432
–436, 2010.

[25] Eiko Yoneki, Pan Hui, ShuYan Chan, and Jon
Crowcroft. A socio-aware overlay for publish/subscribe
communication in delay tolerant networks. In
Proceedings of the 10th ACM Symposium on Modeling,
analysis, and simulation of wireless and mobile
systems, MSWiM ’07, pages 225–234, New York, NY,
USA, 2007. ACM.

[26] Ting Zhong, Bo Xu, and O. Wolfson. Disseminating
real-time traffic information in vehicular ad-hoc
networks. In Intelligent Vehicles Symposium, 2008
IEEE, pages 1056 –1061, june 2008.

