
An Efficient and Fault-Tolerant Update

Commitment Protocol for Weakly Connected

Replicas ?

João Barreto?? and Paulo Ferreira? ? ?

INESC-ID / IST
Rua Alves Redol, 9, 1000 Lisboa, Portugal

{joao.barreto, paulo.ferreira}@inesc-id.pt

Abstract. Mobile and other loosely-coupled environments call for de-
centralized optimistic replication protocols that provide highly available
access to shared objects, while ensuring eventual convergence towards
a strongly consistent state. In this paper we propose a novel epidemic
weighted voting protocol for achieving such goal. Epidemic weighted
voting approaches eliminate the single point of failure limitation of pri-
mary commit approaches. Our protocol introduces a significant improve-
ment over other epidemic weighted voting solutions by allowing multiple,
happened-before related updates to be committed at a single distributed
election round. We demonstrate that our protocol is especially advan-
tageous with the weak connectivity levels that characterize mobile and
other loosely-coupled networks. We support such claims by presenting
comparison results obtained from side-by-side execution of reference pro-
tocols in a simulated environment.

1 Introduction

Data replication is a fundamental mechanism for most distributed systems for
performance, scalability and fault tolerance reasons. In particular, optimistic
replication protocols [1] are of extreme importance in mobile and other loosely-
coupled network environments. The nature of these environments calls for decen-
tralized replication protocols that are able to provide highly available full access
to shared objects. Such requirement is accomplished by optimistic replication
strategies, which, in contrast to their pessimistic counterparts, enable updates
to be issued at any one replica regardless of the availability of other replicas.

As a trade-off, the issue of consistency in optimistic replication is problem-
atic. Since replicas are allowed to be updated at any time and circumstance,
updates may conflict if issued concurrently at distinct replicas. Some optimistic
replication protocols ensure that, from such a possibly inconsistent tentative
state, replicas evolve towards an eventual consistent stable state. For this end,

? This is a preprint of an article accepted for publication in Concurrency and Com-

putation: Practice and Experience Copyright (c) 2006.
?? Funded by FCT Grant SFRH/BD/13859

? ? ? Funded by FCT Project UbiRep (POSI/CHS/47832/2002)



a distributed consensus algorithm is executed so as to reach an agreement on a
common order in which tentative updates should be committed.

There are many scenarios where users, in order to benefit from high avail-
ability, are willing to work with temporarily tentative data, provided that a
commitment agreement regarding such data will eventually be reached. Con-
sider, for instance, a laptop user that becomes disconnected from his corporate
file server after leaving his office. If necessary, he may expect to be able to modify
a report that is currently replicated at his laptop, even if tentatively.

Furthermore, such worker may meet other mobile team colleagues carrying
their replicas and, in an ad-hoc fashion, establish a short term work group to
collaboratively work on the report. A set of happened-before related [2] tentative
updates will result from such activity. Hopefully, if no update is concurrently
issued from outside the group, such tentative work will be eventually committed
by the underlying consistency protocol. Hence, the high availability provided by
an optimistic replication strategy is especially interesting in the above scenarios.
However, the usefulness of such approach strongly depends on the ability of
the underlying replication protocol to efficiently achieve a commitment decision
concerning the tentatively issued data. Users are typically not inclined towards
working on tentative data unless they trust the protocol to rapidly provide the
with strong consistency guarantees on such data.

Aiming at such central objective, this paper proposes a novel optimistic
replication protocol, called Version Vector Weighted Voting (VVWV), for ef-
ficient and highly available update commitment through the use of an epidemic
weighted voting protocol based on version vectors [3]. The use of a voting ap-
proach eliminates the single point of failure of primary commit approaches [4].
Hence, the unavailability of any individual replica does not prohibit the progress
of the update commitment process. Moreover, commitment agreement is accom-
plished without the need for a plurality quorum of replica hosts to be simulta-
neously accessible: voting information flows epidemically between replicas and
update commitment is based solely on local information.

VVWV introduces a significant improvement over basic epidemic weighted
voting solutions [5] by allowing multiple update candidates to participate in an
election. By using version vectors, candidates consisting of one or more happened-
before related updates may be voted and committed by running a single dis-
tributed election round. As a result, the overall number of anti-entropy sessions
required to commit updates is decreased when compared to a basic weighted vot-
ing protocol [5]. Hence, update commitment delay is minimized; thus eventual
strong consistency guarantees are more rapidly delivered to applications. Namely,
such reduction is substantial in scenarios where frequent happened-before related
updates are tentatively generated by applications. The examples presented above
are representative of such update patterns. In worst case scenarios, VVWV be-
haves similarly to basic weighted voting protocols.

The paper is organized as follows. Section 2 describes related work, Section 3
introduces the protocol, which is evaluated in Section 4, and Section 5 concludes.



2 Related Work

The issue of optimistic data replication for mobile and loosely coupled environ-
ments has been addressed by a number of projects [1], with the common intent
of offering high data availability. Most of the proposed solutions share the goal of
our work by enforcing eventual convergence towards a strongly consistent stable
form that is explicitly presented to applications.

Three main approaches can be distinguished. Firstly, Golding [6] proposes
that each individual host commits an update when it is certain that it has been
received by every replica. A main limitation is that the unavailability of any
single replica stalls the entire commitment process. On the other hand, a pri-
mary commit strategy, such as the one adopted by Bayou [4], centralizes the
commitment process in a single distinguished primary replica that establishes
a total commit order over the updates it receives. Primary commit is able to
rapidly commit updates, since if suffices for an update to be received by the
primary replica to become committed, provided that no conflict is found. How-
ever, should the primary replica become unavailable, the commitment progress
of updates generated by replicas other than the primary is inevitably halted.

Finally, a third approach uses voting so as to allow a plurality quorum to
commit an update. In particular, Deno [5] relies on an epidemic voting protocol
to support object replication in a transactional framework for loosely-connected
environments. Deno requires one entire election round to be completed in order
to commit each single update, if only non-commutable updates are considered.
This is acceptable when applications are interested in knowing the commitment
outcome of each tentatively issued update before issuing the next one. How-
ever, in the usage scenarios addressed by this paper, users and applications will
often be interested in issuing multiple tentative updates before acknowledging
their commitment. In such situations, the commitment delay imposed by Deno’s
voting protocol becomes unacceptably higher than that of primary commit.

3 Consistency Protocol

The following sections consider a model where a set of logical objects is replicated
at N hosts. An object replica at a given host provides local applications with
access to a version of the object contents, as stored by the replica. Such accesses
may read or modify the object contents. In the case of the latter, an update is
issued by the host and applied to the replica.

Updates issued at a given replica are propagated to other hosts in an epidemic
fashion in order to eventually achieve object consistency. The local execution of
an update is assumed to be recoverable, atomic and deterministic. The former
means that a replica will not reach an inconsistent value if it fails before the
update execution completes. It follows from the other two properties that the
execution of the same ordered sequence of updates at two distinct replicas in the
same initial consistent state will yield an identical final state. For simplicity and
without loss of generality, we consider that each logical object is replicated at



every host in the system. For the sake of generality, the set of replicas may be
dynamic, and thus change with the creation or removal of new hosts.

Hereafter, we assume an asynchronous system in which hosts can only fail
silently. Network partitions may also occur, thus restricting connectivity between
hosts that happen to be located in distinct partitions.

3.1 Overview

Due to the optimistic nature of VVWV, updates issued at a local replica are
not immediately committed at every remaining replica. Instead, such updates
are considered tentative since diverging sequences of updates may still be is-
sued at other replicas. VVWV is responsible for eventually committing one of
such diverging tentative sequences of updates at every replica, therefore ensuring
eventual strong consistency.

Weighted Voting Commitment VVWV achieves this goal through a weighted
voting approach [5], where concurrent tentative updates are regarded as rival
candidates in an election. The hosts replicating a given logical object act as
voters whose votes determine the outcome of each election between candidate
updates to the object. A candidate update wins an election by collecting a plural-
ity of votes, in which case it is committed and its rival candidates are discarded.

Elections consider a fixed per-object currency scheme, in which each voter
is associated with a given amount of currency that determines its weight dur-
ing voting rounds. The global currency of a logical object, distributed among
its replica hosts, equals a fixed amount of 1. Currencies can be exchanged be-
tween hosts and the currency held by failed hosts can be recovered by running
a currency reevaluation election, as discussed in [7].

Version Vector Candidates In some cases, applications will be interested
in generating more than one tentative update prior to its commitment decision.
These may include disconnected mobile applications and ad-hoc groups of mobile
applications working cooperatively in the absence of a plurality quorum. Since
the commitment decision may not be taken in the short-term, these applications
may wish to issue a sequence of multiple, happened-before ordered tentative
updates.

In order to efficiently accommodate for such update scenarios, VVWV em-
ploys version vectors to identify candidate updates in a weighted voting protocol.
The flexibility brought by version vectors allows a sequence of one or more up-
dates to run for the current election as a whole. In this case, the candidate is
represented by the version vector corresponding to the tentative version obtained
if the entire update sequence was applied to the replica. As the next sections
explain, the voting protocol relies on the expressiveness of version vectors to
decide if the update sequence or a prefix of it are to become committed. Con-
sequently, candidates consisting of one or more happened-before related updates
may be committed on a single distributed election round. In weakly connected



network environments, where such update patterns are expectably dominant, a
substantial reduction of the update commitment delay is therefore achievable.

Hereafter, we use the notation x ≤ y to denote that ∀i, x[i] ≤ y[i], and x < y

to denote that x ≤ y and ∃j : x[j] < y[j]). Further, x ‖ y means that x and y

are conflicting, that is, neither x ≤ y nor y ≤ x.

As the next sections describe in greater detail, voting information flows epidem-
ically among hosts and the decision to commit an update is based only on local
replica information. These are important properties for operation under mobile
and loosely-coupled environments. Section 3.2 describes the state maintained at
each replica and the two distinctly consistent views that the protocol offers of
each replica. Section 3.3 addresses the storage of tentative updates and their
corresponding commitment upon a replica value. Then, Section 3.4 describes
the epidemic flow of consistency information and Section 3.5 finally defines how
candidates are elected.

3.2 Replica State and Access to Stable and Tentative Views

Each replica r maintains the following state:

– stabler, which consists of a version vector that identifies the most recent
stable version that r is currently aware of;

– votesr[1..N ], which stores, for each host k = 1, 2, .., N , the version vector
corresponding to the candidate voted for by k, as known by r; or ⊥, if the
vote of such host has not yet been known to r;

– curr[1..N ], which stores, for each host k = 1, 2, .., N whose vote replica r has
knowledge of, the currency associated with such vote;

– committedr[1..cr], which stores each committed update at r according to
the agreed commitment order (where cr denotes the number of committed
updates at r);

Each host is able to offer two possibly distinct views over the value of a
replica r to its applications and users: the stable and tentative views. The first
view reflects a strongly consistent value of the replicated object that is obtained
by the ordered application of the updates in committedr. On the other hand,
the tentative view exposes a weakly consistent value that corresponds to the
candidate version that is currently voted by the local host, votesr[r]. Update
requests from applications are performed upon the tentative view. Hence, issuing
a tentative update u on a replica r changes the state of r as follows.

1. If votesr[r] = ⊥, then votesr[r]← advr(stabler)
1 and curr[r] = currencyr;

2. Otherwise, votesr[r]← advr(votesr[r]);

In case r has not voted yet, then it casts a vote for the candidate representing
u, issued upon the current stable version. Otherwise, it means that u is issued
upon the value resulting from the ordered application of the tentative updates
of the current vote of r. In this case, its vote is extended to a candidate that
represents u and the tentative updates that precede it.

1 advr advances the counter corresponding to r in the supplied version vector by one.



3.3 Update Commitment

The protocol proposed hereafter is orthogonal to the issues of actual transference
and storage of tentative updates. In particular, VVWV does not impose the deci-
sion of whether to transfer and store, at each individual replica, (1) the tentative
updates belonging to every candidate in the current election or, alternatively,
(2) only those concerning the replica’s own candidate.

This means that, at the time a host determines that a given candidate has
won the election and, thus, its updates should be committed, such updates may
not be immediately available. Instead, they will be eventually collected through
succeeding anti-entropy sessions with other hosts. Consequently, there may occur
a discrepancy between the most recent stable version identified by VVWV at a
given replica r and the actual stable value that is locally accessible at r. In fact,
the number of updates in committedr, denoted by cr, may be lower than the
number of updates that have actually been determined by VVWV as belonging
to the stable path. In such a case, the replica’s stable value does not yet reflect
the most recent stable version r is aware of.

As a consequence, VVWV is flexible enough to support hosts with differing
memory limitations. On one hand, hosts with rich memory resources may store
every update associated with each candidate, hence being able to immediately
gain access to the most recent known stable value as each new stable version
is determined by VVWV. On the other hand, memory-constrained devices may
opt to restrict themselves to storing only the updates of their own candidate
and, thus, allow for occasional delays in the availability of the most recent stable
value when rival candidates win an election. In either case, however, the efficiency
of VVWV in taking commitment decisions is not affected. Both strategies may
transparently co-exist in a system of replicas of the same logical object.

From the viewpoint of VVWV, the procedure for committing a sequence of
updates u1, .., um is therefore comprised of the following steps:

1. For each update, uk(k = 1..m), committedr[cr + k]← uk;
2. cr ← cr + m;

3.4 Anti-entropy

Voting information is propagated through the system by anti-entropy sessions
established between pairs of accessible hosts. An anti-entropy session is an uni-
directional pull-based interaction in which a requesting host, holding replica A,
updates its local election knowledge with information obtained from another
host, holding replica B. In case B has more up-to-date election information, it
transfers such information to A. Furthermore, if A has not yet voted for a can-
didate that is concurrent to the one voted for by B, A accepts the latter, thus
contributing to its election.

Each anti-entropy session is carried out according to the following procedure,
which should be executed atomically:

1. If stableA < stableB then
(a) stableA ← stableB ;



r
A

currency


0.2


r
B


r
C


r
D


u
1

u'
1


currency


0.25


currency


0.35


currency


0.2
 Logical Time


<1,0,0,0> 
0.2


<1,0,0,0> 0.2


<1,0,0,0> 0.2


<1,0,0,0> 0.2


<1,0,0,1> 0.2


<1,0,0,1> 
0.2


<1,0,0,1> 0.2


<2,0,0,1> 0.2


<1,0,0,1> 0.2


<1,0,0,0> 0.2


<1,0,0,2> 0.2


<2,0,0,1> 0.2


<1,0,0,2> 0.2

<2,0,0,1> 0.2


<1,0,0,2> 0.2


<2,0,0,1>0.25


votes
r


u
4

u'
4


Fig. 1. Example of update generation and anti-entropy: four replicas with unevenly
distributed currencies start from a common initial stable version stabler = 〈0, 0, 0, 0〉.

(b) Let toCommitA = u1, .., um be the totally ordered sequence of un-
committed updates that, starting from the currently committed value
at A, produces the new stableA version. If a prefix of toCommitA,
u1, .., uk(k ≤ m) is locally available at A, then commit such updates
in that order;

(c) If cA < cB then commit update sequence committedB [cA+1], .., committedB [cB ].
(d) ∀k s.t. votesA[k]‖stableA or votesA[k] ≤ stableA, then votesA[k]← ⊥;

2. If (votesA[A] = ⊥ and stableA < votesB [B]) or votesA[A] < votesB [B] then
votesA[A]← votesB [B] and curA[A]← currencyA;

3. ∀k 6= A s.t. (votesA[k] = ⊥ and stableA < votesB [k]) or votesA[k] <

votesB [k] then
votesA[k]← votesB [k] and curA[k]← curB [k].

The first step ensures that, in case B knows about a more recent stable ver-
sion, A will adopt it. This means that A will regard the elections that originated
such new stable version as completed (1a) and, therefore, commit the winner
updates that are available at the moment.

In (1b), any winner updates that are already locally stored (tentatively) are
committed. After that, the set of committed updates held by B that have not
yet been committed at replica A are collected and committed by the latter (1c).
Finally, further elections are prepared by keeping only the voting information
that will still be meaningful for their outcome (1d). Namely, these are the votes
on candidates that succeed (by happened-before) the stable version.

As a second step of anti-entropy, A is persuaded to vote for the same candi-
date as the one voted by B, provided that A has not yet voted for a concurrent
candidate (2). Subsequently, A updates its current knowledge of the current
election with relevant voting information that may be held by B (3). Namely, A

stores each vote that it is not yet aware of or whose candidate is more complete
than the one it currently has knowledge of.

Figure 1 depicts an example with four replicas of a given object. After some
update activity, a conflict occurs between u′

1
and u′

4
; hence, two rival candidates

end up running for the election.



3.5 Election decision

The candidates being voted in an election represent update paths that traverse
through one of more versions beyond the initial point defined by the stable ver-
sion, stable. These possibly divergent candidate update paths may share common
prefix sub-paths. The following definition expresses such notion.

Definition 1: Given two version vectors, v1 and v2, their maximum com-
mon version is given by a version vector, mcv(v1, v2), s.t. ∀k,mcv(v1, v2)[k] =
min(v1[k], v2[k]). For simplicity, we represent mcv(v1, v2, .., vm) as the result of
mcv(mcv(mcv(v1, v2)), ...), vm).

Theorem 1: Let v1, .., vm ∈ votesr, be one or more candidate versions known
by replica r, each connoting a tentative update path starting from the stable
version, stabler. Their maximum common version, mcv(v1, .., vm), constitutes
the farthest version of an update sub-path that is mutually traversed by the
update paths of v1, .., vm. Complementarily, the total currency voted for such
common sub-path is obtained by votedr(mcv(v1, .., vm)) = curr[1]+...+curr[N ].

Sketch of Proof: Assume, by absurd, that m = mcv(v1, .., vm), is not the farthest
version of an update sub-path that is shared by the update paths of v1, .., vm;
instead, such version is given by m′ 6= m. By definition of mcv, m′ ≯ m; other-
wise, m′ ≤ vi,∀i, wouldn’t be verified. So, m′ < m, which implies that ∃k s.t.
m′[k] < m[k] ≤ v1[k] and m′[k] < m[k] ≤ v2[k]. Since m′ identifies the farthest
common sub-path, the differences between m′[k] and v1[k], as well as m′[k] and
v1[k], must have respectively resulted from concurrent tentative updates gener-
ated by replica k. However, replica k is not allowed to issue concurrent updates
when holding the same stablek: if votesk[k] = ⊥ (Section 3.1), it means that
@i 6= k s.t. votesk[i] represents any tentative update from k. By anti-entropy,
this is also verified at any other replica.

VVWV is responsible for progressively determining common sub-paths of can-
didate versions that manage to obtain a plurality of votes. Before describing
this decision, we define the notion of collectable currency by a candidate c:
collectabler(c) =

∑
(cur[k] : votesr[k] =⊥ ∨votesr[k] < c). It is obtained from

the currencies of the votes that, despite not supporting c, may evolve to such
condition; namely, votes on candidates happening-before c or ⊥.

Definition 2: Let w be a version vector s.t. w = mcv(w1, .., wm) where w1, .., wm ∈
votesr and 1 ≤ m ≤ N . w wins an election when:

1. votedr(w) > 0.5, or

2. ∀l s.t. l = mvc(l1, .., lk), l1, .., lk ∈ votesr, 1 ≤ k ≤ N , and l ‖ w,
and also ∀l s.t. l = mcv(li : li ∈ votesr ∧ li < w),
(a) votedr(w) > votedr(l) + collectabler(l), or

(b) votedr(w) = votedr(l) + collectabler(l) and w ≺r l.



<1,0,0,1>

voted = 0,65


u
1
 u
4

u'
1


u'
4


Maximum Common Versions at r
2
:


uncommitted=0,35


<1,0,0,2>

voted = 0,20


<1,0,0,0>
 <1,0,0,1>
 <1,0,0,2>


<2,0,0,1>

voted = 0,45


<2,0,0,1>


Fig. 2. Election decision for replica r2 at the final state in Figure 1. Candidate 〈1, 0, 0, 1〉
has collected a plurality of votes and, thus, u1 and u4 will be committed in that order.

The above rules state the conditions that guarantee that a candidate has
collected sufficient votes to win an election. The votes may constitute a majority,
when the amount of currency voted on the winning candidate surpasses 0.5; or
a plurality, when the voted currency is greater than the maximum potentially
obtainable currency of any other rival candidate. This includes not only common
sub-paths of known concurrent candidates; but also a hypothetical unknown
concurrent candidate for which non-concurrent votes can still potentially evolve
to. It should be noted that only the non-concurrent votes vi such that vi < w

may evolve to v′

i > vi where v′

i ‖ w; instead, this is not the case for votes vj

such that vj ≥ w, as w will happen-before any v′

i > vj . Finally, the case of ties,
decided by the ≺r relation, is described in Section 3.5.

Determining if a candidate has won an election depends exclusively on in-
formation that is locally available at each replica. This means that, once having
collected enough voting information, a given replica is able to decide, by its own,
to commit a candidate version that locally fulfills the election winning conditions.
Hence, update commitment is accomplished in a purely decentralized manner.
Figure 2 illustrates the different maximum common versions that replica r2 an-
alyzes after the example in Figure 1 in order to determine the election outcome;
r2 is able to decide that updates u1 and u4 should be committed as soon as
available at r2.

After finding a new winner version vector, w, a replica r atomically takes the
following steps to accept the election decision and prepare for the next election:

1. stabler ← w;
2. ∀vk ∈ votesr s.t. vk‖w or vk ≤ w, votesr[k]← ⊥;
3. Let toCommitr = u1, .., um be the totally ordered sequence of uncommitted

updates that, starting from the currently committed value at r, produces the
new stabler version. If a prefix of toCommitr, u1, .., uk(k ≤ m) is locally
available at r, then commit such updates in that order;

After accepting the election result by setting the winning version as the new
stable version, the second step resets all the defeated candidates to ⊥. Depending
on the local availability of the updates that belong to the winning candidate, they
may be committed into the replica’s stable value; otherwise, further anti-entropy
sessions will ensure that such updates are eventually collected and committed.
A new election can then take place.

Theorem 2 (Correctness): After all elections have been completed at every
replica and all updates belonging to the resulting stable path have been commit-



ted at every replica: ∀r, t, replica r has committed the same ordered sequence of
updates as t.
Sketch of Proof: The proof is based on the one outlined for a basic weighted
voting solution [5]. Assume that all replicas start with a common stable value,
stable0. It follows directly from the protocol that, if votesr[j] = k for any r, j, k,
then for any l such that stablel = stabler = stable0, votesl[j] will either be ⊥
or v, where v is comparable with k (i.e., v ≤ k or v > k). Let S = v1, .., vm,
where v1, .., vm ∈ votesr, and w = mcv(v1, .., vm). Assume now that r decides
that w wins the election, thus setting stabler ← w; hence, the currency collected
by w prevented any rival c ‖ w to be declared winner. For each host m such
that stable0 ≤ stablem < w, it can be shown that, for each s ∈ S, votesm[s]
must either be ⊥ or comparable with w; this prevents any rival c ‖ w to be
decided winner at m. By anti-entropy, m will eventually receive enough voting
information to determine that w has collected a plurality, or directly receive
the outcome of the election from another replica p having stablep ≥ w. As the
totally ordered set of updates that produce w is eventually propagated to every
replica, they will be accordingly be committed in that order, the same at every
replica.

Tie breaking relation A tie between candidates x and y is decided at replica
r by choosing x if the partial relation x ≺r y holds. Intuitively, x ≺r y if a host
vx contributes with its vote to the candidate x and no other voter with a lower
identifier than vx contributes, or may ever contribute while x is still a candidate,
with its vote to candidate y. Formally, ≺r is defined as follows:

Definition 3: Tie breaking relation. Let x and y be two version vectors so that
x ‖ y and that, at replica r, ∃ i, j : stabler < x ≤ votesr[i] and stabler <

y ≤ votesr[j]. We say that a tie between x and y at r is broken in favor of x, or
x ≺r y, if and only if ∃vx so that (1) votesr[vx] > mcv(x, y) and votesr[vx] ≥ x,
and (2) ∀vy < vx, votesr[vy] > mcv(x, y) and votesr[vy] ‖ y.

Since ≺r is a partial relation, it may happen that, at a given moment, two
candidates x and y are not related by ≺r. In this case, the tie breaking decision
is deferred until sufficient voting information is received to decide either x ≺r y

or y ≺r x (or until the tie ceases to be verified). The following theorem ensures
the correctness of VVWV when election decisions are made by breaking ties
using ≺r. Intuitively, it states that, if a tie between two rival candidates x and
y at a given election is broken at a replica r by deciding the victory of x, then
no different tie breaking decision will ever be obtained at any replica.

Theorem 3: If, at some moment, x ≺r y is verified at a replica r, then y ≺i x

will never be verified at any replica i = 1..N .
Sketch of Proof: Assume that, at a given moment, x ≺r y and that vx is
defined as in Definition 3. Then, it follows directly from the definition of ≺r that
y ⊀r x. Further, assume, by absurd, that y ≺r′ x, where r′ denotes r in some
point in the future. This means that either (a) votesr′ [vx] � x, or (b) ∃vy < vx :



votesr′ [vy] > mcv(x, y) and votesr′ [vy] is comparable to y, i.e. votesr′ [vy] < y or
votesr′ [vy] ≥ y (where previously, by definition of ≺r, votesr[vy] ‖ y since x ≺r

y). According to the protocol, ∀i, votesr[i] 6= ⊥, votesr[i] may only be changed,
at each single step, to v > votesr[i], or to ⊥; it follows from this that (a) and (b)
imply that, at some step, votesr[vx]← ⊥, or votesr[vy]← ⊥, respectively. Such
assignment is caused by a new stable′r version at r such that stable′r 
 mcv(x, y)
(otherwise, neither votesr[vx] > mcv(x, y) nor votesr[vy] > mcv(x, y) would have
been changed). So, one of two cases must have occurred: (1) stable′r ‖ mcv(x, y),
and hence stable′r ‖ x and stable′r ‖ y; or (2) stable′r > mcv(x, y), and thus (by
a corollary of Theorem 1, and as x ‖ y) either stable′r ‖ x or stable′r ‖ y (or
both). It can easily be proven that VVWV ensures that ∀ i, votesr[i] > stable′r;
so, neither both x and y will be candidates with stable′r, as at least x ‖ stable′r
or y ‖ stable′r, and therefore y ⊀r x; this contradicts the initial hypothesis. A
similar reasoning extends the proof to the case of other replicas.

4 Evaluation

C# implementations of the primary commit (Primary), basic weighted voting
(Basic WV ) and version vector weighted voting (VVWV ) protocols were run
side-by-side in a simulated environment. The simulator includes a collection of
replicas of a common logical object, randomly distributed by a set of network
partitions. Time is divided into logical time slices; at each time slice, each replica:
(1) with a given mobility probability, migrates to a different, randomly chosen,
network partition; (2) pulls anti-entropy information from a partner, randomly
selected from the set replicas present in its current partition; and, (3) gener-
ates, with a given update probability, one tentative update. Each replica may be
active or inactive; in the case of the latter, its update probability is null. An
inactive replica exchanges, with a given activation probability, its status with an
active replica after pulling anti-entropy information from it. The differentiation
between active and inactive replicas allows for non-uniform update models to
be simulated, namely the hot-spot model [8], which assumes, based on empirical
evidence, that updates typically occur in a small set of replicas.

The protocols were evaluated against an increasing number of partitions.
Since update contention is prone to arise in a partitioned system, the update
commitment delay is not a sufficiently meaningful measure for our purposes, as
it does not take into account the discarded updates. Instead, a better evaluation
is provided by the update commitment ratio of each protocol, i.e. the percentage
of issued updates that is committed at all replicas.

The measurements were obtained with the fixed settings of 10 replicas with
mobility and activation probabilities of 20% and 40%, respectively, running for
2000 time slices on each experiment; we observed that the variation of such values
does not have a relevant impact on obtained results. Three update models were
tested with different numbers of active replicas: ten, five and just a single one;
a global update probability of 5%, evenly divided by the active replicas, was
considered.



30,0%


40,0%


50,0%


60,0%


70,0%


80,0%


90,0%


100,0%


1
 11
 21
 31
 41

30,0%


40,0%


50,0%


60,0%


70,0%


80,0%


90,0%


100,0%


1
 11
 21
 31
 41


U
pd

at
e 

C
om

m
itm

en
t R

at
io




30,0%


40,0%


50,0%


60,0%


70,0%


80,0%


90,0%


100,0%


1
 11
 21
 31
 41


Ten Active Replicas
 Five Active Replicas
 One Active Replica


Number of Partitions
 Number of Partitions


Primary
 Basic
 VVWV
 Primary
 Basic
 VVWV
Primary
 Basic
 VVWV


Number of Partitions


Fig. 3. Update commitment ratios vs. number of partitions, for different numbers of
active replicas.

The commitment ratio is directly affected by the efficiency of each evaluated
update commitment protocol, since if updates remain in their tentative state for
longer periods, the probability of conflicts is higher; hence, lower commitment
ratios reflect longer delays imposed by the update commitment process. Fig. 3
shows that, as expected, update commitment ratios decrease as the connectivity
among replicas is weakened by an increasing number of partitions.

However, Primary and VVWV are able to ensure higher ratios than Basic
WV as partitioning grows. Situations of multiple happened-before related ten-
tative updates occur more frequently as updates remain tentative for longer
periods. Hence, such results are explained by the efficiency of the former proto-
cols in the commitment of multiple happened-before related updates, in contrast
to Basic WV. Such situations are also increased as the global update probability
is distributed by a smaller number of active replicas. Accordingly, the advantage
of Primary and VVWV over Basic WV is accentuated as the number of active
replicas decreases. It should be noted that higher update probabilities yielded
equivalent, yet magnified, conclusions. On the other hand, Primary and VVWV
have similar ratios; however, VVWV has the crucial advantage of not depending
on a single point of failure.

Finally, similar experiments compared the two update storage alternatives
of VVWV (see Section 3.3). A maximum improvement of 0.8% was attained by
storing the updates of all candidates, which suggests that the more resource-
efficient alternative of storing only the updates of a replica’s own candidate is
acceptable.

5 Conclusions

We propose a novel epidemic weighted voting protocol, VVWV, for achieving
the goal of optimistic update commitment that allows multiple happened-before
related update candidates to be committed at a single election round. Simulation
results show that, under weak connectivity conditions, VVWV is advantageous
relatively to a basic weighted voting protocol, while attaining similar update
commitment ratios to the less fault-tolerant primary commit protocol.



Acknowledgements

We acknowledge Pierre Sutra for the useful discussions that lead to corrections
to the initial version of the protocol.

References

1. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37 (2005) 42–81
2. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM 21 (1978) 558–565
3. Parker, D.S., et al: Detection of mutual inconsistency in distributed systems. Dis-

tributed systems, Vol. II: distributed data base systems (1986) 306–312
4. Petersen, K., et al: Flexible update propagation for weakly consistent replication.

In: Proceedings of the 16th ACM Symp. on Operating Systems Principles. (1997)
5. Keleher, P.: Decentralized replicated-object protocols. In: Proc. of the 18th Annual

ACM Symp. on Principles of Distributed Computing (PODC’99). (1999)
6. Golding, R., Long, D.: Modeling replica divergence in a weak-consistency protocol

for global scale dirstibuted data bases. Technical Report UCSC-CRL-93-09 (1993)
7. Cetintemel, U., Keleher, P.: Light-weight currency management mechanisms in

mobile and weakly-connected environments. Dist. Par. Databases 11 (2002) 53–71
8. Ratner, D., Reiher, P., Popek, G.: Roam: A scalable replication system for mobile

computing. In: DEXA ’99: Proceedings of the 10th International Workshop on
Database & Expert Systems Applications, Washington, DC, USA, IEEE Computer
Society (1999) 96


