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Chapter 69

Data Replication Support 
for Collaboration in 

Mobile and Ubiquitous 
Computing Environments

João Barreto
INESC-ID/Technical University Lisbon, Portugal

Paulo Ferreira
INESC-ID/Technical University Lisbon, Portugal

ABSTRACT

In this chapter we address techniques to improve the productivity of collaborative users by supporting 
highly available data sharing in poorly connected environments such as ubiquitous and mobile com-
puting environments. We focus on optimistic replication, a well known technique to attain such a goal. 
However, the poor connectivity of such environments and the resource limitations of the equipments used 
are crucial obstacles to useful and effective optimistic replication. We analyze state-of-the art solutions, 
discussing their strengths and weaknesses along three main effectiveness dimensions: (i) faster strong 
consistency, (ii) with less aborted work, while (iii) minimizing both the amount of data exchanged be-
tween and stored at replicas; and identify open research issues.
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INTRODUCTION

Consider a team of co-workers that wishes to write 
a report in a collaborative fashion. For such a pur-
pose, they create a document file, replicate it across 
the (possibly mobile) personal computers each 
colleague holds, and occasionally synchronize 
replicas to ensure consistency. Using a text editor, 
each worker is then able to read and modify her 
replica, adding her contributions asynchronously 
with the remaining colleagues. One may envision 
interesting scenarios of productive collaboration. 
A user may modify the report even while out of 
her office, replicated in a laptop or hand-held 
computer she carries while disconnected from the 
corporate wired network. Further, such a worker 
may meet other colleagues carrying their laptops 
with report replicas and, in an ad-hoc fashion, es-
tablish a short term work group to collaboratively 
work on the report.

Besides the shared document editing appli-
cation, one may consider a wide range of other 
applications and systems; examples include asyn-
chronous groupware applications (Wilson, 1991; 
Carstensen & Schmidt, 1999) such as cooperative 
engineering or software development (Cederqvist 
et al, 1993; Fitzpatrick et al., 2004; Chou, 2006), 
collaborative wikis (Leuf & Cunningham, 2001; 
Ignat et al., 2007), shared project and time man-
agement (Kawell et al., 1988; Byrne, 1999), and 
distributed file (Nowicki, 1989; Morris et al., 
1986) or database systems (Thomas et al., 1990).

The previous example illustrates the potential 
collaborative scenarios that the emerging environ-
ments of ubiquitous and mobile computing (Weser, 
1991; Forman & Zahorjan, 1994) allow. One may 
even conceive more extreme scenarios, where the 
fixed network infrastructure is even less likely to 
be present. For example, data acquisition in field 
work, emergency search-and-rescue operations, 
or war scenarios (Royer & Chai-Keong, 1999). 
In all these scenarios, collaboration through data 
sharing is often crucial to the activities the teams 
on the field carry out.

Optimistic replication is especially interesting 
in all previous scenarios, due to their inherent weak 
connectivity. They are based on mobile networks, 
whose bandwidth is lower than in local-area wired 
networks, and where network partitions and inter-
mittent links are frequent. Further, mobile nodes 
reduce their up-time due to battery limitations. 
Moreover, a fixed network infrastructure, such as 
a corporate local area network, may not always 
compensate for the limitations of mobile networks. 
In fact, access to such an infrastructure is often 
supported by wireless connections such as IEEE 
802.11 (IEEE, 1997), UMTS (3GP) or GPRS 
(Ericsson AB, 1998); these are typically costly 
in terms of price and battery consumption, and 
are seldom poor or intermittent due to low signal. 
Hence, access to the fixed infrastructure is often 
minimized to occasional connections. Further-
more, access to the fixed network infrastructure 
is often established along a path on a wide-area 
network, such as the Internet; these remain slow 
and unreliable (Zhang, Paxson & Shenker, 2000; 
Dahlin et al., 2003).

Optimistic replication, in contrast to traditional 
replication (i.e., pessimistic replication), enables 
access to a replica without a priori synchroni-
zation with the other replicas. Hence, it offers 
highly available access to replicas in spite of the 
above limitations (among other advantages over 
traditional replication (Saito & Shapiro, 2005). As 
collaboration in ubiquitous and mobile computing 
environments becomes popular, the importance 
of optimistic replication increases.

Inevitably, however, consistency in optimistic 
replication is challenging (Fox & Brewer, 1999; 
Yu & Vahdat, 2001; Pedone, 2001). Since one 
may update a replica at any time and under any 
circumstance, the work of some user or applica-
tion at some replica may conflict with concurrent 
work at other replicas. Hence, consistency is not 
immediately ensured. A replication protocol is 
responsible for disseminating updates among rep-
licas and eventually scheduling them consistently 
at each of them, according to some consistency 
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criterion. The last step of such a process is called 
update commitment. Possibly, it may involve roll-
ing back or aborting updates, in order to resolve 
conflicts.

The usefulness of optimistic replication de-
pends strongly on the effectiveness of update 
commitment along two dimensions:

• Firstly, update commitment should arrive 
rapidly, in order to reduce the frequency by 
which users and application are forced to 
access possibly inconsistent data.

• Secondly, update commitment should be 
achieved with a minimal number of abort-
ed updates, so as to minimize lost work.

Orthogonally, such requirements must be 
accomplished even in spite of the limitations of 
the very environments that motivate optimistic 
replication. Namely:

• The relatively low bandwidth of mobile 
network links, along with the constrained 
energy of mobile devices, requires an ef-
ficient usage of the network.

• Similarly, bandwidth of wired wide-area 
networks is a limited resource; hence, 
when such networks are accessible, their 
bandwidth must be used wisely by the rep-
lication protocol.

• Further, node failures and network parti-
tions have non-negligible probability, both 
in wired wide-area networks and, especial-
ly, in mobile networks; their implications 
are crucial to any distributed system.

• Finally, the memory resources of mobile 
devices are clearly constrained when com-
pared to desktop computers; the storage 
overhead of optimistic replication must be 
low enough to cope with such limitations.

Although much research has focused on 
optimistic replication, existing solutions fail to 
acceptably fulfill the above two requirements 

(rapid update commitment and abort minimiza-
tion). As we explain later, proposed optimistic 
replication solutions either do not support update 
commitment, or impose long update commitment 
delays in the presence of node failures, poor con-
nectivity, or network partitions. Some commitment 
approaches are oblivious to any application se-
mantics that may be available; hence, they adopt 
a conservative update commitment approach that 
aborts more updates than necessary. Alternatively, 
semantic-aware update commitment is a complex 
problem, for which semantically-rich fault-toler-
ant solutions have not yet been proposed. Finally, 
more intricate commitment protocols that aim at 
fulfilling the above requirements have significant 
network and memory overheads, unacceptable for 
environments where such resources are scarce.

BACKGROUND

A replicated system maintains replicas1 of a set 
of logical objects at distributed machines, called 
sites (also called replica managers or servers). A 
logical object can, for instance, be a database item, 
a file or a Java object. Most replicated systems 
intend to support some collaborative task that a 
group of users carries on (Saito & Shapiro, 2005; 
Davidson, Garcia-Molina & Skeen, 1985).

It is the ultimate objective of a replicated system 
to ensure that distributed replicas are consistent, 
according to some criterion that the users of the 
system expect. Traditional replication employs 
pessimistic strategies to achieve that objective by 
reducing the availability of the replicated system 
(Davidson, Garcia-Molina & Skeen, 1985; Wies-
mann et al. 2000).

Each site makes worst-case assumptions about 
the state of the remaining replicas. Therefore 
its operation follows the premise that, if any 
inconsistency can occur in result of some replica 
operation, that operation will not be performed. 
As a result, pessimistic strategies yield strong 
consistency guarantees such as linearizability 
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(Dollimore, Coulouris & Kindberg, 2001) or 
sequential consistency (Lamport, 1979).

Before accepting an operation request at some 
replica, pessimistic replication runs some syn-
chronous coordination protocol with the remain-
ing system, in order to ensure that executing the 
operation will not violate the strong consistency 
guarantees. For instance, if the request is for a 
write operation, the system must ensure that no 
other replica is currently being read or written; 
possibly, this will mean waiting for other replicas 
to complete their current operations. In the case of 
a read operation, the system must guarantee that 
the local replica has a consistent value; this may 
imply obtaining the most recent value from other 
replicas and, again, waiting for other replicas to 
complete ongoing operations.

In both situations, after issuing a local opera-
tion request, a client has to wait for coordination 
with other remote sites obtaining a response. Such 
a performance penalty is the first disadvantage 
of pessimistic replication. Further, if a network 
partition or a failure of some site should pro-
hibit or halt the coordination protocol, then the 
request response will as well be disrupted. As a 
second shortcoming, pessimistic replication of-
fers reduced availability if the latter occur with 
non-negligible frequency.

Thirdly, pessimistic replication inherently im-
plies that two distinct write operations cannot be 
accepted in parallel by disjoint sets of sites. It is 
easy to show that, otherwise, we would no longer 
be able to ensure strong consistency guarantees. 
This poses an important obstacle to the scalability 
of pessimistic systems, as their sites cannot serve 
operations independently.

Some authors (Saito & Shapiro, 2005) point 
out a fourth limitation, that some human activities 
are not adequate to strong consistency guarantees. 
Rather, such activities are most appropriate to op-
timistic data sharing. According to such authors, 
cooperative engineering and code development 
are examples of such tasks, where users prefer to 
have continuous access shared data, even when 

other users are updating it, and possibly generat-
ing conflicts.

In the network environments that the present 
chapter considers, the availability and performance 
shortcomings clearly constitute strong reasons to 
not adopt pessimistic replication as our solution. 
Further, the fourth limitation is also very relevant 
for our objective of supporting collaborative 
activities, such as the ones we mention above.

OPTIMISTIC REPLICATION

Optimistic replication (OR), in contrast to pes-
simistic replication, enables access to a replica 
without a priori synchronization with the other 
replicas. Access requests can thus be served just 
as long as any single site’s services are accessible. 
Write requests that each local replica accepts are 
then propagated in background to the remaining 
replicas, and an a posteriori coordination protocol 
eventually resolves occasional conflicts between 
divergent replicas.

OR eliminates the main shortcomings of 
pessimistic replication. Availability and access 
performance are higher, as the replicated system 
no longer waits for coordination before accepting 
a request; instead, applications have their requests 
quickly accepted, even if connectivity to the re-
maining replicas is temporarily absent. Also, OR 
scales to large numbers of replicas, as less coor-
dination is needed and it may run asynchronously 
in background. Finally, OR inherently supports 
asynchronous collaboration practices, where users 
work autonomously on shared contents and only 
occasionally synchronize.

Inevitably, OR cannot escape the trade-off 
between consistency and availability. OR pays the 
cost of high availability with weak consistency. 
Even if only rarely, optimistic replicas may eas-
ily diverge, pushing the system to a state that is 
no longer strongly consistent (e.g. according to 
the criteria of linearizability or sequential consis-
tency) and, possibly, has different values that are 
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semantically conflicting (we will define semantic 
scheduling and conflicts later). Hence, OR can only 
enforce weak consistency guarantees as replicas 
unilaterally accept tentative requests.

OR exists behind most Internet services and 
applications (Saito & Shapiro, 2005), which must 
cope with the limitations of a wide-area network. 
Examples include name and directory services, 
such as DNS (Mockapetris & Dunlap, 1995), 
Grapevine (Birrell et al., 1982), Clearinghouse 
(Demers et al., 1987), and Active Directory (Mi-
crosoft, 2000); caching, such as WWW caching 
(Chankhunthod et al., 1996; Wessels &. Claffy, 
1997; Fielding et al., 1999); or information ex-
change services such as Usenet (Lidl, Osborne & 
Malcolm, 1994) or electronic mail (Saito, Bershad 
& Levy, 1999). The semantics of these services 
already assume, by nature, weakly consistent 
data. In fact, the definition of their semantics was 
molded a priori by the limitations of wide-area 
networking; namely, slow and unreliable com-
munication between sites.

Other OR solutions support more generic col-
laborative applications and semantics, the focus 
of this chapter. Generic replication systems must 
cope with a wide semantic space, and be able to 
satisfy differing consistency requirements. In 
particular, they must accommodate applications 
whose semantics are already historically defined 
in the context of earlier centralized systems or 
pessimistically replicated systems in local area 
environments. Here, the OR system should provide 
semantics that are as close as possible to the origi-
nal ones, corresponding to users’ expectations. 
This takes us to the notion of eventual consistency.

Eventual Consistency

This chapter focuses on OR systems that attempt to 
offer eventual consistency (EC) (Saito & Shapiro, 
2005). EC can be seen as a hybrid that combines 
weak consistency guarantees (e.g., as those that 
relaxed consistency Internet services such as 
USENET or DNS offer) and strong consistency 

guarantees (as in pessimistic replication systems). 
At its base, EC offers weak consistency, according 
to one of the previous criteria. However, EC also 
ensures that, eventually, the system will agree on 
and converge to a state that is strongly consistent. 
Typically, the criterion for strong consistence is 
sequential consistency.

In EC, we may thus distinguish two stages in 
the life cycle of an update. Immediately after being 
issued, the update is optimistically ordered and 
applied upon a weakly consistent schedule of other 
updates. In such a stage, we say that the update 
resulting from the write operation is tentative, and 
the value that we obtain by executing the updates 
in the weakly consistent schedule is the current 
tentative value of the replica. Eventually, by means 
of some distributed coordination, the tentative 
update becomes ordered in some schedule that 
ensures strong consistency with the schedules at 
the remaining replicas, we call it stable; similarly, 
the value that results from the execution of such 
an ordering is the replica’s current stable value.

Some systems are able to distinguish the portion 
of an ordering of operations whose correspond-
ing updates are already stable, from the portion 
that is still tentative. These systems offer explicit 
eventual consistency (EEC). Systems with EEC 
are able to expose two views over their replica 
values: the stable view, offering strong consis-
tency guarantees, and the tentative view, offering 
weak consistency guarantees. Note that some 
systems offer EC but not EEC; i.e. they ensure 
that, eventually, replicas converge to a strongly 
consistent state, but cannot determine when they 
have reached that state.

EEC is a particularly interesting combination 
of weak and strong consistency guarantees. It can 
easily accommodate different applications with 
distinct correctness criteria and, consequently, 
distinct consistency requirements. Applications 
with stronger correctness criteria can access the 
stable view of replicated objects. Applications with 
less demanding correctness criteria can enjoy the 
higher availability of the tentative view.
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Eventual Consistency with 
Bounded Divergence

While EC ensures strong consistence of the stable 
view, it allows the weakly consistent view to 
be arbitrarily divergent. For some applications, 
however, such independence is not acceptable.

Eventual consistency with bounded divergence 
(Yu & Vahdat, 2000; Santos, Veiga &Ferreira, 
2007) strengthens the weakly consistent guar-
antees of EC, according to some parameterized 
bounds. More precisely, it imposes a limit on the 
divergence that tentative values may have, using 
the stable values as the reference from which 
divergence is measured. Divergence bounds can 
be expressed in several ways; from the number of 
pending tentative updates, to semantic measures 
such as the sum of money from some account that 
is withdrawn by updates that are still tentative.

Operations that do not respect the parameter-
ized bounds cannot be accepted and, hence, are 
either discarded or delayed. Hence, EC with 
bounded divergence offers lower availability 
than EC.

Basic Stages toward 
Eventual Consistency

They run some distributed agreement protocol that 
is responsible to eventually resolve conflicts and 
make replicas converge, pushing the system back 
to a strongly consistent state. Eventual consistency 
is the central challenge of OR. It may take consid-
erable time, especially when system connectivity 
is low; it may only be possible at the expense of 
aborting some tentative work; and it may require 
substantial storage and network consumptions.

Saito and Shapiro (2005) identify the following 
basic stages in OR:

1.  Operation submission. To access some 
replica, a local user or application submits 
an operation request. When studying even-
tual consistency, we are mainly interested 

in requests that update the object. Update 
requests may be expressed in different 
forms, depending on the particular appli-
cation interface (API) that the replicated 
system offers. In general, an update request 
includes, either explicit or implicitly, some 
precondition for detecting conflicts, as well 
as a prescription to update the object in case 
the precondition is verified (Saito & Shapiro, 
2005). Internally, the replicated system 
represents each request by updates2. Each 
site may execute updates upon the value of 
its replicas, obtaining new versions of the 
corresponding object. Additionally, each site 
stores logs of updates along with each replica. 
Whether update logging is needed or not 
depends on numerous design aspects of OR, 
which we will address in the next sections. 
First, update logging may enable more ef-
ficient, incremental replica synchronization. 
Second, update logging may be necessary 
for correctly ensuring eventual consistency. 
Third, update logging is useful for recovery 
from user mistakes or system corruption 
(Santry et al., 1999), backup (Cox & Noble, 
2002; Quinlan & Dorward, 2002; Storer et 
al., 2008), post-intrusion diagnosis, (Strunk 
et al., 2000), or auditing for compliance with 
electronic records legislation (Peterson et 
al., 2007).

2.  Update propagation. An update propaga-
tion protocol exchanges new updates (result-
ing from the above stage) across distributed 
replicas. The update propagation protocol is 
asynchronous with respect to the operation 
submission step that originated the new 
updates; potentially, it may occur long after 
the latter.

Different communication strategies may be 
followed, from optimized structured topolo-
gies (Ratner, Reiher & Popek, 1999) to random 
pair-wise interactions that occur as pairs of sites 
become in contact (Demers et al., 1987). We call 
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the latter approach epidemic update propagation. 
Its flexibility is particularly interesting in weakly 
connected networks, as it allows a site to oppor-
tunistically spread its new updates as other sites 
intermittently become accessible.

3.  Scheduling. As a replica learns of new up-
dates, either submitted locally or received 
from other replicas, the replica must tenta-
tively insert the new updates into its local 
ordering of updates.

4.  Conflict detection and resolution. Since 
replicas may concurrently accept new up-
dates, conflicts can occur. In other words, 
it can happen that some replica, after re-
ceiving concurrent updates, cannot order 
them together with other local updates in a 
schedule that satisfies the preconditions of 
all updates. Therefore, complementarily to 
the scheduling step, each replica needs to 
check whether the resulting ordering satis-
fies the preconditions of its updates. Only 
then is the replica sound according to the 
semantics of its users and applications.

If a conflict is found, the system must resolve 
it. One possible, yet undesirable, solution is to 
abort a sufficient subset of updates so that the 
conflict disappears. This solution has the obvious 
disadvantage of discarding tentative work. Some 
systems try to not to resort to such a solution, by 
either trying to reorder updates (Kermarrec et al., 
2001), by modifying the conflicting updates so as 
to make them compatible (Terry et al., 1995; Sun 
& Ellis, 1998), or by asking for user intervention 
(Kistler &. Satyanarayanan, 91; Cederqvist et al., 
1993; Fitzpatrick et al., 2004).

5.  Commitment. The update orderings at 
which replicas arrive are typically non-deter-
ministic, as they depend on non-deterministic 
aspects such as the order in which updates 
arrived at each replica. Hence, even once all 
updates have propagated across the system, 

replicas can have divergent values. The com-
mitment stage runs a distributed agreement 
protocol that tries to achieve consensus on 
a canonical update ordering, with which all 
replicas will eventually be consistent. We 
say that, once the value of a replica reaches 
such a condition, it is no longer tentative and 
becomes stable. Furthermore, we say that 
the updates that the replica has executed to 
produce such a stable value are committed. 
We should note that the moment where a 
replica value becomes stable is not neces-
sarily observable. This distinguishes systems 
that offer eventual consistency (EC) from 
systems providing explicit eventual consis-
tency (EEC). Systems where commitment is 
explicit are typically able to offer two views 
on a replica: a tentative view, which results 
from the current update ordering, possibly 
including tentative updates; and a stable one, 
which is the most recent stable value. The 
former is accessible with high availability, 
while the latter is guaranteed to be strongly 
consistent across the stable views of the 
remaining replicas.

In the following sections, we analyze a number 
of fundamental design choices that affect the way 
OR achieves eventual consistency.

Tracking Happens-Before Relations

Tracking happens-before relationships plays a 
central role in OR (Schwarz & Mattern, 1994). In 
different stages of OR we need to determine, given 
two updates (or the resulting versions), whether 
one happens-before the other one, or whether 
they are concurrent. For instance, when two sites 
replicating a common object get in contact, we are 
interested in determining which replica version 
happens-before the other one, or if, otherwise, 
both hold concurrent values. As a second example, 
systems that offer strict happens-before ordering 
of tentative updates need to determine whether 
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two updates are related by happens-before or, 
instead, are concurrent.

Tracking happens-before relations is a well 
studied problem, and a number of more space- and 
time-efficient alternatives have been proposed. 
All aim at representing version sets (which in 
turn result from the execution of update sets) 
in some space-efficient manner that allows fast 
comparisons of version sets. We address such 
solutions next.

Logical, Real-Time and 
Plausible Clocks

Logical clocks (Lamport, 1978) and real-time 
clocks consist of a scalar timestamp. Each site 
maintains one such clock, and each update has 
an associated timestamp. If two updates are not 
concurrent, then the update with the lowest logical/
real-time clock happens-before the other update. 
However, the converse is not true; i.e., neither 
solution can detect concurrency.

Logical clocks are maintained as follows. 
Every time the local site issues an update, it 
increments its logical clock and assigns such a 
timestamp to the new update. Every time a site 
receives an update from another site, the receiver 
site sets its logical clock to a value that is both 
higher than the site’s current clock and the update’s 
timestamp.

Real-time clocks assume synchronized (real-
time) clocks at each site. The timestamp of an 
update is simply the time at which it was first 
issued. Real-time clocks have the advantage of 
capturing happens-before relations that occur 
outside system’s control (Saito & Shapiro, 2005). 
However, the need for synchronized clocks is a 
crucial disadvantage, as it is impossible in asyn-
chronous environments (Chandra & Toueg, 1996).

Plausible clocks (Valot, 1993; Torres-Rojas 
& Ahamad, 99) consist of a class of larger, yet 
constant-size, timestamps that, similarly to logical 
and real-time clocks, can deterministically track 
happens-before relationships but not concurrency. 

Nevertheless, a plausible clock can detect concur-
rency with high probability.

Version Vectors

Version vectors, in contrast to the previous so-
lutions, can both express happens-before and 
concurrency relationships between updates (and 
versions) (Mattern, 1989; Fidge, 1991). A version 
vector associates a counter with each site that 
replicates the object being considered. In order 
to represent the set of updates that happen-before 
a given update, we associate a version vector to 
the update.

A usual implementation of a version vector is 
by means of an array of integer values, where each 
site replicating the object is univocally associated 
with one entry in the array, 0,1,2, ... Alternatively, 
a version vector can also be an associative map, 
associating some site identifier (such as its IP 
address) to an integer counter.

Each replica a maintains a version vector, VVa, 
which reflects the updates that it has executed lo-
cally in order to produce its current value. When 
a new update is issued at replica a, the local site 
increments the entry in VVa corresponding to itself 
(VVa[a] = VVa[a]+1). Accordingly, the new update 
is assigned the new version vector. As replica a 
receives a new update from some remote replica, 
b, the site sets VVa[i] to maximum(VVa[i],VVb[i]), 
where i is the site that issued the received update. 
Provided that updates propagate in FIFO order3, 
if VVa[b] = m (for any replica b), it means that 
replica a has received every update that replica 
b issued up to its m-th update.

Two version vectors can be compared to assert 
if there exists a happens-before relationship be-
tween the updates (or versions) they identify. Given 
two version vectors, VV1 and VV2, VV1 dominates 
VV2, if and only if the value of each entry in VV2 
is greater or equal than the corresponding entry 
in VV1. This means that the update (resp. version) 
that VV1 identifies happens-before the update 
(resp. version) with VV2. If, otherwise, neither VV1 
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dominates VV2, nor VV2 dominates VV1, VV1 and 
VV2 identify concurrent updates (resp. versions).

An important limitation of version vectors is 
that the set of sites that replicate the object being 
considered is assumed static (hence, the set of 
replicas is static). Each site has a pre-assigned 
fixed position within a version vector. This means 
that replica creation or retirement is prohibited 
by this basic version vector approach. Secondly, 
version vectors are unbounded, as the counters in 
a version vector may grow indefinitely as updates 
occur. Finally, version vectors neither scale well 
to large numbers of replicating sites nor to large 
numbers of objects.

Version Vector Extensions 
for Dynamic Site Sets

Some variations of version vectors eliminate their 
assumption of a static site set replicating an object.

For instance, the Bayou replicated system 
(Petersen et al., 1996) handles replica creation and 
retirement as special updates that propagate across 
the system by the update propagation protocol. The 
sites that receive such updates dynamically add or 
remove (respectively) the corresponding entries 
from their version vectors. However, Bayou’s ap-
proach requires an intricate site naming scheme in 
which replica identifier size irreversibly increases 
as replicas join and retire.

Ratner’s dynamic version vectors (Ratner,, 
1998) are also able to expand and compress in 
response to replica creation or deletion. Replica 
expansion is simple: when a given replica issues 
its first update, it simply adds a new entry to its 
affected dynamic version vector(s). However, 
removing an entry requires agreement by every 
replica, which means that any single inaccessible 
replica will halt such a process.

Similarly to dynamic version vectors, ver-
sion stamps (Almeida, Baquero & Fonte, 2002) 
express the happens-before relation in systems 
where replicas can join and retire at any time. 
Furthermore, version stamps avoid the need for 

a unique identifier per site. Assigning unique 
identifiers is difficult when connectivity is poor4, 
and sites come and go frequently.

Each replica constructs its version stamps, 
based on the history of updates and synchroniza-
tion sessions that the local replica has seen, thus 
obviating the need for a mapping from each site 
to a unique identifier.

The expressiveness of version stamps is lim-
ited. Whereas version vectors express happens-
before relationships between any pair of versions/
update (including old versions that have already 
been overwritten), version stamps can only relate 
the current versions of each replica. Almeida et 
al. designate such a set of coexisting versions as 
a frontier (Almeida, Baquero & Fonte, 2002).

This means that, in OR systems that main-
tain old updates in logs, one cannot use version 
stamps to determine whether an old, logged update 
happens-before some other update, as the former 
update may not belong to the same frontier as the 
latter. Version stamps are designed for systems 
that will only ever require comparing updates/
versions that co-exist in some moment.

Bounded Version Vectors

Version vectors are unbounded data structures, as 
they assume that counters may increase indefi-
nitely. Almeida et al. propose a representation of 
version vectors that places a bound on their space 
requirements (Almeida, Almeida & Baquero, 
2004). Like version stamps, bounded version vec-
tors can only express happens-before relationships 
between versions in the same frontier.

Vector Sets

Version Vectors represent the set of versions of 
a given individual replica. This means that the 
number of version vectors that a site needs to 
maintain and propagate grows linearly with the 
number of objects the site replicates. This is an 
obvious scalability obstacle, as most interesting 
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systems (e.g. distributed file systems) have large 
numbers of replicated objects.

Malkhi and Terry have proposed Concise 
Version Vectors (Malkhi & Terry, 2005), later 
renamed Vector Sets (VSs) (Malkhi, Novik & 
Purcell, 2007), to solve the scalability problem of 
version vectors. VSs represent the set of versions 
of an arbitrarily large replica set in a single vector, 
with one counter per site, provided that update 
propagation sessions always complete without 
faults. Provided that communication disruptions 
are reasonably rare, VSs dramatically reduce the 
storage and communication overhead of version 
vectors in systems with numerous replicated 
objects (Malkhi & Terry, 2005).

Like version stamps and bounded version 
vectors, VSs can only express happens-before 
relationships among versions in the same frontier.

Scheduling and Commitment

The road to eventual consistency has two main 
stages: first, individual replicas schedule new 
updates that they learn of in some way that is safe, 
i.e. free of conflicts; second, each such tentative 
schedule is submitted as a candidate for some a 
distributed commitment protocol, which will, from 
such an input, agree on a common schedule which 
will then be imposed to every replica.

In the following sections, we address each 
stage.

Scheduling and Conflict Handling

We distinguish two approaches for update sched-
uling: syntactic and semantic. The distinction lies 
on the information that is available to each replica 
when it is about to schedule a new update.

In the syntactic approach, no explicit pre-
condition is made available by the application 
that requests the operation causing the update. 
In this case, scheduling can only be driven by 
application-independent information such as the 
happens-before relation between the updates.

Based on such restricted information, syn-
tactic scheduling tries to avoid schedules that 
may break users’ expectations. More precisely, 
if update u1 happens-before update u2, then a 
syntactic schedule will order u1 before u2, as it 
knows that this is the same order in which the 
user saw the effects of each update. Note that, if 
the effects of both updates are commutative, the 
scheduler could also safely order u2 before u1, 
as the user would not notice it. However, as such 
a commutativity relationship is not known to the 
syntactic scheduler, it must assume the worst case 
where the updates are non-commutable. Hence, 
in the absence of richer information, syntactic 
scheduling is a conservative approach that restricts 
the set of acceptable schedules.

Concurrent updates, however, are not ordered. 
We find syntactic schedulers that behave differ-
ently in such a case. Some will artificially order 
concurrent updates, either in some total system-
wide order (by real time or by site identifier, e.g. 
(Terry et al., 1995)) or by reception order, which 
may vary for each replica (e.g., (Guy et al., 1998, 
Ratner, Reiher & Popek, 1999)). In either solution, 
the resulting schedule may no longer satisfy us-
ers’ expectations, as the concurrent updates may 
be conflicting according to application semantics 
and, still, the scheduler decides to execute them.

Other syntactic schedulers opt for scheduling 
only one of the concurrent updates, and exclude 
the remaining concurrent updates from the 
schedule (e.g. (Keleher, 1999)). This approach 
conservatively avoids executing updates that can 
be mutually incompatible. However, it has the 
secondary effect of aborting user work, which is 
evidently undesirable.

The former syntactic approach ensures 
happens-before ordering of updates, possibly 
combined with the total ordering, while the latter 
syntactic approach provides strict happens-before 
ordering.

In some cases, rich semantic knowledge is 
available about the updates. Essentially, such 
information determines the preconditions to 
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schedule an update. The replicated system may 
take advantage of such preconditions to try out 
different schedules, possibly violating happens-
before relationships, in order to determine which 
of them are sound according to the available 
semantic information.

Some systems maintain pre-defined per-op-
eration commutativity tables (Jagadish, Mumick 
& Rabinovich 1997; Keleher, 1999). Whenever a 
replica receives concurrent updates, it may consult 
the table and check whether both correspond to 
operations that are commutable; if so, they can 
be both scheduled, in any order.

In other systems, operation requests carry 
explicit semantic information about the schedul-
ing preconditions of each update. For instance, 
Bayou’s applications provide dependency checks 
(Terry, 1995) along with each update. A depen-
dency check is an application-specific conflict 
detection routine, which compares the current 
replica state to that expected by the update. The 
output tells whether the update may be safely 
appended to the end of such a schedule or not, 
which is equivalent to compatibility or conflict 
relations between the update and the schedule.

Even richer semantic information about 
scheduling preconditions may be available, as 
in the case of IceCube (Kermarrec, 2001), or 
the Actions-Constraints Framework (Shapiro et 
al., 2004). Their approach reifies semantic rela-
tions between as constraints between updates. 
It represents such knowledge as a graph where 
nodes correspond to updates, and edges consist 
of semantic constraints of different kinds.

We should mention that scheduling has 
important consequences in other stages of OR, 
notably update propagation and commitment. 
Consequently, although rich semantic knowledge 
permits higher scheduling flexibility, some sys-
tems partially abdicate it for efficiency of other 
stages of OR. For instance, Bayou imposes that 
scheduling respect the local issuing order, i.e. two 
updates issued by the same site must always be 
scheduled in that (partial) order. Such a restriction 

enables a simpler update propagation protocol, 
which can use version vectors to determine the 
set of updates to propagate (Petersen, 1997). In-
evitably, it limits scheduling freedom and, thus, 
increases the frequency aborts.

Semantic information may also help when no 
schedule is found that satisfies the preconditions 
of some update, by telling how the update can 
be modified so that its effects become safe even 
when the original precondition fails. In Bayou, 
updates also carry a merge procedure, a deter-
ministic routine that should be executed instead 
of the update when the dependency check fails. 
The merge procedure may inspect the replica value 
upon which the update is about to be scheduled 
and react to it. Ultimately, the merge procedure 
can do nothing, which is equivalent to discarding 
the update.

Finally, other approaches are specialized to 
particular semantic domains and, using a relatively 
complex set of rules, are able to safely schedule 
updates, detecting and resolving any conflict that 
is already expected in such a semantic domain.

One cannot, however, directly generalize such 
approaches to other domains. A first example is 
the problem of optimistic directory replication in 
distributed file systems. The possible conflicts 
and the possible safe resolution actions are well 
studied, for instance in the algebra proposed by 
Ramsey and Csirmaz (2001), or in the direc-
tory conflict resolution procedures of the Locus 
(Walker, 1983) and Coda (Kistler & Satyanaray-
anan, 1991) replicated file systems.

Other work follows the Operational Trans-
formation method (Sun & Ellis, 1998) to ensure 
consistency in collaborative editors. Instead of 
aborting updates to resolve conflicts, this method 
avoids conflicts by transforming the updates, tak-
ing advantage of well known semantic rules of 
the domain of collaborative editing. Operational 
Transformation solutions are complex. They typi-
cally assume only two concurrent users (Shapiro 
& Saito, 2005) and are restricted to very confined 
application domains. Research on this method is 
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traditionally disjointed with the work on general-
purpose OR that this chapter addresses.

Update Commitment

Commitment is a key aspect of OR with eventual 
consistency. One may distinguish four main com-
mitment approaches in OR literature.

A first approach may be designated as the 
unconscious approach (Baldoni et al., 2006). In 
this case, the protocol ensures eventual consis-
tency; however, applications may not determine 
whether replicated data results from tentative or 
committed updates.

These systems are adequate for applications 
with weak consistency demands. For example, 
Usenet, DNS, Roam and Draw-Together (Ignat 
& Norrie, 2006) adopt this approach. The proto-
col proposed by Baldoni et al. (2006) is another 
example.

Other approaches, however, allow explicit 
commitment. A second approach for commit-
ment is to have a replica commit an update as 
soon as the replica knows that every other replica 
have received the update (Golding, 1993). This 
approach has two important drawbacks. First, 
the unavailability of any single replica stalls the 
entire commitment process. This is a particularly 
significant problem in loosely-coupled environ-
ments. Second, this approach is very simplified, in 
the sense that it does not assume update conflicts. 
Instead, it tries to commit all updates (as executed); 
no updates are aborted. The TSAE algorithm 
(Golding, 1993) and the ESDS system (Fekete et 
al., 1996) follow this approach, though by different 
means. One may also employ timestamp matrices 
(Wuu & Bernstein, 1984; Agrawal, El Abbadi & 
Steinke 1997) for such a purpose.

A third approach is a primary commit protocol 
(Petersen et al., 1997). It centralizes commitment 
into a single distinguished primary replica that es-
tablishes a commitment total order over the updates 
it receives. Such an order is then propagated back 
to the remaining replicas. Primary commit is able 

to rapidly commit updates, since it suffices for an 
update to be received by the primary replica to 
become committed.

However, should the primary replica become 
unavailable, commitment of updates generated 
by replicas other than the primary halts. This 
constitutes an important drawback in loosely-
coupled networks.

Primary commit is very flexible in terms of 
the scheduling methods that may rely on primary 
commit. Examples of systems that use primary 
commit include Coda (Kistler & Satyanarayanan, 
1991), CVS (Cederqvist et al., 1993), Bayou (Pe-
tersen et al., 1997), IceCube (Kermarrec, 2001) 
and TACT (Yu & Vahdat, 2000). In particular, to 
the best of our knowledge, existing OR solutions 
that rely on a rich semantic repertoire (namely, 
Bayou and IceCube) all use primary commit.

Finally, a fourth approach is by means of voting 
(Pâris & Long, 1988; Jajodia & Mutchler, 1990; 
Amir & Wool, 1996). Here, divergent update 
schedules constitute candidates in an election, 
while replicas act as voters. Once an update sched-
ule has collected votes from a quorum of voters 
that guarantee the election of the corresponding 
candidate, its updates may be committed in the 
corresponding order. Voting eliminates the single 
point of failure of primary commit.

In particular, Keleher introduced voting in 
the context of epidemic commitment protocols 
(Keleher, 1999); his protocol is used in the Deno 
(Cetintemel et al., 2003) system. The epidemic 
nature of the protocol allows updates to commit 
even when a quorum of replicas is not simulta-
neously connected. The protocol relies on fixed 
per-object currencies, where there is a fixed, con-
stant weight that is distributed by all replicas of a 
particular object. Fixed currencies avoid the need 
of global membership knowledge at each replica, 
thus facilitating replica addition and removal, as 
well as currency redistribution among replicas.

Deno requires one entire election round to 
be completed in order to commit each single up-
date (Cetintemel et al., 2003). This is acceptable 
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when applications are interested in knowing the 
commitment outcome of each tentatively issued 
update before issuing the next, causally related, 
one. However, collaborative users in loosely-
coupled networks will often be interested in is-
suing sequences of multiple consecutive tentative 
updates before knowing about their commitment, 
as the latter may take a long time to arrive. In 
such situations, the commitment delay imposed 
by Deno’s voting protocol becomes unacceptably 
higher than that of primary commit (Barreto & 
Ferreira, 2007).

Holliday et al. (2003) have proposed a closely 
similar approach. Their algorithm also relies on 
epidemic quorum systems for commitment in 
replicate databases. However, they propose epi-
demic quorum systems that use coteries that exist 
in traditional (i.e. non epidemic) quorum systems, 
such as majority. To the best of our knowledge, 
no study, either theoretical or empirical has ever 
compared Holliday et al.’s majority-based and 
Deno’s plurality-based approaches. In fact, apart 
from the above mentioned works, epidemic quo-
rum systems remain a relatively obscure field 
(Barreto & Ferreira, 2008).

The Version Vector Weighted Voting protocol 
(VVWV) (Barreto & Ferreira, 2007) employs a 
commitment algorithm that, while relying on epi-
demic weighted voting, substantially outperforms 
the above mentioned epidemic weighted voting 
solutions by being able to commit multiple tenta-
tive updates quicker, in a single election round. 
Situations of multiple pending tentative updates 
tend to increase when connectivity is weak, thus 
increasing VVWV’s advantage.

Complementary Adaptation 
Techniques

Complementarily to the core of OR protocols, as 
discussed so far, some work focuses on the ad-
aptation of OR to environments with constrained 
resources such as the ones this chapter considers.

Partial Replication

Partial replication, in contrast to full replication, 
allows each replica to hold only a subset of the 
data items comprising the corresponding object. 
It may take advantage of access locality by repli-
cating only the data items constituting the whole 
object that are most likely to be accessed from 
the local replica.

Partial replication is more appropriate than full 
replication when hosts have constrained memory 
resources and network bandwidth is scarce. 
Moreover, it improves scalability, since only a 
smaller subset of replicas needs to be involved 
when the system coordinates write operations 
upon individual data items (of the whole object). 
Nevertheless, achieving partial replication is a 
complex problem that has important implications 
to most phases of OR, from scheduling and conflict 
detection to update commitment. It is, to the best 
of our knowledge, far from being solved in OR.

Schiper et al. have formally studied the prob-
lem, and proposed algorithms that extend trans-
actional database replication protocols5 (Schiper, 
Schmidt & Pedone, 2006), but not OR protocols. 
More recently, and again in the context of transac-
tional database replication, Sutra and Shapiro have 
proposed a partial replication algorithm that avoids 
computing a total order over operations that are 
not mutually conflicting (Sutra & Shapiro, 2008).

The PRACTI Replication toolkit (Belaramani 
et al., 2006) provides partial replication of both 
data and meta-data for generic OR systems with 
varying consistency requirements and network 
topologies. However, PRACTI does not support 
EEC, which strongly restricts the universe of 
applications for which PRACTI’s consistency 
guarantees are effectively appropriate.

Full replication is a radically less challenging 
design choice. Not surprisingly, most existing 
solutions on OR rely on it.
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Advanced Synchronization Schemes

Fluid Replication (Cox & Noble, 2001) divides 
hierarchically-structured objects (file system trees) 
into smaller sub-objects, identifying the sub-trees 
(represented by Least Common Ancestors, or 
LCAs) that are modified with respect to a base 
version. This technique exploits the temporal and 
spatial locality of updates in order to improve 
update propagation in networks that may be tem-
porarily poorly connected. A client exchanges only 
meta-data updates (which include LCAs) with the 
server, deferring update propagation to moments 
of strong connectivity. The exchange of meta-data 
enables the client to commit updates it generates, 
even before their actual propagation to the server. 
Moreover, deferred propagation may be more 
network-efficient, as redundant or self-canceling 
updates in the batch of pending updates need not 
be propagated. As a drawback, Fluid Replication 
is limited to client-server systems.

Fluid Replication’s separation of control from 
data is not new in OR. In Coda (Kistler & Saty-
anarayanan, 1991), servers send invalidations 
to clients holding replicas of an updated object. 
Update propagation to invalidated replicas is 
performed subsequently only. The Pangaea file 
system (Saito et al., 2002) floods small messages 
containing timestamps of updates (called harbin-
gers) before propagating the latter.

Barreto et al. (2007) describe how to extend 
generic OR protocols to generate and disseminate 
lightweight packets containing consistency meta-
data only (such as version vectors). Such packets 
can considerably contribute to reducing commit-
ment delays and aborted updates, while enabling 
more efficient updates transfer.

Systems such as Bayou (Petersen et al., 1997), 
Rumor (Guy et al., 1998), or Footloose (Paluska 
et al., 2003) allow an off-line form of synchroni-
zation, called off-line anti-entropy. With offline 
anti-entropy, the interacting replicas need not to 
be simultaneously accessible across the network 
to synchronize, enabling alternative means of 

anti-entropy. These include transportable storage 
media, as well as mobile and stationary devices, 
accessible through the network, that are willing 
to temporarily carry off-line anti-entropy packets.

Off-line anti-entropy has a higher communica-
tion overhead than regular anti-entropy. Whereas, 
in regular anti-entropy, the sender may ask the 
receiver what is the minimal set of relevant in-
formation to send, that is not possible in off-line 
anti-entropy. Therefore, packets exchanged in off-
line anti-entropy should carry enough information 
so that they are meaningful for every potential 
receiver; hence, their size may grow significantly.

Efficient Update Propagation

Many interesting and useful replicated systems 
require transferring large sets of data across a 
network. Examples include network file systems, 
content delivery networks, software distribution 
mirroring systems, distributed backup systems, 
cooperative groupware systems, and many other 
state-based replicated systems. Unfortunately, 
bandwidth and battery remain scarce resources in 
mobile networks. We now survey techniques that 
try to make update propagation more efficient.

In some systems, applications provide a precise 
operation specification along each operation they 
request from the replicated system. We call such 
systems as operation-based or operation-transfer 
systems. Typically, operation-based requests are 
more space-efficient than the alternative of state-
based requests, which instead contain the value 
resulting from the application of the requested 
operation. Systems such as Bayou (Demers et 
al., 1994) or IceCube (Kermarrec et al., 2001), or 
operation transformation solutions (Sun & Ellis, 
1998) rely on operation-based requests.

The activity shipping approach (Lee, Leung 
& Satyanarayanan, 1999; Chang, Velayutham & 
Sivakumar, 2004) tries to extract operation-based 
requests from systems that are originally state-
based. With activity shipping, user operations 
are logged at a client computer that is modifying 



1146

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

a file and, when necessary, propagated to the 
server computer. The latter then re-executes the 
operations upon the old file version and verifies 
whether the regenerated file is identical to the 
updated file at the client by means of fingerprint 
comparison. Activity shipping has the fundamental 
drawbacks of (a) requiring semantic knowledge 
over the accessed files and (b) imposing the op-
erating environments at the communicating ends 
to be identical.

Much recent work has proposed data de-
duplication techniques (Trigdell & Mackerras, 
1998; Muthitacharoen, Chen & Mazieres, 2001) 
for efficient state-based update transfer across 
the network, which may be combined with con-
ventional techniques such as data compression 
(Lelewer & Hirschberg, 1987) or caching (Levy 
& Silberschatz, 1990). Data deduplication works 
by avoiding transferring redundant chunks of 
data; i.e. data portions of the updates to send that 
already exist at the receiving site. The receiving 
site may hence obtain the redundant chunks locally 
instead of downloading them from the network, 
and only the remaining, literal chunks need to be 
transferred.

The prominent approach of compare-by-hash 
(Trigdell & Mackerras, 1998; Muthitacharoen, 
Chen & DavidMazieres, 2001; Cox & Noble, 
2002; Jain, Dahlin & Tewari, 2005; Bobbarjung, 
Jagannathan & Dubnicki, 2006; Eshghi et al., 
2007) tries to detect such content redundancy 
by exchanging cryptographic hash values of the 
chunks to transfer, and comparing them with the 
hash values of the receiver’s contents. Compare-
by-hash complicates the data transfer protocol 
with additional round-trips (i), exchanged meta-
data (ii) and hash look-ups (iii). These may not 
always compensate for the gains in transferred data 
volume; namely, if redundancy is low or none, or 
when, aiming for higher precision, one uses finer-
granularity chunks (Jain, Dahlin & Tewari, 2005; 
Muthitacharoen, Chen & DavidMazieres, 2001;, 
Bobbarjung, Jagannathan & Dubnicki, 2006). 
Moreover, any known technique for improving 

the precision and efficiency of compare-by-hash 
(Jain, Dahlin & Tewari, 2005; Eshghi et al., 2007) 
increases at least one of items (i) to (iii).

Earlier alternatives to compare-by-hash, such 
as delta-encoding (Fitzpatrick et al., 2004; Henson 
& Garzik, 2002; MacDonald, 2000) and coopera-
tive caching (Spring & Wetherall, 2000), are able 
to less cases of redundancy. However they can 
attain higher precision when detecting such cases. 
Recently, the redFS system (Barreto & Ferreira, 
2009) proposed hybrid approach that combines 
techniques from both delta-encoding, cooperative 
caching and compare-by-hash, thereby borrow-
ing most advantages that distinguish each such 
alternative.

FUTURE RESEARCH DIRECTIONS

Despite the success of OR in very specific ap-
plications, such as DNS, USENET or electronic 
mail, it is still hardly applicable to general case 
collaborative applications. When compared to its 
pessimistic counterpart, OR introduces crucial 
obstacles to its collaborative users. Namely, the 
temporal distance that separates tentative write op-
erations from their actual commitment with strong 
consistency guarantees; the inherent possibility of 
lost work due to aborts; and the increased storage 
and network requirements that maintaining large 
version logs imposes are substantial obstacles. 
Ironically, the very network environments that call 
for OR, as a means of dealing with their inherent 
weak connectivity, tend to substantially amplify 
all the above obstacles; mostly, due to their weak 
connectivity and resource constraints.

Therefore, several important issues remain 
open problems in OR. The road towards decen-
tralized commitment protocols, particularly ap-
propriate to weakly connected environments such 
as mobile networks, has not yet found a way to 
encompass semantic-aware protocols. By neglect-
ing application semantics, current decentralized 
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commitment protocols require more messages and 
abort more than effectively necessary.

Moreover, OR is still largely oblivious of the 
idiosyncrasies of the mobile environments. More 
efficient synchronization and update propaga-
tion protocols should be devised, departing 
from the recent research efforts towards partial 
replication (SchiperRodrigo Schmidt & Pedone, 
2006) and efficient update propagation through 
data deduplication Trigdell & Mackerras, 1998; 
Muthitacharoen, Chen & DavidMazieres, 2001).

Battery is another resource that should be taken 
into account by OR protocols. These should adapt 
their operation in order to accomplish sufficient 
consistency while, simultaneously, minimizing 
energy consumption. For instance, by disconnect-
ing network connections that currently connect the 
mobile node to no replica that is relevant to the 
activity that the local user is pursuing.

Finally, most existing protocols consider an 
isolated world that exclusively comprises the set 
of sites carrying replicas of some objects, neglect-
ing an increasingly dense neighborhood of other 
devices, unknown a priori. OR should also take 
advantage of such ubiquitous surroundings to find 
innovative ways to exchange consistency data 
and meta-data, therefore reducing the impact of 
weak connectivity.

CONCLUSION

OR is a fundamental technique for supporting col-
laborative work practices in a fault-tolerant manner 
in weakly connected network environments. As 
collaboration through weakly connected networks 
becomes popular (e.g. by using asynchronous 
groupware applications, or distributed file or 
database systems, and collaborative wikis), the 
importance of this technique increases. Examples 
of such weakly connected environments range 
from the Internet to ubiquitous computing and 
mobile computing environments.

This chapter surveys fundamental aspects 
form state-of-the-art solutions to OR and identi-
fies open research issues. We focus on the three 
crucial requirements for most applications and 
users: rapid update commitment, fewer aborts and 
adaptation to network and memory constraints. 
Namely, we address: consistency guarantees and 
their trade-off against availability; mechanisms 
for tracking the happens-before relation among 
updates and versions; approaches for scheduling 
and commitment; and complementary adaptation 
mechanisms.
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KEY TERMS AND DEFINITIONS

Optimistic Replication: Strategy for data 
replication in which replicas are allowed to diverge 
and consistency is achieved a posteriori.

Pessimistic Replication: Strategy for data 
replication in which any access to replicated data 
is only granted after the system guarantees that 
no inconsistency will result from such an access.

Conflict: Situation where two updates cannot 
be scheduled in any order that is safe, according 
to some application semantics.

Eventual Consistency: Paradigm that allows 
a replicated system to be temporarily inconsistent, 
while ensuring that eventually the system will 

agree on and converge to a state that is strongly 
consistent.

Commitment: System-wide agreement on a 
schedule of previously updates that are guaranteed 
to eventually be applied at a consistent order at 
any replica and to never roll back at any replica.

Partial Replication: Form of data replication 
that allows each replica to hold only a subset of the 
data items comprising the corresponding object.

Data Deduplication: Technique that avoids 
transferring or storing data that the receiver site 
already stores at some local object.

ENDNOTES

1  Except where noted, this chapter assumes 
full replication, i.e. each site that replicates a 
given object maintains a replica of the whole 
value of the object. Furthermore, we assume 
a full-trust model. Solutions relying on more 
realistic trust models for replicated systems 
can be found, for instance, in (Miltchev et al., 
2008), (Reiher et al., 1993), (Kubiatowicz 
et al., 2000), (Rowstron & Druschel, 2001) 
or (Boulkenafed & Issarny, 2003).

2  In practice, the system may represent updates 
in various forms, as we discuss later in the 
chapter.

3 This is also called the prefix property (Pe-
tersen et al., 1997).

4 Since referential integrity of site identifiers 
is hardly solved by distributed protocols or 
centralized name servers.

5  In particular, the Database State Machine 
to partial replication approach (Pedone, 
Guerraoui & Schiper, 2003).


