
Handbook of Research on
Mobility and Computing:
Evolving Technologies and
Ubiquitous Impacts

Maria Manuela Cruz-Cunha
Polytechnic Institute of Cávado e Ave, Portugal

Fernando Moreira
Universidade Portucalense, Portugal

Hershey • New York
InformatIon scIence reference

Volume I

Senior Editorial Director: Kristin Klinger
Director of Book Publications: Julia Mosemann
Editorial Director: Lindsay Johnston
Acquisitions Editor: Erika Carter
Development Editor: Michael Killian
Typesetters: Michael Brehm, Casey Conapitski, Keith Glazewski, Milan Vrarich Jr. & Deanna Zombro
Production Coordinator: Jamie Snavely
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2011 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or com-
panies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Handbook of research on mobility and computing : evolving technologies and
ubiquitous impacts / Maria Manuela Cruz-Cunha and Fernando Moreira, editors.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-1-60960-042-6 (hbk.) -- ISBN 978-1-60960-043-3 (ebook) 1. Mobile
computing. 2. Wireless communication systems. I. Cruz-Cunha, Maria Manuela,
1964- II. Moreira, Fernando, 1969 Aug. 16-
 QA76.59.H35 2011
 004.165--dc22
 2010036723

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

1132

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-60960-042-6.ch069

Chapter 69

Data Replication Support
for Collaboration in

Mobile and Ubiquitous
Computing Environments

João Barreto
INESC-ID/Technical University Lisbon, Portugal

Paulo Ferreira
INESC-ID/Technical University Lisbon, Portugal

ABSTRACT

In this chapter we address techniques to improve the productivity of collaborative users by supporting
highly available data sharing in poorly connected environments such as ubiquitous and mobile com-
puting environments. We focus on optimistic replication, a well known technique to attain such a goal.
However, the poor connectivity of such environments and the resource limitations of the equipments used
are crucial obstacles to useful and effective optimistic replication. We analyze state-of-the art solutions,
discussing their strengths and weaknesses along three main effectiveness dimensions: (i) faster strong
consistency, (ii) with less aborted work, while (iii) minimizing both the amount of data exchanged be-
tween and stored at replicas; and identify open research issues.

1133

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

INTRODUCTION

Consider a team of co-workers that wishes to write
a report in a collaborative fashion. For such a pur-
pose, they create a document file, replicate it across
the (possibly mobile) personal computers each
colleague holds, and occasionally synchronize
replicas to ensure consistency. Using a text editor,
each worker is then able to read and modify her
replica, adding her contributions asynchronously
with the remaining colleagues. One may envision
interesting scenarios of productive collaboration.
A user may modify the report even while out of
her office, replicated in a laptop or hand-held
computer she carries while disconnected from the
corporate wired network. Further, such a worker
may meet other colleagues carrying their laptops
with report replicas and, in an ad-hoc fashion, es-
tablish a short term work group to collaboratively
work on the report.

Besides the shared document editing appli-
cation, one may consider a wide range of other
applications and systems; examples include asyn-
chronous groupware applications (Wilson, 1991;
Carstensen & Schmidt, 1999) such as cooperative
engineering or software development (Cederqvist
et al, 1993; Fitzpatrick et al., 2004; Chou, 2006),
collaborative wikis (Leuf & Cunningham, 2001;
Ignat et al., 2007), shared project and time man-
agement (Kawell et al., 1988; Byrne, 1999), and
distributed file (Nowicki, 1989; Morris et al.,
1986) or database systems (Thomas et al., 1990).

The previous example illustrates the potential
collaborative scenarios that the emerging environ-
ments of ubiquitous and mobile computing (Weser,
1991; Forman & Zahorjan, 1994) allow. One may
even conceive more extreme scenarios, where the
fixed network infrastructure is even less likely to
be present. For example, data acquisition in field
work, emergency search-and-rescue operations,
or war scenarios (Royer & Chai-Keong, 1999).
In all these scenarios, collaboration through data
sharing is often crucial to the activities the teams
on the field carry out.

Optimistic replication is especially interesting
in all previous scenarios, due to their inherent weak
connectivity. They are based on mobile networks,
whose bandwidth is lower than in local-area wired
networks, and where network partitions and inter-
mittent links are frequent. Further, mobile nodes
reduce their up-time due to battery limitations.
Moreover, a fixed network infrastructure, such as
a corporate local area network, may not always
compensate for the limitations of mobile networks.
In fact, access to such an infrastructure is often
supported by wireless connections such as IEEE
802.11 (IEEE, 1997), UMTS (3GP) or GPRS
(Ericsson AB, 1998); these are typically costly
in terms of price and battery consumption, and
are seldom poor or intermittent due to low signal.
Hence, access to the fixed infrastructure is often
minimized to occasional connections. Further-
more, access to the fixed network infrastructure
is often established along a path on a wide-area
network, such as the Internet; these remain slow
and unreliable (Zhang, Paxson & Shenker, 2000;
Dahlin et al., 2003).

Optimistic replication, in contrast to traditional
replication (i.e., pessimistic replication), enables
access to a replica without a priori synchroni-
zation with the other replicas. Hence, it offers
highly available access to replicas in spite of the
above limitations (among other advantages over
traditional replication (Saito & Shapiro, 2005). As
collaboration in ubiquitous and mobile computing
environments becomes popular, the importance
of optimistic replication increases.

Inevitably, however, consistency in optimistic
replication is challenging (Fox & Brewer, 1999;
Yu & Vahdat, 2001; Pedone, 2001). Since one
may update a replica at any time and under any
circumstance, the work of some user or applica-
tion at some replica may conflict with concurrent
work at other replicas. Hence, consistency is not
immediately ensured. A replication protocol is
responsible for disseminating updates among rep-
licas and eventually scheduling them consistently
at each of them, according to some consistency

1134

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

criterion. The last step of such a process is called
update commitment. Possibly, it may involve roll-
ing back or aborting updates, in order to resolve
conflicts.

The usefulness of optimistic replication de-
pends strongly on the effectiveness of update
commitment along two dimensions:

• Firstly, update commitment should arrive
rapidly, in order to reduce the frequency by
which users and application are forced to
access possibly inconsistent data.

• Secondly, update commitment should be
achieved with a minimal number of abort-
ed updates, so as to minimize lost work.

Orthogonally, such requirements must be
accomplished even in spite of the limitations of
the very environments that motivate optimistic
replication. Namely:

• The relatively low bandwidth of mobile
network links, along with the constrained
energy of mobile devices, requires an ef-
ficient usage of the network.

• Similarly, bandwidth of wired wide-area
networks is a limited resource; hence,
when such networks are accessible, their
bandwidth must be used wisely by the rep-
lication protocol.

• Further, node failures and network parti-
tions have non-negligible probability, both
in wired wide-area networks and, especial-
ly, in mobile networks; their implications
are crucial to any distributed system.

• Finally, the memory resources of mobile
devices are clearly constrained when com-
pared to desktop computers; the storage
overhead of optimistic replication must be
low enough to cope with such limitations.

Although much research has focused on
optimistic replication, existing solutions fail to
acceptably fulfill the above two requirements

(rapid update commitment and abort minimiza-
tion). As we explain later, proposed optimistic
replication solutions either do not support update
commitment, or impose long update commitment
delays in the presence of node failures, poor con-
nectivity, or network partitions. Some commitment
approaches are oblivious to any application se-
mantics that may be available; hence, they adopt
a conservative update commitment approach that
aborts more updates than necessary. Alternatively,
semantic-aware update commitment is a complex
problem, for which semantically-rich fault-toler-
ant solutions have not yet been proposed. Finally,
more intricate commitment protocols that aim at
fulfilling the above requirements have significant
network and memory overheads, unacceptable for
environments where such resources are scarce.

BACKGROUND

A replicated system maintains replicas1 of a set
of logical objects at distributed machines, called
sites (also called replica managers or servers). A
logical object can, for instance, be a database item,
a file or a Java object. Most replicated systems
intend to support some collaborative task that a
group of users carries on (Saito & Shapiro, 2005;
Davidson, Garcia-Molina & Skeen, 1985).

It is the ultimate objective of a replicated system
to ensure that distributed replicas are consistent,
according to some criterion that the users of the
system expect. Traditional replication employs
pessimistic strategies to achieve that objective by
reducing the availability of the replicated system
(Davidson, Garcia-Molina & Skeen, 1985; Wies-
mann et al. 2000).

Each site makes worst-case assumptions about
the state of the remaining replicas. Therefore
its operation follows the premise that, if any
inconsistency can occur in result of some replica
operation, that operation will not be performed.
As a result, pessimistic strategies yield strong
consistency guarantees such as linearizability

1135

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

(Dollimore, Coulouris & Kindberg, 2001) or
sequential consistency (Lamport, 1979).

Before accepting an operation request at some
replica, pessimistic replication runs some syn-
chronous coordination protocol with the remain-
ing system, in order to ensure that executing the
operation will not violate the strong consistency
guarantees. For instance, if the request is for a
write operation, the system must ensure that no
other replica is currently being read or written;
possibly, this will mean waiting for other replicas
to complete their current operations. In the case of
a read operation, the system must guarantee that
the local replica has a consistent value; this may
imply obtaining the most recent value from other
replicas and, again, waiting for other replicas to
complete ongoing operations.

In both situations, after issuing a local opera-
tion request, a client has to wait for coordination
with other remote sites obtaining a response. Such
a performance penalty is the first disadvantage
of pessimistic replication. Further, if a network
partition or a failure of some site should pro-
hibit or halt the coordination protocol, then the
request response will as well be disrupted. As a
second shortcoming, pessimistic replication of-
fers reduced availability if the latter occur with
non-negligible frequency.

Thirdly, pessimistic replication inherently im-
plies that two distinct write operations cannot be
accepted in parallel by disjoint sets of sites. It is
easy to show that, otherwise, we would no longer
be able to ensure strong consistency guarantees.
This poses an important obstacle to the scalability
of pessimistic systems, as their sites cannot serve
operations independently.

Some authors (Saito & Shapiro, 2005) point
out a fourth limitation, that some human activities
are not adequate to strong consistency guarantees.
Rather, such activities are most appropriate to op-
timistic data sharing. According to such authors,
cooperative engineering and code development
are examples of such tasks, where users prefer to
have continuous access shared data, even when

other users are updating it, and possibly generat-
ing conflicts.

In the network environments that the present
chapter considers, the availability and performance
shortcomings clearly constitute strong reasons to
not adopt pessimistic replication as our solution.
Further, the fourth limitation is also very relevant
for our objective of supporting collaborative
activities, such as the ones we mention above.

OPTIMISTIC REPLICATION

Optimistic replication (OR), in contrast to pes-
simistic replication, enables access to a replica
without a priori synchronization with the other
replicas. Access requests can thus be served just
as long as any single site’s services are accessible.
Write requests that each local replica accepts are
then propagated in background to the remaining
replicas, and an a posteriori coordination protocol
eventually resolves occasional conflicts between
divergent replicas.

OR eliminates the main shortcomings of
pessimistic replication. Availability and access
performance are higher, as the replicated system
no longer waits for coordination before accepting
a request; instead, applications have their requests
quickly accepted, even if connectivity to the re-
maining replicas is temporarily absent. Also, OR
scales to large numbers of replicas, as less coor-
dination is needed and it may run asynchronously
in background. Finally, OR inherently supports
asynchronous collaboration practices, where users
work autonomously on shared contents and only
occasionally synchronize.

Inevitably, OR cannot escape the trade-off
between consistency and availability. OR pays the
cost of high availability with weak consistency.
Even if only rarely, optimistic replicas may eas-
ily diverge, pushing the system to a state that is
no longer strongly consistent (e.g. according to
the criteria of linearizability or sequential consis-
tency) and, possibly, has different values that are

1136

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

semantically conflicting (we will define semantic
scheduling and conflicts later). Hence, OR can only
enforce weak consistency guarantees as replicas
unilaterally accept tentative requests.

OR exists behind most Internet services and
applications (Saito & Shapiro, 2005), which must
cope with the limitations of a wide-area network.
Examples include name and directory services,
such as DNS (Mockapetris & Dunlap, 1995),
Grapevine (Birrell et al., 1982), Clearinghouse
(Demers et al., 1987), and Active Directory (Mi-
crosoft, 2000); caching, such as WWW caching
(Chankhunthod et al., 1996; Wessels &. Claffy,
1997; Fielding et al., 1999); or information ex-
change services such as Usenet (Lidl, Osborne &
Malcolm, 1994) or electronic mail (Saito, Bershad
& Levy, 1999). The semantics of these services
already assume, by nature, weakly consistent
data. In fact, the definition of their semantics was
molded a priori by the limitations of wide-area
networking; namely, slow and unreliable com-
munication between sites.

Other OR solutions support more generic col-
laborative applications and semantics, the focus
of this chapter. Generic replication systems must
cope with a wide semantic space, and be able to
satisfy differing consistency requirements. In
particular, they must accommodate applications
whose semantics are already historically defined
in the context of earlier centralized systems or
pessimistically replicated systems in local area
environments. Here, the OR system should provide
semantics that are as close as possible to the origi-
nal ones, corresponding to users’ expectations.
This takes us to the notion of eventual consistency.

Eventual Consistency

This chapter focuses on OR systems that attempt to
offer eventual consistency (EC) (Saito & Shapiro,
2005). EC can be seen as a hybrid that combines
weak consistency guarantees (e.g., as those that
relaxed consistency Internet services such as
USENET or DNS offer) and strong consistency

guarantees (as in pessimistic replication systems).
At its base, EC offers weak consistency, according
to one of the previous criteria. However, EC also
ensures that, eventually, the system will agree on
and converge to a state that is strongly consistent.
Typically, the criterion for strong consistence is
sequential consistency.

In EC, we may thus distinguish two stages in
the life cycle of an update. Immediately after being
issued, the update is optimistically ordered and
applied upon a weakly consistent schedule of other
updates. In such a stage, we say that the update
resulting from the write operation is tentative, and
the value that we obtain by executing the updates
in the weakly consistent schedule is the current
tentative value of the replica. Eventually, by means
of some distributed coordination, the tentative
update becomes ordered in some schedule that
ensures strong consistency with the schedules at
the remaining replicas, we call it stable; similarly,
the value that results from the execution of such
an ordering is the replica’s current stable value.

Some systems are able to distinguish the portion
of an ordering of operations whose correspond-
ing updates are already stable, from the portion
that is still tentative. These systems offer explicit
eventual consistency (EEC). Systems with EEC
are able to expose two views over their replica
values: the stable view, offering strong consis-
tency guarantees, and the tentative view, offering
weak consistency guarantees. Note that some
systems offer EC but not EEC; i.e. they ensure
that, eventually, replicas converge to a strongly
consistent state, but cannot determine when they
have reached that state.

EEC is a particularly interesting combination
of weak and strong consistency guarantees. It can
easily accommodate different applications with
distinct correctness criteria and, consequently,
distinct consistency requirements. Applications
with stronger correctness criteria can access the
stable view of replicated objects. Applications with
less demanding correctness criteria can enjoy the
higher availability of the tentative view.

1137

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

Eventual Consistency with
Bounded Divergence

While EC ensures strong consistence of the stable
view, it allows the weakly consistent view to
be arbitrarily divergent. For some applications,
however, such independence is not acceptable.

Eventual consistency with bounded divergence
(Yu & Vahdat, 2000; Santos, Veiga &Ferreira,
2007) strengthens the weakly consistent guar-
antees of EC, according to some parameterized
bounds. More precisely, it imposes a limit on the
divergence that tentative values may have, using
the stable values as the reference from which
divergence is measured. Divergence bounds can
be expressed in several ways; from the number of
pending tentative updates, to semantic measures
such as the sum of money from some account that
is withdrawn by updates that are still tentative.

Operations that do not respect the parameter-
ized bounds cannot be accepted and, hence, are
either discarded or delayed. Hence, EC with
bounded divergence offers lower availability
than EC.

Basic Stages toward
Eventual Consistency

They run some distributed agreement protocol that
is responsible to eventually resolve conflicts and
make replicas converge, pushing the system back
to a strongly consistent state. Eventual consistency
is the central challenge of OR. It may take consid-
erable time, especially when system connectivity
is low; it may only be possible at the expense of
aborting some tentative work; and it may require
substantial storage and network consumptions.

Saito and Shapiro (2005) identify the following
basic stages in OR:

1. Operation submission. To access some
replica, a local user or application submits
an operation request. When studying even-
tual consistency, we are mainly interested

in requests that update the object. Update
requests may be expressed in different
forms, depending on the particular appli-
cation interface (API) that the replicated
system offers. In general, an update request
includes, either explicit or implicitly, some
precondition for detecting conflicts, as well
as a prescription to update the object in case
the precondition is verified (Saito & Shapiro,
2005). Internally, the replicated system
represents each request by updates2. Each
site may execute updates upon the value of
its replicas, obtaining new versions of the
corresponding object. Additionally, each site
stores logs of updates along with each replica.
Whether update logging is needed or not
depends on numerous design aspects of OR,
which we will address in the next sections.
First, update logging may enable more ef-
ficient, incremental replica synchronization.
Second, update logging may be necessary
for correctly ensuring eventual consistency.
Third, update logging is useful for recovery
from user mistakes or system corruption
(Santry et al., 1999), backup (Cox & Noble,
2002; Quinlan & Dorward, 2002; Storer et
al., 2008), post-intrusion diagnosis, (Strunk
et al., 2000), or auditing for compliance with
electronic records legislation (Peterson et
al., 2007).

2. Update propagation. An update propaga-
tion protocol exchanges new updates (result-
ing from the above stage) across distributed
replicas. The update propagation protocol is
asynchronous with respect to the operation
submission step that originated the new
updates; potentially, it may occur long after
the latter.

Different communication strategies may be
followed, from optimized structured topolo-
gies (Ratner, Reiher & Popek, 1999) to random
pair-wise interactions that occur as pairs of sites
become in contact (Demers et al., 1987). We call

1138

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

the latter approach epidemic update propagation.
Its flexibility is particularly interesting in weakly
connected networks, as it allows a site to oppor-
tunistically spread its new updates as other sites
intermittently become accessible.

3. Scheduling. As a replica learns of new up-
dates, either submitted locally or received
from other replicas, the replica must tenta-
tively insert the new updates into its local
ordering of updates.

4. Conflict detection and resolution. Since
replicas may concurrently accept new up-
dates, conflicts can occur. In other words,
it can happen that some replica, after re-
ceiving concurrent updates, cannot order
them together with other local updates in a
schedule that satisfies the preconditions of
all updates. Therefore, complementarily to
the scheduling step, each replica needs to
check whether the resulting ordering satis-
fies the preconditions of its updates. Only
then is the replica sound according to the
semantics of its users and applications.

If a conflict is found, the system must resolve
it. One possible, yet undesirable, solution is to
abort a sufficient subset of updates so that the
conflict disappears. This solution has the obvious
disadvantage of discarding tentative work. Some
systems try to not to resort to such a solution, by
either trying to reorder updates (Kermarrec et al.,
2001), by modifying the conflicting updates so as
to make them compatible (Terry et al., 1995; Sun
& Ellis, 1998), or by asking for user intervention
(Kistler &. Satyanarayanan, 91; Cederqvist et al.,
1993; Fitzpatrick et al., 2004).

5. Commitment. The update orderings at
which replicas arrive are typically non-deter-
ministic, as they depend on non-deterministic
aspects such as the order in which updates
arrived at each replica. Hence, even once all
updates have propagated across the system,

replicas can have divergent values. The com-
mitment stage runs a distributed agreement
protocol that tries to achieve consensus on
a canonical update ordering, with which all
replicas will eventually be consistent. We
say that, once the value of a replica reaches
such a condition, it is no longer tentative and
becomes stable. Furthermore, we say that
the updates that the replica has executed to
produce such a stable value are committed.
We should note that the moment where a
replica value becomes stable is not neces-
sarily observable. This distinguishes systems
that offer eventual consistency (EC) from
systems providing explicit eventual consis-
tency (EEC). Systems where commitment is
explicit are typically able to offer two views
on a replica: a tentative view, which results
from the current update ordering, possibly
including tentative updates; and a stable one,
which is the most recent stable value. The
former is accessible with high availability,
while the latter is guaranteed to be strongly
consistent across the stable views of the
remaining replicas.

In the following sections, we analyze a number
of fundamental design choices that affect the way
OR achieves eventual consistency.

Tracking Happens-Before Relations

Tracking happens-before relationships plays a
central role in OR (Schwarz & Mattern, 1994). In
different stages of OR we need to determine, given
two updates (or the resulting versions), whether
one happens-before the other one, or whether
they are concurrent. For instance, when two sites
replicating a common object get in contact, we are
interested in determining which replica version
happens-before the other one, or if, otherwise,
both hold concurrent values. As a second example,
systems that offer strict happens-before ordering
of tentative updates need to determine whether

1139

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

two updates are related by happens-before or,
instead, are concurrent.

Tracking happens-before relations is a well
studied problem, and a number of more space- and
time-efficient alternatives have been proposed.
All aim at representing version sets (which in
turn result from the execution of update sets)
in some space-efficient manner that allows fast
comparisons of version sets. We address such
solutions next.

Logical, Real-Time and
Plausible Clocks

Logical clocks (Lamport, 1978) and real-time
clocks consist of a scalar timestamp. Each site
maintains one such clock, and each update has
an associated timestamp. If two updates are not
concurrent, then the update with the lowest logical/
real-time clock happens-before the other update.
However, the converse is not true; i.e., neither
solution can detect concurrency.

Logical clocks are maintained as follows.
Every time the local site issues an update, it
increments its logical clock and assigns such a
timestamp to the new update. Every time a site
receives an update from another site, the receiver
site sets its logical clock to a value that is both
higher than the site’s current clock and the update’s
timestamp.

Real-time clocks assume synchronized (real-
time) clocks at each site. The timestamp of an
update is simply the time at which it was first
issued. Real-time clocks have the advantage of
capturing happens-before relations that occur
outside system’s control (Saito & Shapiro, 2005).
However, the need for synchronized clocks is a
crucial disadvantage, as it is impossible in asyn-
chronous environments (Chandra & Toueg, 1996).

Plausible clocks (Valot, 1993; Torres-Rojas
& Ahamad, 99) consist of a class of larger, yet
constant-size, timestamps that, similarly to logical
and real-time clocks, can deterministically track
happens-before relationships but not concurrency.

Nevertheless, a plausible clock can detect concur-
rency with high probability.

Version Vectors

Version vectors, in contrast to the previous so-
lutions, can both express happens-before and
concurrency relationships between updates (and
versions) (Mattern, 1989; Fidge, 1991). A version
vector associates a counter with each site that
replicates the object being considered. In order
to represent the set of updates that happen-before
a given update, we associate a version vector to
the update.

A usual implementation of a version vector is
by means of an array of integer values, where each
site replicating the object is univocally associated
with one entry in the array, 0,1,2, ... Alternatively,
a version vector can also be an associative map,
associating some site identifier (such as its IP
address) to an integer counter.

Each replica a maintains a version vector, VVa,
which reflects the updates that it has executed lo-
cally in order to produce its current value. When
a new update is issued at replica a, the local site
increments the entry in VVa corresponding to itself
(VVa[a] = VVa[a]+1). Accordingly, the new update
is assigned the new version vector. As replica a
receives a new update from some remote replica,
b, the site sets VVa[i] to maximum(VVa[i],VVb[i]),
where i is the site that issued the received update.
Provided that updates propagate in FIFO order3,
if VVa[b] = m (for any replica b), it means that
replica a has received every update that replica
b issued up to its m-th update.

Two version vectors can be compared to assert
if there exists a happens-before relationship be-
tween the updates (or versions) they identify. Given
two version vectors, VV1 and VV2, VV1 dominates
VV2, if and only if the value of each entry in VV2
is greater or equal than the corresponding entry
in VV1. This means that the update (resp. version)
that VV1 identifies happens-before the update
(resp. version) with VV2. If, otherwise, neither VV1

1140

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

dominates VV2, nor VV2 dominates VV1, VV1 and
VV2 identify concurrent updates (resp. versions).

An important limitation of version vectors is
that the set of sites that replicate the object being
considered is assumed static (hence, the set of
replicas is static). Each site has a pre-assigned
fixed position within a version vector. This means
that replica creation or retirement is prohibited
by this basic version vector approach. Secondly,
version vectors are unbounded, as the counters in
a version vector may grow indefinitely as updates
occur. Finally, version vectors neither scale well
to large numbers of replicating sites nor to large
numbers of objects.

Version Vector Extensions
for Dynamic Site Sets

Some variations of version vectors eliminate their
assumption of a static site set replicating an object.

For instance, the Bayou replicated system
(Petersen et al., 1996) handles replica creation and
retirement as special updates that propagate across
the system by the update propagation protocol. The
sites that receive such updates dynamically add or
remove (respectively) the corresponding entries
from their version vectors. However, Bayou’s ap-
proach requires an intricate site naming scheme in
which replica identifier size irreversibly increases
as replicas join and retire.

Ratner’s dynamic version vectors (Ratner,,
1998) are also able to expand and compress in
response to replica creation or deletion. Replica
expansion is simple: when a given replica issues
its first update, it simply adds a new entry to its
affected dynamic version vector(s). However,
removing an entry requires agreement by every
replica, which means that any single inaccessible
replica will halt such a process.

Similarly to dynamic version vectors, ver-
sion stamps (Almeida, Baquero & Fonte, 2002)
express the happens-before relation in systems
where replicas can join and retire at any time.
Furthermore, version stamps avoid the need for

a unique identifier per site. Assigning unique
identifiers is difficult when connectivity is poor4,
and sites come and go frequently.

Each replica constructs its version stamps,
based on the history of updates and synchroniza-
tion sessions that the local replica has seen, thus
obviating the need for a mapping from each site
to a unique identifier.

The expressiveness of version stamps is lim-
ited. Whereas version vectors express happens-
before relationships between any pair of versions/
update (including old versions that have already
been overwritten), version stamps can only relate
the current versions of each replica. Almeida et
al. designate such a set of coexisting versions as
a frontier (Almeida, Baquero & Fonte, 2002).

This means that, in OR systems that main-
tain old updates in logs, one cannot use version
stamps to determine whether an old, logged update
happens-before some other update, as the former
update may not belong to the same frontier as the
latter. Version stamps are designed for systems
that will only ever require comparing updates/
versions that co-exist in some moment.

Bounded Version Vectors

Version vectors are unbounded data structures, as
they assume that counters may increase indefi-
nitely. Almeida et al. propose a representation of
version vectors that places a bound on their space
requirements (Almeida, Almeida & Baquero,
2004). Like version stamps, bounded version vec-
tors can only express happens-before relationships
between versions in the same frontier.

Vector Sets

Version Vectors represent the set of versions of
a given individual replica. This means that the
number of version vectors that a site needs to
maintain and propagate grows linearly with the
number of objects the site replicates. This is an
obvious scalability obstacle, as most interesting

1141

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

systems (e.g. distributed file systems) have large
numbers of replicated objects.

Malkhi and Terry have proposed Concise
Version Vectors (Malkhi & Terry, 2005), later
renamed Vector Sets (VSs) (Malkhi, Novik &
Purcell, 2007), to solve the scalability problem of
version vectors. VSs represent the set of versions
of an arbitrarily large replica set in a single vector,
with one counter per site, provided that update
propagation sessions always complete without
faults. Provided that communication disruptions
are reasonably rare, VSs dramatically reduce the
storage and communication overhead of version
vectors in systems with numerous replicated
objects (Malkhi & Terry, 2005).

Like version stamps and bounded version
vectors, VSs can only express happens-before
relationships among versions in the same frontier.

Scheduling and Commitment

The road to eventual consistency has two main
stages: first, individual replicas schedule new
updates that they learn of in some way that is safe,
i.e. free of conflicts; second, each such tentative
schedule is submitted as a candidate for some a
distributed commitment protocol, which will, from
such an input, agree on a common schedule which
will then be imposed to every replica.

In the following sections, we address each
stage.

Scheduling and Conflict Handling

We distinguish two approaches for update sched-
uling: syntactic and semantic. The distinction lies
on the information that is available to each replica
when it is about to schedule a new update.

In the syntactic approach, no explicit pre-
condition is made available by the application
that requests the operation causing the update.
In this case, scheduling can only be driven by
application-independent information such as the
happens-before relation between the updates.

Based on such restricted information, syn-
tactic scheduling tries to avoid schedules that
may break users’ expectations. More precisely,
if update u1 happens-before update u2, then a
syntactic schedule will order u1 before u2, as it
knows that this is the same order in which the
user saw the effects of each update. Note that, if
the effects of both updates are commutative, the
scheduler could also safely order u2 before u1,
as the user would not notice it. However, as such
a commutativity relationship is not known to the
syntactic scheduler, it must assume the worst case
where the updates are non-commutable. Hence,
in the absence of richer information, syntactic
scheduling is a conservative approach that restricts
the set of acceptable schedules.

Concurrent updates, however, are not ordered.
We find syntactic schedulers that behave differ-
ently in such a case. Some will artificially order
concurrent updates, either in some total system-
wide order (by real time or by site identifier, e.g.
(Terry et al., 1995)) or by reception order, which
may vary for each replica (e.g., (Guy et al., 1998,
Ratner, Reiher & Popek, 1999)). In either solution,
the resulting schedule may no longer satisfy us-
ers’ expectations, as the concurrent updates may
be conflicting according to application semantics
and, still, the scheduler decides to execute them.

Other syntactic schedulers opt for scheduling
only one of the concurrent updates, and exclude
the remaining concurrent updates from the
schedule (e.g. (Keleher, 1999)). This approach
conservatively avoids executing updates that can
be mutually incompatible. However, it has the
secondary effect of aborting user work, which is
evidently undesirable.

The former syntactic approach ensures
happens-before ordering of updates, possibly
combined with the total ordering, while the latter
syntactic approach provides strict happens-before
ordering.

In some cases, rich semantic knowledge is
available about the updates. Essentially, such
information determines the preconditions to

1142

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

schedule an update. The replicated system may
take advantage of such preconditions to try out
different schedules, possibly violating happens-
before relationships, in order to determine which
of them are sound according to the available
semantic information.

Some systems maintain pre-defined per-op-
eration commutativity tables (Jagadish, Mumick
& Rabinovich 1997; Keleher, 1999). Whenever a
replica receives concurrent updates, it may consult
the table and check whether both correspond to
operations that are commutable; if so, they can
be both scheduled, in any order.

In other systems, operation requests carry
explicit semantic information about the schedul-
ing preconditions of each update. For instance,
Bayou’s applications provide dependency checks
(Terry, 1995) along with each update. A depen-
dency check is an application-specific conflict
detection routine, which compares the current
replica state to that expected by the update. The
output tells whether the update may be safely
appended to the end of such a schedule or not,
which is equivalent to compatibility or conflict
relations between the update and the schedule.

Even richer semantic information about
scheduling preconditions may be available, as
in the case of IceCube (Kermarrec, 2001), or
the Actions-Constraints Framework (Shapiro et
al., 2004). Their approach reifies semantic rela-
tions between as constraints between updates.
It represents such knowledge as a graph where
nodes correspond to updates, and edges consist
of semantic constraints of different kinds.

We should mention that scheduling has
important consequences in other stages of OR,
notably update propagation and commitment.
Consequently, although rich semantic knowledge
permits higher scheduling flexibility, some sys-
tems partially abdicate it for efficiency of other
stages of OR. For instance, Bayou imposes that
scheduling respect the local issuing order, i.e. two
updates issued by the same site must always be
scheduled in that (partial) order. Such a restriction

enables a simpler update propagation protocol,
which can use version vectors to determine the
set of updates to propagate (Petersen, 1997). In-
evitably, it limits scheduling freedom and, thus,
increases the frequency aborts.

Semantic information may also help when no
schedule is found that satisfies the preconditions
of some update, by telling how the update can
be modified so that its effects become safe even
when the original precondition fails. In Bayou,
updates also carry a merge procedure, a deter-
ministic routine that should be executed instead
of the update when the dependency check fails.
The merge procedure may inspect the replica value
upon which the update is about to be scheduled
and react to it. Ultimately, the merge procedure
can do nothing, which is equivalent to discarding
the update.

Finally, other approaches are specialized to
particular semantic domains and, using a relatively
complex set of rules, are able to safely schedule
updates, detecting and resolving any conflict that
is already expected in such a semantic domain.

One cannot, however, directly generalize such
approaches to other domains. A first example is
the problem of optimistic directory replication in
distributed file systems. The possible conflicts
and the possible safe resolution actions are well
studied, for instance in the algebra proposed by
Ramsey and Csirmaz (2001), or in the direc-
tory conflict resolution procedures of the Locus
(Walker, 1983) and Coda (Kistler & Satyanaray-
anan, 1991) replicated file systems.

Other work follows the Operational Trans-
formation method (Sun & Ellis, 1998) to ensure
consistency in collaborative editors. Instead of
aborting updates to resolve conflicts, this method
avoids conflicts by transforming the updates, tak-
ing advantage of well known semantic rules of
the domain of collaborative editing. Operational
Transformation solutions are complex. They typi-
cally assume only two concurrent users (Shapiro
& Saito, 2005) and are restricted to very confined
application domains. Research on this method is

1143

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

traditionally disjointed with the work on general-
purpose OR that this chapter addresses.

Update Commitment

Commitment is a key aspect of OR with eventual
consistency. One may distinguish four main com-
mitment approaches in OR literature.

A first approach may be designated as the
unconscious approach (Baldoni et al., 2006). In
this case, the protocol ensures eventual consis-
tency; however, applications may not determine
whether replicated data results from tentative or
committed updates.

These systems are adequate for applications
with weak consistency demands. For example,
Usenet, DNS, Roam and Draw-Together (Ignat
& Norrie, 2006) adopt this approach. The proto-
col proposed by Baldoni et al. (2006) is another
example.

Other approaches, however, allow explicit
commitment. A second approach for commit-
ment is to have a replica commit an update as
soon as the replica knows that every other replica
have received the update (Golding, 1993). This
approach has two important drawbacks. First,
the unavailability of any single replica stalls the
entire commitment process. This is a particularly
significant problem in loosely-coupled environ-
ments. Second, this approach is very simplified, in
the sense that it does not assume update conflicts.
Instead, it tries to commit all updates (as executed);
no updates are aborted. The TSAE algorithm
(Golding, 1993) and the ESDS system (Fekete et
al., 1996) follow this approach, though by different
means. One may also employ timestamp matrices
(Wuu & Bernstein, 1984; Agrawal, El Abbadi &
Steinke 1997) for such a purpose.

A third approach is a primary commit protocol
(Petersen et al., 1997). It centralizes commitment
into a single distinguished primary replica that es-
tablishes a commitment total order over the updates
it receives. Such an order is then propagated back
to the remaining replicas. Primary commit is able

to rapidly commit updates, since it suffices for an
update to be received by the primary replica to
become committed.

However, should the primary replica become
unavailable, commitment of updates generated
by replicas other than the primary halts. This
constitutes an important drawback in loosely-
coupled networks.

Primary commit is very flexible in terms of
the scheduling methods that may rely on primary
commit. Examples of systems that use primary
commit include Coda (Kistler & Satyanarayanan,
1991), CVS (Cederqvist et al., 1993), Bayou (Pe-
tersen et al., 1997), IceCube (Kermarrec, 2001)
and TACT (Yu & Vahdat, 2000). In particular, to
the best of our knowledge, existing OR solutions
that rely on a rich semantic repertoire (namely,
Bayou and IceCube) all use primary commit.

Finally, a fourth approach is by means of voting
(Pâris & Long, 1988; Jajodia & Mutchler, 1990;
Amir & Wool, 1996). Here, divergent update
schedules constitute candidates in an election,
while replicas act as voters. Once an update sched-
ule has collected votes from a quorum of voters
that guarantee the election of the corresponding
candidate, its updates may be committed in the
corresponding order. Voting eliminates the single
point of failure of primary commit.

In particular, Keleher introduced voting in
the context of epidemic commitment protocols
(Keleher, 1999); his protocol is used in the Deno
(Cetintemel et al., 2003) system. The epidemic
nature of the protocol allows updates to commit
even when a quorum of replicas is not simulta-
neously connected. The protocol relies on fixed
per-object currencies, where there is a fixed, con-
stant weight that is distributed by all replicas of a
particular object. Fixed currencies avoid the need
of global membership knowledge at each replica,
thus facilitating replica addition and removal, as
well as currency redistribution among replicas.

Deno requires one entire election round to
be completed in order to commit each single up-
date (Cetintemel et al., 2003). This is acceptable

1144

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

when applications are interested in knowing the
commitment outcome of each tentatively issued
update before issuing the next, causally related,
one. However, collaborative users in loosely-
coupled networks will often be interested in is-
suing sequences of multiple consecutive tentative
updates before knowing about their commitment,
as the latter may take a long time to arrive. In
such situations, the commitment delay imposed
by Deno’s voting protocol becomes unacceptably
higher than that of primary commit (Barreto &
Ferreira, 2007).

Holliday et al. (2003) have proposed a closely
similar approach. Their algorithm also relies on
epidemic quorum systems for commitment in
replicate databases. However, they propose epi-
demic quorum systems that use coteries that exist
in traditional (i.e. non epidemic) quorum systems,
such as majority. To the best of our knowledge,
no study, either theoretical or empirical has ever
compared Holliday et al.’s majority-based and
Deno’s plurality-based approaches. In fact, apart
from the above mentioned works, epidemic quo-
rum systems remain a relatively obscure field
(Barreto & Ferreira, 2008).

The Version Vector Weighted Voting protocol
(VVWV) (Barreto & Ferreira, 2007) employs a
commitment algorithm that, while relying on epi-
demic weighted voting, substantially outperforms
the above mentioned epidemic weighted voting
solutions by being able to commit multiple tenta-
tive updates quicker, in a single election round.
Situations of multiple pending tentative updates
tend to increase when connectivity is weak, thus
increasing VVWV’s advantage.

Complementary Adaptation
Techniques

Complementarily to the core of OR protocols, as
discussed so far, some work focuses on the ad-
aptation of OR to environments with constrained
resources such as the ones this chapter considers.

Partial Replication

Partial replication, in contrast to full replication,
allows each replica to hold only a subset of the
data items comprising the corresponding object.
It may take advantage of access locality by repli-
cating only the data items constituting the whole
object that are most likely to be accessed from
the local replica.

Partial replication is more appropriate than full
replication when hosts have constrained memory
resources and network bandwidth is scarce.
Moreover, it improves scalability, since only a
smaller subset of replicas needs to be involved
when the system coordinates write operations
upon individual data items (of the whole object).
Nevertheless, achieving partial replication is a
complex problem that has important implications
to most phases of OR, from scheduling and conflict
detection to update commitment. It is, to the best
of our knowledge, far from being solved in OR.

Schiper et al. have formally studied the prob-
lem, and proposed algorithms that extend trans-
actional database replication protocols5 (Schiper,
Schmidt & Pedone, 2006), but not OR protocols.
More recently, and again in the context of transac-
tional database replication, Sutra and Shapiro have
proposed a partial replication algorithm that avoids
computing a total order over operations that are
not mutually conflicting (Sutra & Shapiro, 2008).

The PRACTI Replication toolkit (Belaramani
et al., 2006) provides partial replication of both
data and meta-data for generic OR systems with
varying consistency requirements and network
topologies. However, PRACTI does not support
EEC, which strongly restricts the universe of
applications for which PRACTI’s consistency
guarantees are effectively appropriate.

Full replication is a radically less challenging
design choice. Not surprisingly, most existing
solutions on OR rely on it.

1145

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

Advanced Synchronization Schemes

Fluid Replication (Cox & Noble, 2001) divides
hierarchically-structured objects (file system trees)
into smaller sub-objects, identifying the sub-trees
(represented by Least Common Ancestors, or
LCAs) that are modified with respect to a base
version. This technique exploits the temporal and
spatial locality of updates in order to improve
update propagation in networks that may be tem-
porarily poorly connected. A client exchanges only
meta-data updates (which include LCAs) with the
server, deferring update propagation to moments
of strong connectivity. The exchange of meta-data
enables the client to commit updates it generates,
even before their actual propagation to the server.
Moreover, deferred propagation may be more
network-efficient, as redundant or self-canceling
updates in the batch of pending updates need not
be propagated. As a drawback, Fluid Replication
is limited to client-server systems.

Fluid Replication’s separation of control from
data is not new in OR. In Coda (Kistler & Saty-
anarayanan, 1991), servers send invalidations
to clients holding replicas of an updated object.
Update propagation to invalidated replicas is
performed subsequently only. The Pangaea file
system (Saito et al., 2002) floods small messages
containing timestamps of updates (called harbin-
gers) before propagating the latter.

Barreto et al. (2007) describe how to extend
generic OR protocols to generate and disseminate
lightweight packets containing consistency meta-
data only (such as version vectors). Such packets
can considerably contribute to reducing commit-
ment delays and aborted updates, while enabling
more efficient updates transfer.

Systems such as Bayou (Petersen et al., 1997),
Rumor (Guy et al., 1998), or Footloose (Paluska
et al., 2003) allow an off-line form of synchroni-
zation, called off-line anti-entropy. With offline
anti-entropy, the interacting replicas need not to
be simultaneously accessible across the network
to synchronize, enabling alternative means of

anti-entropy. These include transportable storage
media, as well as mobile and stationary devices,
accessible through the network, that are willing
to temporarily carry off-line anti-entropy packets.

Off-line anti-entropy has a higher communica-
tion overhead than regular anti-entropy. Whereas,
in regular anti-entropy, the sender may ask the
receiver what is the minimal set of relevant in-
formation to send, that is not possible in off-line
anti-entropy. Therefore, packets exchanged in off-
line anti-entropy should carry enough information
so that they are meaningful for every potential
receiver; hence, their size may grow significantly.

Efficient Update Propagation

Many interesting and useful replicated systems
require transferring large sets of data across a
network. Examples include network file systems,
content delivery networks, software distribution
mirroring systems, distributed backup systems,
cooperative groupware systems, and many other
state-based replicated systems. Unfortunately,
bandwidth and battery remain scarce resources in
mobile networks. We now survey techniques that
try to make update propagation more efficient.

In some systems, applications provide a precise
operation specification along each operation they
request from the replicated system. We call such
systems as operation-based or operation-transfer
systems. Typically, operation-based requests are
more space-efficient than the alternative of state-
based requests, which instead contain the value
resulting from the application of the requested
operation. Systems such as Bayou (Demers et
al., 1994) or IceCube (Kermarrec et al., 2001), or
operation transformation solutions (Sun & Ellis,
1998) rely on operation-based requests.

The activity shipping approach (Lee, Leung
& Satyanarayanan, 1999; Chang, Velayutham &
Sivakumar, 2004) tries to extract operation-based
requests from systems that are originally state-
based. With activity shipping, user operations
are logged at a client computer that is modifying

1146

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

a file and, when necessary, propagated to the
server computer. The latter then re-executes the
operations upon the old file version and verifies
whether the regenerated file is identical to the
updated file at the client by means of fingerprint
comparison. Activity shipping has the fundamental
drawbacks of (a) requiring semantic knowledge
over the accessed files and (b) imposing the op-
erating environments at the communicating ends
to be identical.

Much recent work has proposed data de-
duplication techniques (Trigdell & Mackerras,
1998; Muthitacharoen, Chen & Mazieres, 2001)
for efficient state-based update transfer across
the network, which may be combined with con-
ventional techniques such as data compression
(Lelewer & Hirschberg, 1987) or caching (Levy
& Silberschatz, 1990). Data deduplication works
by avoiding transferring redundant chunks of
data; i.e. data portions of the updates to send that
already exist at the receiving site. The receiving
site may hence obtain the redundant chunks locally
instead of downloading them from the network,
and only the remaining, literal chunks need to be
transferred.

The prominent approach of compare-by-hash
(Trigdell & Mackerras, 1998; Muthitacharoen,
Chen & DavidMazieres, 2001; Cox & Noble,
2002; Jain, Dahlin & Tewari, 2005; Bobbarjung,
Jagannathan & Dubnicki, 2006; Eshghi et al.,
2007) tries to detect such content redundancy
by exchanging cryptographic hash values of the
chunks to transfer, and comparing them with the
hash values of the receiver’s contents. Compare-
by-hash complicates the data transfer protocol
with additional round-trips (i), exchanged meta-
data (ii) and hash look-ups (iii). These may not
always compensate for the gains in transferred data
volume; namely, if redundancy is low or none, or
when, aiming for higher precision, one uses finer-
granularity chunks (Jain, Dahlin & Tewari, 2005;
Muthitacharoen, Chen & DavidMazieres, 2001;,
Bobbarjung, Jagannathan & Dubnicki, 2006).
Moreover, any known technique for improving

the precision and efficiency of compare-by-hash
(Jain, Dahlin & Tewari, 2005; Eshghi et al., 2007)
increases at least one of items (i) to (iii).

Earlier alternatives to compare-by-hash, such
as delta-encoding (Fitzpatrick et al., 2004; Henson
& Garzik, 2002; MacDonald, 2000) and coopera-
tive caching (Spring & Wetherall, 2000), are able
to less cases of redundancy. However they can
attain higher precision when detecting such cases.
Recently, the redFS system (Barreto & Ferreira,
2009) proposed hybrid approach that combines
techniques from both delta-encoding, cooperative
caching and compare-by-hash, thereby borrow-
ing most advantages that distinguish each such
alternative.

FUTURE RESEARCH DIRECTIONS

Despite the success of OR in very specific ap-
plications, such as DNS, USENET or electronic
mail, it is still hardly applicable to general case
collaborative applications. When compared to its
pessimistic counterpart, OR introduces crucial
obstacles to its collaborative users. Namely, the
temporal distance that separates tentative write op-
erations from their actual commitment with strong
consistency guarantees; the inherent possibility of
lost work due to aborts; and the increased storage
and network requirements that maintaining large
version logs imposes are substantial obstacles.
Ironically, the very network environments that call
for OR, as a means of dealing with their inherent
weak connectivity, tend to substantially amplify
all the above obstacles; mostly, due to their weak
connectivity and resource constraints.

Therefore, several important issues remain
open problems in OR. The road towards decen-
tralized commitment protocols, particularly ap-
propriate to weakly connected environments such
as mobile networks, has not yet found a way to
encompass semantic-aware protocols. By neglect-
ing application semantics, current decentralized

1147

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

commitment protocols require more messages and
abort more than effectively necessary.

Moreover, OR is still largely oblivious of the
idiosyncrasies of the mobile environments. More
efficient synchronization and update propaga-
tion protocols should be devised, departing
from the recent research efforts towards partial
replication (SchiperRodrigo Schmidt & Pedone,
2006) and efficient update propagation through
data deduplication Trigdell & Mackerras, 1998;
Muthitacharoen, Chen & DavidMazieres, 2001).

Battery is another resource that should be taken
into account by OR protocols. These should adapt
their operation in order to accomplish sufficient
consistency while, simultaneously, minimizing
energy consumption. For instance, by disconnect-
ing network connections that currently connect the
mobile node to no replica that is relevant to the
activity that the local user is pursuing.

Finally, most existing protocols consider an
isolated world that exclusively comprises the set
of sites carrying replicas of some objects, neglect-
ing an increasingly dense neighborhood of other
devices, unknown a priori. OR should also take
advantage of such ubiquitous surroundings to find
innovative ways to exchange consistency data
and meta-data, therefore reducing the impact of
weak connectivity.

CONCLUSION

OR is a fundamental technique for supporting col-
laborative work practices in a fault-tolerant manner
in weakly connected network environments. As
collaboration through weakly connected networks
becomes popular (e.g. by using asynchronous
groupware applications, or distributed file or
database systems, and collaborative wikis), the
importance of this technique increases. Examples
of such weakly connected environments range
from the Internet to ubiquitous computing and
mobile computing environments.

This chapter surveys fundamental aspects
form state-of-the-art solutions to OR and identi-
fies open research issues. We focus on the three
crucial requirements for most applications and
users: rapid update commitment, fewer aborts and
adaptation to network and memory constraints.
Namely, we address: consistency guarantees and
their trade-off against availability; mechanisms
for tracking the happens-before relation among
updates and versions; approaches for scheduling
and commitment; and complementary adaptation
mechanisms.

REFERENCES

Agrawal, D. El Abbadi, A., & Steinke, R. C. (1997).
Epidemic algorithms in replicated databases (ex-
tended abstract). In PODS ’97: Proceedings of
the sixteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems,
pages 161–172, New York, NY, USA, 1997. ACM.

Almeida, J. B., Almeida, P. S., & Baquero, C.
(2004). Bounded version vectors. In Rachid
Guerraoui, (Ed.), Proceedings of DISC 2004: 18th
International Symposium on Distributed Com-
puting, number 3274 in LNCS, pages 102–116.
Springer Verlag.

Almeida, P. S., Baquero, C., & Fonte, F. (2002).
Version stamps - decentralized version vectors.
In Proc. of the 22nd International Conference on
Distributed Computing Systems.

Amir, Y., & Wool, A. (1996). Evaluating quorum
systems over the internet. In Symposium on Fault-
Tolerant Computing, pages 26–35.

Baldoni, R., Guerraoui, R., Levy, R. R., Quéma,
V., & Piergiovanni, S. T. (2006). Unconscious
Eventual Consistency with Gossips. In Eighth
International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS 2006).

1148

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

Barreto, J., & Ferreira, P. (2007). Version vector
weighted voting protocol: efficient and fault-
tolerant commitment for weakly connected
replicas. Concurrency and Computation, 19(17),
2271–2283. doi:10.1002/cpe.1168

Barreto, J., & Ferreira, P. (2008). The obscure
nature of epidemic quorum systems. In ACM
HotMobile 2008: The Ninth Workshop on Mobile
Computing Systems and Applications, Napa Val-
ley, CA, USA. ACM Press.

Barreto, J., & Ferreira, P. (2009). Efficient Locally
Trackable Deduplication in Replicated Systems.
In ACM/IFIP/USENIX 10th International Middle-
ware Conference, Urbana Champaign, Illinois,
USA. ACM Press.

Barreto, J., Ferreira, P., & Shapiro, M. (2007).
Exploiting our computational surroundings for
better mobile collaboration. In 8th International
Conference on Mobile Data Management (MDM
2007), pages 110–117. IEEE.

Belaramani, N., Dahlin, M., Gao, L., Nayate, A.,
Venkataramani, A., Yalagandula, P., & Zheng,
J. (2006). PRACTI replication. In USENIX
Symposium on Networked Systems Design and
Implementation (NSDI).

Birrell, A., Levin, R., Needham, R. M., & Schro-
eder, M. D. (1982). Grapevine: An exercise in dis-
tributed computing. Communications of the ACM,
25(4), 260–274. doi:10.1145/358468.358487

Bobbarjung, D. R., Jagannathan, S., & Dubnicki,
C. (2006). Improving duplicate elimination in
storage systems. Transactions on Storage, 2(4),
424–448. doi:10.1145/1210596.1210599

Boulkenafed, M., & Issarny, V. (2003). Adhocfs:
Sharing files in wlans. In Proceeding of the 2nd
IEEE International Symposium on Network Com-
puting and Applications, Cambridge, MA, USA.

Byrne, R. (1999). Building Applications with
Microsoft Outlook 2000 Technical Reference.
Redmond, WA, USA: Microsoft Press.

Carstensen, P. H., & Schmidt, K. (1999). Computer
supported cooperative work: New challenges to
systems design. In Kenji Itoh (E.), Handbook of
Human Factors, pages 619–636. Asakura Publish-
ing. In Japanese, English Version available from
http://www.itu.dk/people/schmidt/publ.html.

Cederqvist, P. & al (1993). Version management
with CVS. [On-line Manual] http://www.cvshome.
org/docs/manual/, as of 03.09.2002.

Cetintemel, U., Keleher, P. J., Bhattacharjee, B.,
& Franklin, M. J. (2003). Deno: A decentralized,
peer-to-peer object replication system for mo-
bile and weakly-connected environments. IEEE
Transactions on Computer Systems (TOCS), 52.

Cetintemel, U., Keleher, P. J., & Franklin, M. J.
(2001). Support for speculative update propaga-
tion and mobility in deno. In IEEE International
Conference on Distributed Computing Systems
(ICDCS), pages 509–516.

Chandra, T. D., & Toueg, S. (1996). Unreli-
able failure detectors for reliable distributed
systems. Journal of the ACM, 43, 225–267.
doi:10.1145/226643.226647

Chang, T.-Y., Velayutham, A., & Sivakumar, R.
(2004). Mimic: raw activity shipping for file
synchronization in mobile file systems. In Pro-
ceedings of the 2nd international conference on
Mobile systems, applications, and services, pages
165–176. ACM Press.

Chankhunthod, A., Danzig, P. B., Neerdaels, C.,
Schwartz, M. F., & Worrell, K. J. (1996). A hier-
archical internet object cache. In USENIX Annual
Technical Conference, pages 153–164.

Chou, Y. (2006). Get into the Groove: Solutions for
Secure and Dynamic Collaboration. http://technet.
microsoft.com/en-us/magazine/cc160900.aspx.

1149

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

Cox, L., & Noble, B. Pastiche: Making backup
cheap and easy. In Proceedings of Fifth USENIX
Symposium on Operating Systems Design and
Implementation

Cox, L. P., & Noble, B. D. (2001). Fast Recon-
ciliations in Fluid Replication. In International
Conference on Distributed Computing Systems
(ICDCS), pages 449–458.

Dahlin, M., Baddepudi, B., Chandra, V., Gao, L., &
Nayate, A. (2003). End-to-end wan service avail-
ability. IEEE/ACM Transactions on Networking,
11(2), 300–313. doi:10.1109/TNET.2003.810312

Davidson, S. B., Garcia-Molina, H., & Skeen, D.
(1985). Consistency in a partitioned network: a
survey. ACM Computing Surveys, 17(3), 341–370.
doi:10.1145/5505.5508

Demers, A., Greene, D., Hauser, C., Irish, W.,
Larson, J., Shenker, S., et al. (1987). Epidemic
algorithms for replicated database maintenance.
In PODC ’87: Proceedings of the sixth annual
ACM Symposium on Principles of Distributed
Computing, pages 1–12, New York, NY, USA.
ACM Press.

Demers, A. J., Petersen, K., Spreitzer, M. J., Terry,
D. B., Theimer, M. M., & Welch, B. B. (1994).
The bayou architecture: Support for data sharing
among mobile users. In Proceedings of the IEEE
Workshop on Mobile Computing Systems and Ap-
plications, pages 2–7, Santa Cruz, California, 8-9.

Dollimore, J., Coulouris, G., and Kindberg, T.
(2001). Distributed Systems: Concepts and De-
sign. Pearson Education 2001, 3 edition.

Ericsson, A. B. (1998). Edge - introduction of
high-speed data in gsm/gprs networks. http://www.
ericsson.com/technology/whitepapers/.

Eshghi, K., Lillibridge, M., Wilcock, L., Belrose,
G., & Hawkes, R. (2007). Jumbo store: providing
efficient incremental upload and versioning for a
utility rendering service. In FAST’07: Proceed-
ings of the 5th conference on USENIX Conference
on File and Storage Technologies, pages 22–22,
Berkeley, CA, USA. USENIX Association.

Fekete, A., Gupta, D., Luchangco, V., Lynch,
N. A., & Shvartsman, A. A. (1996). Eventually-
serializable data services. In Symposium on Prin-
ciples of Distributed Computing, pages 300–309.

Fidge, C. (1991). Logical time in distributed
computing systems. Computer, 24(8), 28–33.
doi:10.1109/2.84874

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., & Berners-Lee, T. (1999).
Hypertext transfer protocol http/1.1. Internet
Request for Comment RFC 2616. Internet Engi-
neering Task Force.

Fitzpatrick, B. W., Pilato, C. M., & Collins-Suss-
man, B. (2004). Version Control with Subversion.
O’Reilly.

Forman, G. H., & Zahorjan, J. (2001). The chal-
lenges of mobile computing. Computer, 27(4),
38–47. doi:10.1109/2.274999

Fox, A., & Brewer, E. A. (1999). Harvest, yield,
and scalable tolerant systems. In HOTOS ’99:
Proceedings of the The Seventh Workshop on Hot
Topics in Operating Systems, page 174, Washing-
ton, DC, USA. IEEE Computer Society.

Golding, R. (1993). Modeling replica divergence
in a weak-consistency protocol for global-scale
distributed data bases. Technical Report UCSC-
CRL-93-09, UC Santa Cruz.

3GPP. (n.d.). 3rd Generation Partnership Project.
Retrieved from http://www.3gpp.org/.

1150

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

Guy, R. G., Reiher, P. L., Ratner, D., Gunter, M.,
Ma, W., & Popek, G. J. (1998). Mobile data access
through optimistic peer-to-peer replication. In ER
Workshops (pp. 254–265). Rumor.

Henson, V., & Garzik, J. (2002). Bitkeeper for
kernel developers. http://infohost.nmt.edu/˜val/
ols/bk.ps.gz.

Holliday, J., Steinke, R., Agrawal, D., & El Ab-
badi, A. (2003). Epidemic algorithms for repli-
cated databases. IEEE Transactions on Knowl-
edge and Data Engineering, 15(5), 1218–1238.
doi:10.1109/TKDE.2003.1232274

IEEE. (1997). IEEE 802.11 Wireless Local Area
Networks Working Group. http://grouper.ieee.
org/groups/802/11/index.html.

Ignat, C.-L., & Norrie, M. C. (2006). Draw-
Together: Graphical editor for collaborative
drawing. In Int. Conf. on Computer-Supported
Cooperative Work (CSCW), pages 269–278, Banff,
Alberta, Canada.

Ignat, C.-L., Oster, G., Molli, P., Cart, M., Ferrié,
J., Kermarrec, A.-M., et al. (2007). A comparison
of optimistic approaches to collaborative edit-
ing of wiki pages. In CollaborateCom, pages
474–483. IEEE.

Jagadish, H. V., Mumick, I. S., & Rabinovich,
M. (1997). Scalable versioning in distributed
databases with commuting updates. In ICDE
’97: Proceedings of the Thirteenth International
Conference on Data Engineering, pages 520–531,
Washington, DC, USA. IEEE Computer Society.

Jain, N., Dahlin, M., & Tewari, R. (2005). Taper:
Tiered approach for eliminating redundancy in
replica sychronization. In USENIX Conference
onf File and Storage Technologies (FAST05).

Jajodia, S., & Mutchler, D. (1990). Dynamic
voting algorithms for maintaining the consis-
tency of a replicated database. ACM Transac-
tions on Database Systems, 15(2), 230–280.
doi:10.1145/78922.78926

Kawell, J. L., Beckhardt, S., Halvorsen, T., Ozzie,
R., & Greif, I. (1988). Replicated document
management in a group communication system.
In CSCW ’88: Proceedings of the 1988 ACM
conference on Computer-supported cooperative
work, page 395, New York, NY, USA. ACM Press.

Keleher, P. (1999). Decentralized replicated-object
protocols. In Proc. Of the 18th Annual ACM
Symp. on Principles of Distributed Computing
(PODC’99).

Kermarrec, A.-M., Rowstron, A., Shapiro, M., &
Druschel, P. (2001). The IceCube approach to the
reconciliation of divergent replicas. In 20th Symp.
on Principles of Dist. Comp. (PODC), Newport
RI (USA). ACM SIGACT-SIGOPS.

Kistler, J. J., & Satyanarayanan, M. (1991).
Disconnected operation in the Coda file system.
In Proceedings of 13th ACM Symposium on Op-
erating Systems Principles, pages 213–25. ACM
SIGOPS.

Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P.,
Geels, D., Gummadi, R., et al. (2000). Oceanstore:
An architecture for global-scale persistent storage.
In Proceedings of ACM ASPLOS. ACM.

Lamport, L. (1978). Time, clocks, and the
ordering of events in a distributed system.
Communications of the ACM, 21(7), 558–565.
doi:10.1145/359545.359563

Lamport, L. (1979). How to make a multiproces-
sor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers,
C-28, 690–691. doi:10.1109/TC.1979.1675439

1151

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

Lee, Y.-W., Leung, K.-S., & Satyanarayanan, M.
(1999). Operation-based update propagation in a
mobile file system. In USENIX Annual Techni-
cal Conference, General Track, pages 43–56.
USENIX.

Lelewer, D. A., & Hirschberg, D. S. (1987). Data
compression. ACM Computing Surveys, 19(3),
261–296. doi:10.1145/45072.45074

Leuf, B., & Cunningham, W. (2001). The wiki way:
Quick collaboration on the web. Addison-Wesley.

Levy, E., & Silberschatz, A. (1990). Distrib-
uted file systems: Concepts and examples.
ACM Computing Surveys, 22(4), 321–374.
doi:10.1145/98163.98169

Lidl, K., Osborne, J., & Malcolm, J. (1994). Drink-
ing from the firehose: Multicast usenet news. In
Proc. of the Winter 1994 USENIX Conference,
pages 33–45, San Francisco, CA.

MacDonald, J. (2000). File system support for
delta compression. Masters thesis, University of
California at Berkeley.

Malkhi, D., Novik, L., & Purcell, C. (2007).
P2P replica synchronization with vector
sets. SIGOPS Oper. Syst. Rev., 41(2), 68–74.
doi:10.1145/1243418.1243427

Malkhi, D., & Terry, D. B. (2005). Concise ver-
sion vectors in winfs. In Pierre Fraigniaud, editor,
DISC, volume 3724 of Lecture Notes in Computer
Science, pages 339–353. Springer.

Mattern, F. (1989). Virtual time and global states
of distributed systems. In Parallel and Distributed
Algorithms: proceedings of the International
Workshop on Parallel and Distributed Algorithms,
pages 215–226. Elsevier Science Publishers B. V.

Microsoft. (2000). Windows 2000 Server: Distrib-
uted systems guide (pp. 299–340). Microsoft Press.

Miltchev, S., Smith, J. M., Prevelakis, V.,
Keromytis, A., & Ioannidis, S. (2008). Decen-
tralized access control in distributed file sys-
tems. ACM Computing Surveys, 40(3), 1–30.
doi:10.1145/1380584.1380588

Mockapetris, P. V., & Dunlap, K. J. (1995).
Development of the domain name system. SIG-
COMM Comput. Commun. Rev., 25(1), 112–122.
doi:10.1145/205447.205459

Morris, J. H., Satyanarayanan, M., Conner, M. H.,
Howard, J. H., Rosenthal, D. S., & Smith, F. D.
(1986). Andrew: a distributed personal computing
environment. Communications of the ACM, 29(3),
184–201. doi:10.1145/5666.5671

Muthitacharoen, A., Chen, B., & Mazieres, D.
(2001). A low-bandwidth network file system.
In Symposium on Operating Systems Principles,
pages 174–187.

Nowicki, B. (1989). NFS: Network file system
protocol specification. Internet Request for Com-
ment RFC 1094. Internet Engineering Task Force.

Paluska, J. M., Saff, D., Yeh, T., & Chen, K.
(2003). Footloose: A case for physical eventual
consistency and selective conflict resolution. In
5th IEEE Workshop on Mobile Computing Systems
and Applications, pages 170–180, Monterey, CA,
USA, October 9–10.

Pâris, J.-F., & Long, D. D. E. (1988). Efficient
dynamic voting algorithms. In Proceedings of
the Fourth International Conference on Data
Engineering, pages 268–275, Washington, DC,
USA. IEEE Computer Society.

Pedone, F. (2001). Boosting system performance
with optimistic distributed protocols. Computer,
34(12), 80–86. doi:10.1109/2.970581

Pedone, F., Guerraoui, R., & Schiper, A. (2003).
The Database State Machine Approach. Dis-
tributed and Parallel Databases, 14(1), 71–98.
doi:10.1023/A:1022887812188

1152

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

Petersen, K., Spreitzer, M., Terry, D., & Theimer,
M. (1996). Bayou: Replicated database services
for world-wide applications. In 7th ACM SIGOPS
European Workshop, Connemara, Ireland.

Petersen, K., Spreitzer, M. J., Terry, D. B., Theimer,
M. M., & Demers, A. J. (1997). Flexible update
propagation for weakly consistent replication.
In Proceedings of the 16th ACM Symposium on
Operating SystemsPrinciples (SOSP-16), Saint
Malo, France.

Peterson, Z. N. J., Burns, R., Ateniese, G., & Bono,
S. (2007). Design and implementation of verifiable
audit trails for a versioning file system. In FAST
’07: Proceedings of the 5th USENIX conference
on File and Storage Technologies, pages 20–20,
Berkeley, CA, USA. USENIX Association.

Quinlan, S., & Dorward, S. Venti: a new approach
to archival storage. In First USENIX conference
on File and Storage Technologies, Monterey,CA.

Ramsey, N., & Csirmaz, E. (2001). An al-
gebraic approach to file synchronization.
SIGSOFT Softw. Eng. Notes, 26(5), 175–185.
doi:10.1145/503271.503233

Ratner, D., Reiher, P., & Popek, G. (1999). Roam:
A scalable replication system for mobile com-
puting. In DEXA ’99: Proceedings of the 10th
International Workshop on Database & Expert
Systems Applications, page 96,Washington, DC,
USA. IEEE Computer Society.

Ratner, D. H. (1998). Roam: A Scalable Replica-
tion System for Mobile and Distributed Computing.
PhD Thesis 970044, University of California, 31.

Reiher, P., Popek, G., Cook, J., & Crocker, S.
(1993). Truffles—a secure service for widespread
file sharing. In PSRG Workshop on Network and
Distributed System Security.

Rowstron, A., & Druschel, P. (2001). Storage
management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. In Sym-
posium on Operating Systems Principles, pages
188–201.

Royer, E., & Toh, C.-K. (1999). A review of cur-
rent routing protocols for ad hoc mobile wireless
networks. Personal Communications, IEEE, 6(2),
46–55. doi:10.1109/98.760423

Saito, Y., Bershad, B. N., & Levy, H. (1999).
Manageability, availability and performance in
porcupine: a highly scalable, cluster-based mail
service. In SOSP ’99: Proceedings of the 17th ACM
Symposium on Operating Systems Principles,
pages 1–15, New York, NY, USA. ACM Press.

Saito, Y., Karamanolis, C., Karlsson, M., & Mahal-
ingam, M. (2002). Taming aggressive replication
in the pangaea wide-area file system. SIGOPS
Operating Systems Review, 36(SI):15–30.

Saito, Y., & Shapiro, M. (2005). Optimistic rep-
lication. ACM Computing Surveys, 37(1), 42–81.
doi:10.1145/1057977.1057980

Santos, N., Veiga, L., & Ferreira, P. (2007).
Vector-field consistency for ad-hoc gaming. In
ACM/IFIP/Usenix International Middleware
Conference (Middleware 2007), Lecture Notes
in Computer Science. Springer.

Santry, D., Feeley, M., Hutchinson, N., Veitch, A.,
Carton, R., & Ofir, J. (1999). Deciding when to
forget in the elephant file system. In SOSP ’99:
Proceedings of the seventeenth ACM symposium
on Operating systems principles, pages 110–123,
New York, NY, USA. ACM Press.

Schiper, N., Schmidt, R., & Pedone, F. (2006).
Optimistic algorithms for partial database replica-
tion. In Alexander A. Shvartsman (Ed.), OPODIS,
volume 4305 of Lecture Notes in Computer Sci-
ence, pages 81–93. Springer.

1153

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

Schwarz, R., & Mattern, F. (1994). Detecting
causal relationships in distributed computations:
In search of the holy grail. Distributed Computing,
7(3), 149–174. doi:10.1007/BF02277859

Shapiro, M., Bhargavan, K., & Krishna, N. (2004).
A constraint-based formalism for consistency
in replicated systems. In Proc. 8th Int. Conf. on
Principles of Dist. Sys. (OPODIS), number 3544
in Lecture Notes In Computer Science, pages
331–345, Grenoble, France.

Spring, N. T., & Wetherall, D. (2000). A protocol-
independent technique for eliminating redundant
network traffic. In Proceedings of ACM SIG-
COMM.

Storer, M., Greenan, K., Miller, E., & Voruganti,
K. Pergamum: replacing tape with energy efficient,
reliable, disk-based archival storage. In FAST’08:
Proceedings of the 6th USENIX Conference on File
and Storage Technologies, pages 1–16, Berkeley,
CA, USA. USENIX Association.

Strunk, J., Goodson, G., Scheinholtz, M., Soules,
C., & Ganger, G. (2000). Self-securing stor-
age: protecting data in compromised system.
In OSDI’00: Proceedings of the 4th conference
on Symposium on Operating System Design &
Implementation, pages 12–12, Berkeley, CA,
USA. USENIX Association.

Sun, C., & Ellis, C. (1998). Operational trans-
formation in real-time group editors: issues,
algorithms, and achievements. In Conf. on Comp.-
Supported Cooperative Work (CSCW), page 59,
Seattle WA, USA.

Sutra, P., & Shapiro, M. (2008). Fault-tolerant
partial replication in large-scale database systems.
In Europar, pages 404–413, Las Palmas de Gran
Canaria, Spain.

Terry, D. B., Theimer, M. M., Petersen, K., Demers,
A. J., Spreitzer, M. J., & Hauser, C. H. (1995).
Managing update conflicts in Bayou, a weakly con-
nected replicated storage system. In Proceedings
of the fifteenth ACM Symposium on Operating
Systems Principles, pages 172–182. ACM Press.

Thomas, G., Thompson, G., Chung, C.-W., Bark-
meyer, E., Carter, F., & Templeton, M. (1990).
Heterogeneous distributed database systems for
production use. ACM Computing Surveys, 22(3),
237–266. doi:10.1145/96602.96607

Torres-Rojas, F., & Ahamad, M. (1999). Plausible
clocks: constant size logical clocks for distributed
systems. Distributed Computing, 12(4), 179–195.
doi:10.1007/s004460050065

Trigdell, A., & Mackerras, P. (1998). The rsync
algorithm. Technical report, Australian National
University. http://rsync.samba.org.

Valot, C. (1993). Characterizing the accuracy of
distributed timestamps. SIGPLAN Not., 28(12),
43–52. doi:10.1145/174267.174272

Walker, B., Popek, G., English, R., Kline, C., &
Thiel, G. The locus distributed operating system.
In Proceedings of the 9th ACM Symposium on
Operating Systems Principles, pages 49–70.

Weiser, M. (1991). The computer for the twenty-
first century. Scientific American, 265, 94–104.
doi:10.1038/scientificamerican0991-94

Wessels, D., & Claffy, K. (1997). Internet cache
protocol. Internet Request for Comment RFC
2186. Internet Engineering Task Force.

Wiesmann, M., Pedone, F., Schiper, A., Kemme,
B., & Alonso, G. (2000). Understanding repli-
cation in databases and distributed systems. In
Proceedings of 20th International Conference on
Distributed Computing Systems (ICDCS’2000),
pages 264–274, Taipei, Taiwan, R.O.C. IEEE
Computer Society Technical Committee on Dis-
tributed Processing.

1154

Data Replication Support for Collaboration in Mobile and Ubiquitous Computing Environments

Wilson, P. (1991). Computer Supported Coop-
erative Work: An Introduction. Oxford: Intellect
Books.

Wuu, G., & Bernstein, A. (1984). Efficient solu-
tions to the replicated log and dictionary problems.
In PODC ’84: Proceedings of the third annual
ACM symposium on Principles of distributed
computing, pages 233–242, New York, NY, USA.
ACM Press.

Yu, H., & Vahdat, A. (2000). Design and evaluation
of a continuous consistency model for replicated
services. In Proceedings of Operating Systems
Design and Implementation, pages 305–318.

Yu, H., & Vahdat, A. (2001). The costs and limits of
availability for replicated services. In Symposium
on Operating Systems Principles, pages 29–42.

Zhang, Y., Paxson, V., & Shenker, S. (2000). The
stationarity of internet path properties: Routing,
loss, and throughput. ACIRI Technical Report.

KEY TERMS AND DEFINITIONS

Optimistic Replication: Strategy for data
replication in which replicas are allowed to diverge
and consistency is achieved a posteriori.

Pessimistic Replication: Strategy for data
replication in which any access to replicated data
is only granted after the system guarantees that
no inconsistency will result from such an access.

Conflict: Situation where two updates cannot
be scheduled in any order that is safe, according
to some application semantics.

Eventual Consistency: Paradigm that allows
a replicated system to be temporarily inconsistent,
while ensuring that eventually the system will

agree on and converge to a state that is strongly
consistent.

Commitment: System-wide agreement on a
schedule of previously updates that are guaranteed
to eventually be applied at a consistent order at
any replica and to never roll back at any replica.

Partial Replication: Form of data replication
that allows each replica to hold only a subset of the
data items comprising the corresponding object.

Data Deduplication: Technique that avoids
transferring or storing data that the receiver site
already stores at some local object.

ENDNOTES

1 Except where noted, this chapter assumes
full replication, i.e. each site that replicates a
given object maintains a replica of the whole
value of the object. Furthermore, we assume
a full-trust model. Solutions relying on more
realistic trust models for replicated systems
can be found, for instance, in (Miltchev et al.,
2008), (Reiher et al., 1993), (Kubiatowicz
et al., 2000), (Rowstron & Druschel, 2001)
or (Boulkenafed & Issarny, 2003).

2 In practice, the system may represent updates
in various forms, as we discuss later in the
chapter.

3 This is also called the prefix property (Pe-
tersen et al., 1997).

4 Since referential integrity of site identifiers
is hardly solved by distributed protocols or
centralized name servers.

5 In particular, the Database State Machine
to partial replication approach (Pedone,
Guerraoui & Schiper, 2003).

