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Abstract

The emergence of more powerful and resourceful mobile devices, as well as new wireless communication
technologies, is turning the concept of ad-hoc networking into a viable and promising possibility for
ubiquitous information sharing. In such context, replication is a key issue in order to achieve acceptable
performance and availability levels.

However, the inherent characteristics of ad-hoc networks bring up new challenges for which most
conventional replication systems don’t provide an appropriate response. Namely, the lack of a pre-
existing infrastructure, the high topological dynamism of these networks, the relatively low bandwidth of
wireless links, as well as the limited storage and energy resources of mobile devices are issues that strongly
affect the efficiency of any distributed system intended to provide ubiquitous information sharing.

Such aspects demand solutions that are able to offer high availability, in spite of the expected frequent
network partitions and device suspension periods. Pessimistic approaches for replication are usually too
restrictive solutions to achieve such requirement. On the other hand, optimistic replication strategies
offer weak consistency guarantees which may not reflect the expectations of users and applications.

This paper aims at exposing the main challenges of a replicated system operating in the particular
environment of mobile ad-hoc networks, with the goal of providing general guidelines for an effective
solution. Based on a common conceptual model, some key design strategies are described and compared.
A survey of some relevant state of the art solutions illustrates such concepts and presents implementations
of the main design alternatives. In conclusion, guidelines are proposed towards an effective replication
strategy for mobile ad-hoc networks.
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1 Introduction

The evolution of the computational power and
memory capacity of mobile devices, combined with
their increasing portability, is creating computers
that are more and more suited to support the con-
cept of ubiquitous computation [Wei91]. At the
same time, novel wireless communication technolo-
gies have provided these portable devices with the
ability to easily interact with other devices through
wireless network links.

As a result, users are progressively using mobile
devices, such as handheld or palmtop PCs, not only
to perform many of the tasks that, in the past, re-
quired a desktop PC, but also to support innovative
ways of working that are now enabled.

Some existing systems already allow users to ac-
cess their personal documents using their mobile
devices while they are away from the desktop PCs
where the documents are typically stored.

Evolving from this initial concept of isolated dis-
connected operation, more interesting scenarios can
be envisioned if one also considers the possibility of
direct interactions between the disconnected mo-
bile devices. Instead of disconnected users working
in isolation over their personal data, such scenarios
would enable actual collaboration to occur between
the interacting mobile peers.

Many real life situations already suggest that
their users could benefit substantially if allowed
to cooperatively interact using their mobile devices
and without the requirement of a pre-existing in-
frastructure. A face-to-face work meeting is an ex-
ample of such a scenario. The meeting participants
usually co-exist within a limited space, possibly for
a short period of time and may not have access to
any pre-existing fixed infrastructure. Under such
co-present collaborative activities [LH98], partici-
pants hold, manipulate and exchange documents
that are relevant to the purposes of the meeting.

If each participant holds a mobile device with
wireless capabilities, a spontaneously formed wire-
less network can serve the purposes of the meeting.
These wireless networks, possibly short-lived and
formed just for the needs of the moment, without
any assistance from a pre-existing infrastructure,
are normally referred to as ad-hoc networks [Shr02].

One key challenge in supporting such collabora-
tive scenarios consists of providing effective means
for information sharing between the mobile users.

Replication mechanisms are usually employed for
the purpose of achieving acceptable performance
and availability levels [RRPK01]. However, the na-
ture of the scenarios we are addressing entails sig-
nificant challenges to a replication solution to be
devised.

The high topological dynamism of mobile ad-hoc
networks entails frequent network partitions. On
the other hand, the possible absence of a fixed in-
frastructure means that most situations will require
the services within the network to be offered by
mobile devices themselves. Such devices are typi-
cally severely energy constrained. As a result, the
services they offer are susceptible of frequent sus-
pension periods in order to save battery life of the
server’s device. From the client’s viewpoint, such
occurrences are similar to server failures.

These aspects call for solutions which offer high
availability, in spite of the expectedly frequent
network partitions and device suspension periods.
Pessimistic approaches for replication are usually
too restrictive solutions to fulfill such a require-
ment. On the other hand, optimistic replication
strategies offer weak consistency guarantees which
may not reflect the expectations of users and ap-
plications.

Whichever strategy is taken, it must also take
into account the important limitations in memory
resources and processing power of typical mobile
devices, as well as the reduced bandwidth of wire-
less links, when compared to other wired technolo-
gies.

Additionally, the novel usage scenarios that are
commonly regarded in co-present collaborative ac-
tivities suggest that the set of operations that con-
ventional systems offer to users and applications is
insufficient. A richer set of operations should be
available in order to more closely reflect the way
we are used to performing co-present collaborative
activities without the assistance of a mobile ad-hoc
network.

This paper presents a survey of existing state
of the art solutions which constitute relevant ap-
proaches to the problem of supporting information
sharing in mobile ad-hoc networks through replica-
tion. Notice that some of the solutions presented
in the next sections were not initially designed with
the intent of supporting the mobile ad-hoc environ-
ments. Instead, their reference in the survey is jus-
tified by the relevance of some specific aspects of
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their design in relation to the subject of this paper.
The remaining of the paper is as follows. Sec-

tion 2 introduces a common system model which
is referenced throughout the paper. Section 3 dis-
cusses the trade-off between correctness and avail-
ability. Sections 4 and 5 present the main design as-
pects and alternatives of pessimistic and optimistic
replication strategies, respectively. Sections 6 to
11 are dedicated to describe existing implementa-
tions, namely: Coda, Gossip Framework, Bayou,
Roam, Deno and AdHocFS. Section 12 concludes
such analysis by comparing the main characteris-
tics of each surveyed system. Finally, Section 13
draws the main conclusions of the present paper
and proposes guidelines for a replication strategy
for mobile ad-hoc networks.

2 System Model and Termi-
nology

In order to present a comprehensive comparative
analysis between the solutions that are surveyed in
this paper, this section presents a common system
model for reference throughout the remaining sec-
tions.

Data in a replicated system consist of a set of log-
ical objects. A logical object can, for instance, be a
database item, a file or a Java object. Such a logi-
cal object is implemented by a collection of physical
copies, called replicas, each stored at a single loca-
tion within the system.

Each replica is held by a replica manager, which
contains the replica and performs operations upon
it. Such operations can be reduced to the basic
read and update operations. Moreover, we assume
for simplicity that each replica manager maintains
a replica of every object. Ratner et al. [RRPG99]
propose a solution for allowing replica manager to
replicate only a subset of the logical objects. For
the sake of generality, the set of replica managers
may be dynamic, and thus change with the creation
or removal of new elements.

Hereafter, we assume an asynchronous system
in which replica managers can only have fail-silent
faults [Tan95]. Network partitions may also oc-
cur, thus restricting connectivity between replica
managers which happen to be located in distinct
partitions.

Figure 1: Phases involved in an replica operation request.

When a replica manager receives an update re-
quest, it is assumed that the update is applied re-
coverably upon the replica. Consequently, an in-
dividual replica manager will not reach an incon-
sistent replica value if it crashes during the execu-
tion of the operation. Moreover, we assume that
replica managers apply update operations atomi-
cally to their replicas, so that its execution is equiv-
alent to performing those operations in some strict
sequence.

An operation request sent to a replica man-
ager will generally involve five distinct phases
[WPS+00]. Notice that the actual actions per-
formed in each phase are specific to each particular
replication solution. Moreover, some solutions may
skip some phases, order them in a different manner
or iterate over some of them. The phases are as
follows:

Request. The client submits an operation upon
a logical object to one (or possibly more) replica
managers.

Coordination. The replica managers coordinate
in order to perform the operation request consis-
tently. Namely, a decision is made on whether the
operation is to be applied and on the ordering of
this request relative to others.

An update request that has successfully com-
pleted its coordination phase becomes a stable up-
date request. In contrast, an update request whose
coordination phase hasn’t yet been completed is re-
ferred to as a tentative update.

Execution. The replica managers execute the re-
quest upon their replicas.
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If the operation request to be executed is a ten-
tative update, it is executed tentatively. In this
case, the replica manager must ensure that the ef-
fects of the tentative update can be later undone,
depending on the coordination decision.

Agreement. The replica managers reach a con-
sensus upon the effect of the requested operation.

Response. One or more replica managers re-
sponds to the client that issued the request. In case
of a read operation, the result consists of the value
obtained after performing the query. In case of an
update operation, the result indicates whether it
was successful or not.

Replication strategies can be distinguished be-
tween pessimistic and optimistic [DGMS85]. A
fundamental difference between such replication
paradigms is concerned with the order of the five
phases presented above. Section 4 and Section 5
will address each of these paradigms in greater de-
tail.

Finally, it should be emphasized that it is not
the intention of this survey to address the security
issues that may concern a replicated system in mo-
bile ad-hoc environments. Therefore, we assume
a naive trust model which does not consider the
existence of any distrussed entity. More realistic
trust models for replicated systems can be found in
[RPC+93], [KBC+00], [RD01] or [BI03].

3 Correctness versus avail-
ability

When one considers centralized access to data ob-
jects of any type, an implicit notion of correctness
is usually well known and accepted by users and
applications. For instance, database systems gen-
erally offer the properties of atomicity and serializ-
ability as essential components of their correctness
guarantees [DGMS85]. Moving to a different con-
text, most file systems supply familiar file sharing
semantics such as Unix semantics [LS90].

In a replicated system, however, a logical ob-
ject may be replicated in various physical replicas
within the network. In this case, ensuring that each
physical replica is individually correct according to

the above properties is not sufficient. Instead, the
consistency amongst all physical replicas of a logi-
cal object must also be considered.

Consider, for instance, that a logical object con-
taining information concerning a bank account is
replicated in two physical replicas, located at dis-
tinct machines. Initially, the bank account had a
balance of 100 in both replicas. Now assume that
the physical replicas become separated by a net-
work partition. If both of these replicas are allowed
to be updated while the network is partitioned, an
incorrect replica state may be reached. For exam-
ple, if a withdraw request of 60 is performed at one
of the partitions and then a withdrawal of 70 is also
accepted at the other partition. Since the replicas
are unable to contact each other, the updates is-
sued at each one are not propagated between them.
Hence, an inconsistent state is reached, since the
logical bank account can be seen as having differ-
ent balances depending on which replica the read
request was made on. Moreover, the bank account
semantics were violated, since a total withdrawal
of 130 was, in fact, allowed when the account had
insufficient funds for it.

One possible solution for ensuring that the bank
account semantics are verified in the previous ex-
ample would be to prohibit any update or read re-
quest to the physical replicas in the presence of
network partitions. Conversely, the same behav-
ior could be followed in the presence of a replica’s
machine failure. This would be a pessimistic strat-
egy, which prevented inconsistencies between repli-
cas by restraining their availability. As a result,
strong consistency guarantees would be ensured,
which would fulfil the correctness criteria of most
applications.

When network partitioning or server failure are
not negligible events, availability and correctness
become two competing goals that a replicated sys-
tem must try to achieve to some extent [YV].
The trade-off between these contending vectors can
yield replicated solutions which offer weaker cor-
rectness guarantees as a cost for improved availabil-
ity. Those solutions are designated as optimistic
strategies.

One important aspect to stress out is that differ-
ent applications can have different correctness cri-
teria regarding the replicated logical objects they
access. Therefore, weaker consistency guarantees
provided by optimistic strategies may still meet the
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correctness criteria of some application semantics.
For instance, some applications may consider it

acceptable for replicas to temporarily have distinct
values, provided that they eventually reach a cor-
rect and consistent value. In particular, if a bank
account was allowed to have a negative balance, the
above example might be acceptable according to
such correctness criteria. In spite of having distinct
balance values during the partition, the physical
replicas would propagate each one’s update upon
being reconnected. In the end, both physical repli-
cas would have the same consistent balance value,
-130.

The next subsections present some consistency
guarantees that are normally offered by replicated
systems. All of them are described with reference
to a general situation where each client i performs
operations upon a logical object, deriving an ex-
ecution oi0, oi1, oi2, .... Each oij represents an op-
eration requested by client i. It is assumed that
operations are synchronous, that is, client i waits
for the completion of operation oij before request-
ing oij+1.

3.1 Strong consistency guarantees

In a replicated system, one can consider a virtual
interleaving of the clients’ operations which reflects
one possible correct execution if a centralized sys-
tem was used. The strong consistency guarantees
which are described ahead take one such possible
interleaving as a correctness reference to the actual
interleavings which are performed at each physical
replica.

Enforcing strong consistency guarantees requires
adopting pessimistic strategies for replication,
which will be presented in Section 4.

3.1.1 Linearizability

The most strict consistency guarantee is lineariz-
ability [GCK01]. A replicated object is said to
be linearizable if, for any series of operations per-
formed upon it by any client, there is some canon-
ical interleaving of those operations such that:

(1) The interleaved sequence of operations meets
the specification of a single correct copy of the ob-
jects.

(2) The order of operations in the canonical in-
terleaving is consistent with the real times at which
the operations occurred in the actual execution.

The definition of linearizability makes use of a
virtual canonical execution which interleaves all the
operations requested by clients in such a way that,
if applied to a virtual single image of the object
would, produce a correct object value. In order
to be linearizable, each physical replica of the ob-
ject must be, at any moment, consistent with the
real times at which the operations were applied in
the canonical interleaving. This means that lin-
earizability captures the idea that each physical
replica should reflect the actual times at which
the canonically interleaved operations happened.
Though desirable in an optimal replicated system,
such real-time requirement is normally impractical
under most circumstances [GCK01].

3.1.2 Sequential consistency

A less strict consistency criterium is called sequen-
tial consistency. Basically, it discards the real-
time requirement of linearizability and only looks at
the order of operation requests performed at each
client, the program order. More specifically, the
second condition of the linearizability criterium is
now changed to:

(2) The order of operations in the canonical in-
terleaving is consistent with the program order in
which each individual client executed them.

Notice that sequential consistency does not im-
ply that every operation interleaving at each replica
has the same total order. Instead, different inter-
leavings can be applied at distinct replicas, pro-
vided that each client’s operation order is preserved
at each of these different interleavings. Such in-
terleavings must also guarantee that the result of
each operation is consistent, in terms of the objects’
specification, with the operations that preceded it
in the canonical interleaving.

The definition of sequential consistency is simi-
lar to a transactional property designated as one-
copy serializability. However, sequential consis-
tency, just as every replication consistency guar-
antee referred in this paper, does not include any
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Figure 2: An example of an execution that is sequen-
tially consistent, with respect to the canonical interleaving:
ReadB() = 0, WriteA(”1”), ReadB() = 1, WriteA(”2”),
WriteB(”3”), ReadA() = 3. Notice that such execution is
not linearizable, since the values returned by both ReadB

operations are not consistent with the real times at which
both WriteA operations occurred.

notion of operation aggregation into transactions.
For this reason, sequential consistency and one-
copy serializability should be regarded as distinct
concepts.

3.2 Relaxed consistency guarantees

Relaxed consistency guarantees are normally spec-
ified in terms of the properties that are ensured in
the way updates are ordered at each replica. In con-
trast to strong consistency guarantees, the notion
of a canonical operation interleaving is no longer
used as a reference by relaxed consistency guaran-
tees.

The inherently weak requirements of such guar-
antees enable optimistic replication strategies to be
employed. Section 5 describes such strategies.

3.2.1 FIFO ordering of updates

One weak consistency guarantee is FIFO ordering
of updates. It considers the partial ordering be-
tween the operations requested by each individual
client. It guarantees that such partial orderings are
preserved by every operation interleavings applied
to the physical replicas.

This consistency guarantee might seem resem-
blant to strict sequential consistency. However, one
important condition of sequential consistency is ab-
sent from FIFO ordering: there is no requirement

Figure 3: An example of FIFO ordering of updates: the
partial order between operations requested by each individ-
ual client is ensured at every replica. Notice that, since FIFO
ordering is not total, not every replicas apply the updates
in the same sequence.

for each operation to be consistent with the opera-
tions that preceded it at some canonical interleav-
ing.

3.2.2 Causal ordering of updates

A stronger consistency guarantee is that of causal
ordering of updates. This guarantee is based on the
happened-before relationship between events, →, as
defined by Lamport [Lam78]. In the particular case
of updates issued in replicated system, this relation-
ship relies on the following points:

(1) If two updates, u1 and u2, were issued at the
same replica manager i, then u1 → u2.

(2) Whenever an update is propagated between
two replica managers, the event of sending the up-
date occurred before the event of receiving the up-
date.

(3) If e, e′ and e′′ are events such that e → e′ and
e′ → e′′, then e → e′′.

A system guarantees causal ordering of updates
if and only if the partial causal ordering between
operations is verified at every operation interleav-
ing applied to each replica.

Since all operation requests issued by the same
client are causally related, any system providing
causal ordering of updates also provides FIFO or-
dering.
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Figure 4: An example of causal ordering of updates: the
happened-before relationships between updates (u1 → u2

and u1 → u3) is ensured at the update ordering at every
replica. Notice that, since causal ordering is not total, not
every replicas apply the updates in the same sequence.

3.2.3 Total ordering of updates

One other weak consistency guarantee that can be
considered is total ordering of updates. A system
offers total ordering if the operation interleaving at
every replica respects a total ordering established
between all operations issued in the system.

The linearizability consistency criterium guaran-
tees total ordering of updates by ordering opera-
tions by the real times at which they were per-
formed. Note that, however, any more practical
total ordering between operations can be employed.

One important property of a system offering to-
tal ordering of updates is that is guarantees that, if
any set of replicas receives the same operation re-
quests, their physical values will be identical. This
is not true with the other weak consistency guaran-
tees described previously. With FIFO ordering, op-
erations issued by different clients can be differently
ordered at distinct replicas, thus resulting into pos-
sible different replica values. The same can happen
with causal ordering when operations are concur-
rent with respect to the happened-before relation-
ship.

Finally, weak consistency criteria can be com-
bined in order to provide stronger consistency guar-
antees. One common consistency criterium is ob-
tained by ensuring both total and causal ordering
of updates.

3.2.4 Strict causal ordering of updates

Some systems require a stronger variant of causal
ordering of updates which eliminates the possibil-

Figure 5: An example of total ordering of updates: the
total order u1 < u3 < u2 is ensured at every replica.

Figure 6: An example of strict causal ordering of updates:
to ensure strict causal ordering, replicas have to discard cer-
tain concurrent updates (u2 and u3 are concurrent).

ity of causally concurrent updates. Strict causal
ordering offers such guarantee.

A replicated system offers strict causal ordering
of updates if and only if: given an update ui, for
every update uk preceding ui at some update inter-
leaving applied at some replica, the following con-
dition met: uk ≤ ui.

Contrary to the other weak consistency guaran-
tees described so far, concurrent updates cannot
be accommodated by one replica exhibiting strict
causal ordering of updates. Instead, in the presence
of multiple concurrent updates, a replica must ac-
cept only one of them and discard the others.

An important property of replicated systems that
provide strict causal ordering of updates if that
each operation is only applied in the context in
which it was issued. That is, if an update oper-
ation was issued upon a replica when its value was
a result of a specific set of older updates, the new
update, if accepted by the replica, will be ordered
immediately after those older updates.

7



3.3 Hybrid solutions and eventual
sequential consistency

Some solutions offer two levels of consistency guar-
antees to applications, combining both pessimistic
and optimistic replication strategies.

These solutions are based on optimistic replica-
tion strategies. As a result, replicas offer weak con-
sistency guarantees as a trade-off for high availabil-
ity. The update operations and the replica values
that result from this optimistic operation are nor-
mally designated as tentative.

On top of the optimistic strategy, a pessimistic
replication scheme is applied to ensure stronger
consistency guarantees. The objective of the pes-
simistic scheme consists in restricting the set of ten-
tative updates that are applied to a replica’s value.
The updates that constitute this stricter collection
of updates are typically designated as stable or com-
mitted updates. Conversely, the value that results
from the application of the stable updates is called
the stable or committed value.

One particular case of a hybrid solution is that
where the replica’s stable value is sequentially con-
sistent, according to the definition introduced in
Section 3.1.2. It should be noted, however, that
such sequential consistency guarantee applies only
to the set of stable updates.

From the viewpoint of the clients that issue ten-
tative updates, the only guarantee is that such
tentative updates will eventually be placed in the
canonical interleaving that defines the sequentially
consistent stable value. Such event corresponds to
completing the coordination phase of each tentative
update, when it becomes a stable update. In the
meantime, the stable value will simply not reflect
the not tentative updates which have not become
stable. Hereafter, we shall refer to this consistency
guarantee as eventual sequential consistency.

The advantage of this approach is that it can
easily accommodate different applications with dis-
tinct correctness criteria and, consequently, dis-
tinct consistency requirements. Applications with
stronger correctness criteria can select to access the
stable view of replicated objects. Applications with
less demanding correctness criteria can enjoy the
higher availability of the tentative view.

4 Pessimistic strategies

Pessimistic strategies prevent inconsistencies be-
tween replicas by restraining the availability of the
replicated system.

Each replica manager makes worst-case assump-
tions about the state of the remaining replicas.
Therefore its operation follows the premise that,
if any inconsistency can occur in result of some
replica operation, that operation will not be per-
formed. As a result, pessimistic strategies yield
strong consistency guarantees (Section 3.1).

A pessimistic replication protocol performs the
five phases in the canonical order described in
Section 2 (request, coordination, execution, agree-
ment and response), though some particular solu-
tions may skip the coordination and/or agreement
phases. This means that, after issuing an operation
request, a client has to wait for all the remaining
phases to complete before obtaining a response. If a
network partition or a failure of some replica man-
ager prevents the coordination or agreement phases
from performing their distributed algorithms, then
the request response will as well be disrupted. As
a consequence, the replicated system’s availability
is reduced.

The following subsections present three represen-
tative pessimistic replication strategies which are
relevant for some solutions discussed in the rest
of the paper. For a more exhaustive analysis, the
reader should consult [DGMS85] and [WPS+00].

4.1 Primary copy

This approach [AD76, Sto79] assumes the existence
of a single distinguished replica, designated as the
primary copy. Every update operation to the logic
object must be handled by the replica manager
holding its primary copy. Updates are then propa-
gated to the remaining replicas.

In the case of reads, a lock has to be acquired
at the primary copy’s replica manager. The ac-
tual read operations can then be performed at any
replica of the logical object.

In the event of a network partition, only the par-
tition containing the primary copy is able to access
it. Upon recovery, updates are forwarded to the
previously partitioned sites to regain consistency.

Under situations where network partition is dis-
tinguishable from the failure of a node, a new pri-
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mary copy can be elected when the previous one
fails. However, if it is not possible to determine if
whether the primary copy is unavailable for failure
or partition reasons, the system must always as-
sume that a partition occurred and no election can
be made.

4.2 Tokens

This approach [MW82] bears close resemblance to
the primary copy scheme. The exception is that
the primary copy of a logical object can change for
reasons other than network partition. Each logical
object has an associated token, which allows the
replica holding it to access the object’s replicated
data.

When a network partition takes place, only the
partition which includes the token holder will thus
be able to access the corresponding logical object.
One disadvantage of this approach lies in the fact
that the token can be lost as a result of a commu-
nication or replica manager failure.

One variation of this basic token protocol is the
single writer multiple readers [LH86], where two
types of tokens are obtainable: read and write to-
kens. Several replica managers can simultaneously
hold a read token on a particular logical object,
which enables them to serve read requests to the
local replicas of that object. On the other hand, a
replica manager can hold a write token, which im-
plies that no other replica manager holds a token of
any type on the same logical object. With a write
token, a replica manager can serve both update and
read requests to its local replica of the object.

4.3 Voting

In a voting strategy [Gif79], every replica is as-
signed some number of votes. Every operation
upon a logical object must collect a read quorum
of r votes to read from a replica or a write quorum
of w votes to update a replica value.

The following conditions must be verified by the
r and w quorum values:

(1) r + w exceeds the total number of votes, v
assigned to a logical object, and

(2) w > v/2
The first condition ensures that the intersection

between read and write quora is never null. In a
partitioned system, this means that a logical object

cannot be read in one partition with read quorum
and written in another partition with write quo-
rum. This would lead to inconsistencies, since up-
dated replicas in the write quorum partition would
not be reflected in the values read in the read quo-
rum partition.

The second condition guarantees that only a
maximum of one write quorum can be formed. This
way, in the event of network partitions, the case of
two or more partitions holding a write quorum for
a logical object will never happen.

Notice that, if r is chosen so that r < v/2, it is
possible for a logical object to be read by replica
managers on more than one partition, in which case
update operations are not allowed in any partition.
High availability for read operations can thus be
achieved by choosing a small r value.

One main aspect differentiates this strategy from
the ones previously presented. This strategy does
not have to distinguish between communication
failures, replica manager failures or network par-
titions. Voting is simply carried out by collecting
the votes of the replica managers that are avail-
able at each moment. In contrast with the pri-
mary copy and token solutions, availability is not
compromised by the inability of distinguishing the
cause of a replica manager’s unavailability.

One drawback of the quorum scheme is that read-
ing from a replica is a fairly expensive operation.
A read quorum of copies must be contacted in this
scheme, whereas access to a single replica suffices
for all other schemes, provided that the read lock
or token has already been acquired.

5 Optimistic strategies

In contrast to pessimistic replication strategies, op-
timistic strategies do not limit availability. Re-
quests can thus be served just as long as any single
replica manager’s services are accessible. The re-
sult is a higher availability in comparison with the
pessimistic approach.

This is achieved by ordering the execution and
response phases before the coordination and agree-
ment phases. This way, the client issuing the re-
quest does not have to wait for the replica manager
to contact the other, possibly inaccessible, peers in
order to complete the coordination and agreement
steps. Since, from a client’s viewpoint, an oper-
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Figure 7: Generic replica state maintained by optimistic
strategies.

ation request is served as soon as the client has
received the response from the replica manager, a
high availability is accomplished.

A consequence of anticipating the execution and
response phases is that inconsistencies may occur
if different replicas are updated concurrently. As
a consequence, optimistic strategies typically offer
weak consistency guarantees (Section 3.2).

To restore replica consistency, replica managers
must detect update conflicts and, if necessary, re-
solve them. Hence, the coordination and agreement
phases must now be responsible for dealing with
detection and resolution of potential conflicts that
may have occurred.

The following subsections are dedicated to some
key design aspects that characterize an optimistic
replication solution. Namely, replica state, version
timestamping, update stabilization and log trunca-
tion.

5.1 Replica state

A replica manager maintains, for each replica it
stores, a collection of data structures, illustrated in
figure 7. These are:

Stable value. This is the value that is obtained
after applying all the ordered stable updates that
have been received by the replica manager to some
initial replica value.

Update log. The update requests that have been
received by the replica manager are stored in this
log. Each update in the log represents a new replica
version that results from applying that update after
all updates ordered before it to the initial replica

value. Such version is identified by a version times-
tamp that is assigned to the update.

The updates stored in the log can be distin-
guished as stable updates and tentative updates.
One condition that must be verified is that a sta-
ble update is always ordered before any tentative
updates in the log.

Tentative and stable replica timestamp.
Figure 7 illustrates the state that is associated with
each replica at some moment. Generally, a replica
manager that maintains all the data structures rep-
resented in the figure is able to offer two possibly
distinct views upon a replica: its stable and tenta-
tive value. The former is simply the same as stored
in the stable value data structure. The latter re-
sults from the application of the tentative updates
included in the log to the stable value.

Both views have an associated version times-
tamp. Those version timestamps correspond to the
timestamps of the most recent stable and tentative
updates in the log, respectively.

5.2 Version timestamping

In order to detect conflicts and determine the set of
updates to be exchanged between replica managers
during reconciliation sessions, a mechanism must
be employed to timestamp replica versions. The
following subsections present some key approaches
for version timestamping, along with their main ad-
vantages and disadvantages.

5.2.1 Version Vectors

A version vector [Mat89][Fid91] is a vector of coun-
ters, one for each replica manager in the system.
Each replica manager maintains version vectors as
logical timestamps in order to describe the history
of its own local replica. As described in the pre-
vious section, such timestamps are the tentative
and stable replica timestamps, as well as the times-
tamps of each update in the update log.

Whenever a new version is created as a result of
an update issued to a replica manager, that update
is stamped with a version vector. Consider the ver-
sion vector that describes the original version to
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which the update was issued upon. The new ver-
sion vector is simply obtained by incrementing the
entry corresponding to the replica manager that
generated the resulting new version.

Furthermore, when two conflicting replica ver-
sions are merged by some conflict resolution pro-
cedure, the resulting version’ timestamp is calcu-
lated by the merge operation receiving both ver-
sion’s timestamps as inputs. The returned version
vector has, for each entry, the maximum value of
the corresponding entry in the input version vec-
tors.

Two version vectors can be compared to assert
if there exists a happened-before relationship be-
tween them. Given two version vectors, vv1 and
vv2, vv1 causally precedes vv2, meaning that a
happened-before relationship links vv1 to vv2, if
and only if, the value of each entry in vv2 is greater
or equal than the corresponding entry in vv1. If this
condition is verified, vv2 is said to dominate vv1. If
neither vv1 dominates vv2, nor vv2 dominates vv1,
vv1 and vv2 are conflicting versions.

Version vectors are a simple and effective way of
version timestamping. When generating and merg-
ing of replica versions, the new version vector is eas-
ily calculated by an increment or merge operation.
A simple arithmetic comparison of two version vec-
tors allows a system to conclude whether any of the
associated replica versions dominates the other or,
else, if a conflict exists.

The size occupied by version vectors is linearly
dependent on the number of replica managers in
the system. This is a significant scalability obsta-
cle when concerning systems with a high number
of replica managers. In the case of timestamps
for logged updates, this problem is reduced, how-
ever, by storing only a [replicaId, entryV alue] pair,
where replicaId identifies the replica manager that
received the update from a client and entryV alue
is the entry corresponding to that replica manager
if an actual version vector was stored. As long as
the updates in the log are causally ordered, the
timestamp of a particular logged update can be
obtained by looking at the tentative replica times-
tamp and the [replicaId, entryV alue] of the up-
dates that succeed it in the log. This approach is
employed in the Bayou replicated system (Section
8).

The major limitation of this approach is that the
collection of replica managers is considered to be

static. Each replica manager has an pre-assigned
fixed position within a version vector. This means
that the creation or retirement of replica managers
from the system is prohibited by this basic ver-
sion vector approach. The next section presents
dynamic version vectors, which address this impor-
tant limitation.

5.2.2 Bayou’s version vectors

An alternative solution is proposed by the Bayou
replicated system [PSTT96]. This approach han-
dles creation and retirement of replica managers
as update operations. Such special updates are
propagated between the remaining replica man-
agers using the general update propagation scheme
of Bayou.

Upon reception of a creation or retirement up-
date, a replica manager proceeds with adding or
removing the corresponding entry from the its ver-
sion vectors. The eventual consistency guarantees
of Bayou’s update propagation protocol ensure that
the creation or retirement update will eventually be
reflected on every replica manager in the system.

An important problem arises, though, if replica
managers are allowed to discard updates from their
log before every other replica managers have re-
ceived those updates. This is the case of Bayou.

Under such circumstances, it is possible for a
replica manager, R1, to receive a retirement up-
date concerning replica manager R2, process it by
removing R2’s entry from its version vectors and
then discard the update. During a later update
propagation session with another replica manager,
R1 may be presented with version vectors referenc-
ing R2, which it no longer knows about. In such
situation, R1 may not know about R2 for two dis-
tinct reasons: either R1 never hear about R2 or
R2 was created and subsequently retired. In the
former case, R1 should add an entry for the new,
previously unknown replica manager R2 in its ver-
sion vectors. In the former case, R1 should assume
that R2 is, in fact, retired.

Bayou solves this ambiguity by using a recur-
sive naming scheme to identify replicas managers.
A new replica manager that is created by issu-
ing a creation update upon some existing replica
manager gets its identifier as a composition of the
existing replica manager’s identifier and the cre-
ation update’s timestamp. Examining such recur-
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sive identifier allows a replica manager to solve the
create/delete ambiguity, which is described in de-
tail at [PSTT96].

The recursive replica manager naming scheme,
however, is a significant drawback of this approach.
Since new replica manager’s identifiers are con-
structed as a composition of an existing identi-
fier and a version vector, membership changes to
the collection of replica managers irreversibly in-
crease the size of identifiers. If replica creation
and retirement should be frequent, the benefits
from removing the retired replica managers’ entries
from version vectors may rapidly be outmatched by
the penalty of increasing replica manager identifier
sizes.

5.2.3 Dynamic version vectors

Ratner et al. [DRP99] proposed a dynamic varia-
tion of the static version vector approach described
previously. A dynamic version vector is represented
by an associative vector, comprised of a variable
number of < ReplicaId : Counter > pairs. Instead
of a static vector, a dynamic version vector is able
to expand and compress itself in response to replica
creation or deletion.

Moreover, Ratner noted that updates to a cer-
tain replica typically are performed by a small set
of writers. As the elements in a version vector rep-
resent the updates issued at each replica manager,
only that restricted set of writer replica managers
needs to have corresponding elements in the version
vector. In fact, having elements for replica man-
agers that exclusively read from a certain replica is
unnecessary, since their counters are permanently
null.

From this observations, dynamic version vectors
start as empty vectors and are able to expand
with a new element as any replica manager gen-
erates its first update. The absence of an element
for a given replica manager in a dynamic version
vector is equivalent to holding a zero counter for
that replica manager. In particular, the happened-
before relationship described in Section 3.2.2 is still
verified with absent elements instead of zero valued
elements. So, replica expansion is simple: when the
first update is generated at a given replica man-
ager, it simply adds a new element in its dynamic
version vector. As the update is propagated to
other replica managers, so does the expanded vec-

tor, which caused those replica managers to add
the new element to their dynamic version vectors.

When a replica is deleted, it should be removed
from the version vector. Otherwise, the vector di-
mension would continually increase as replicas were
created and deleted. Additionally, a replica man-
ager that has generated some updates in the past
but has ceased its update activity should also be
removed to reduce the vector size.

However, vector compression is challenging be-
cause a vector element concerning a given replica
can only be done once all replicas have the same
value for that element. This condition ensures that
the happened-before relationships amongst version
vectors are equivalent to those between the same
version vectors after being compressed. This con-
dition requires that a consensus must be reached
among all the replica managers to guarantee that
all have the same value in the vector element to be
removed.

The Roam system periodically executes a dis-
tributed algorithm to remove the elements corre-
sponding to replica managers which have not issued
updates recently. Such replica managers may have
discarded the replica or have simply ceased its up-
date activity and therefore its element should be
removed from the vector.

The distributed algorithm relies on the underly-
ing update epidemic propagation protocol of Roam.
When finished, a consensus is reached on a value
to be subtracted at all replica managers to the el-
ement which is being removed. If the resulting
value is zero, a replica manager removes the ele-
ment from its vector. During the execution of the
distributed consensus algorithm, the normal opera-
tion of the system is retained, which means that any
replica manager, including the one being removed,
can generate and propagate updates. A more de-
tailed description of the algorithm can be found in
[Rat97].

Under circumstances where the premiss that up-
dates are probable to occur by a small set of replica
managers is verified, Ratner’s dynamic version vec-
tors are an interesting solution. Not only can it
deal with the static vector’s problem of replica cre-
ation and deletion, but it also optimizes vector size
to reflect only the set of writers. Such aspect is of
significative importance to replicated systems with
a potentially high number of replicas, where scala-
bility is a key issue.
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The main disadvantage of dynamic version vec-
tors is the overhead caused by the periodic exe-
cution of the consensus algorithm. In particular,
additional network usage and memory space is re-
quired in order to perform the distributed algo-
rithm. Furthermore, in situations where network
partitions or failure of replica managers can last
for long periods, consensus is equally delayed. This
can severely reduce the effectiveness of vector com-
pression. However, the characteristics of the dis-
tributed consensus algorithm guarantee that the
operation of the replicated system is not affected
by such situations.

5.2.4 Hash histories

The Hash History approach to version timestamp-
ing [KWK03] proposes a radically distinct strategy
from that used by version vectors. Here, instead of
identifying versions based on the collection of repli-
cas that are able to issue updates upon the replicas,
a version identifier is based on its actual data con-
tents.

This is accomplished by applying a cryptographic
hash function, such as SHA-1 [Nat95], to the entire
contents of each version. The resulting fixed size
hash value is then used as an identifier of that ver-
sion. Additionally, the replication system also has
to maintain (parent, child) pairs between updates
in the log so that causal relationships between ver-
sions can be extracted.

This exclusively content-based approach has the
advantage of avoiding the main problems associ-
ated with version vector strategies. Namely, those
related to dynamic membership change of the col-
lection of replica managers and the growth of vector
size with the number of replica managers.

Furthermore, the hash history approach can take
advantage of situations of coincidental equality. A
coincidental equality occurs when two independent
chains of update operations, issued at distinct repli-
cas, produce identical version data. To a version
vector approach, this event would be regarded as
a conflict, since the updates that produced the
replica version are causally conflicting according to
the definition in Section 3.2.2. Using hash values
to identify replica versions, the system would con-
sider both versions as equivalent, thus avoiding per-
forming unnecessary conflict resolution procedures.
The probability of the event of coincidental equal-

ity is, however, strongly dependent on the update
patterns that characterize the application domain
of each replicated system. Consequently, for some
systems, the advantages of detecting coincidental
equalities may not be sufficiently relevant to ac-
count for such feature as a real advantage.

However, hash histories suffer from two main
weaknesses. Firstly, a hash value has to be cal-
culated over the entire contents of each replica ver-
sion that is created. For objects with reasonable
data dimensions, this represents a substantial per-
formance overhead. Even if an update consists only
of a small number of bytes, it will require sequen-
tially accessing to the whole replica contents and
performing intensive processing over it in order to
obtain the hash value that identifies the new ver-
sion. Using version vectors, a simple increment of
one to a version element would be needed.

The second disadvantage lies in the fact that, in
contrast to version vectors, hash values carry no
explicit causal information. That is, given two ver-
sion vectors, one can deduce, by a simple compari-
son of both vector’s elements, whether one precedes
the other by a happened-before relationship or they
are causally concurrent. In the case of hash val-
ues, determining the causal relationships between
two versions requires an examination of the (par-
ent, child) pairs stored in the update log belonging
to that object. In fact, to determine if a version
causally precedes another version, given their hash
values, the update log needs to be traversed in or-
der to find a directed path or (parent, child) pairs
linking the first version to the other.

5.3 Update stabilization strategies

One important characteristic of an optimistic repli-
cation solution is the strategy it uses to determine
when a tentative update should become a stable
update. Most systems also refer to such decision
as update commitment. According to the model
presented in Section 2, this step corresponds to the
coordination phase.

This option is strongly tied to the consistency
guarantees that a replicated system provides re-
garding the stable value of each replica.
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5.3.1 Stability condition

One simple approach is to commit an update when-
ever a certain condition concerning the state of
the replica is met. One example of such condition
would be to commit a tentative update whenever
all the updates it depended on were already stable.
This is the approach followed by the Gossip frame-
work (Section 7) and ensures a causal ordering of
the stable updates.

The main disadvantage of this solution is that
it does not take into account any concurrent up-
dates that haven’t yet been received by the replica
manager at the time of the commit decision. A
direct consequence of this fact is that, if distinct
concurrent updates which verify the stability con-
dition arrive at two replica managers in a different
order, they will be committed in that order. As a
result, the stable replica values of the system are
not guaranteed to have the same contents after re-
ceiving the same collection of updates. That is,
the stable updates are not guaranteed to be totally
ordered.

5.3.2 Primary commit scheme

For most applications, however, the requirement of
having the same contents on every stable replica
value holds. In this context, a solution might be
to assign an individual replica manager with the
responsibilities of update commitment.

Such special replica manager, the primary replica
manager, would receive tentative updates just as a
regular replica manager. Additionally, it is capable
of, according to some logic, decide upon the final
stable ordering to apply to such updates. That de-
cision is then propagated to the remaining replica
managers. The flow of such information is done
using the same protocol that is employed to prop-
agate tentative updates. The difference, though, is
that updates are now marked as stable.

A primary commit scheme guarantees that the
stable updates at every replica are totally ordered,
which is an important requirement in most do-
mains. One example is the Bayou replicated system
(Section 8).

The main drawback of this approach is that is re-
lies on a single point of failure, which is the primary
replica manager. In fact, this update commitment
closely resembles the pessimistic approaches of pri-

mary copy or tokens, and thus shares their disad-
vantages. Before being committed, every update
has to be consumed by the primary replica man-
ager. In the case of failure or network partitioning,
update committing can be severely disrupted.

5.3.3 Voting

In order to attain a higher availability of the up-
date commitment process, some alternative solu-
tions have resorted to quorum based approaches.

Here, the goal is to eliminate the single point
of failure of the primary commit scheme. Instead,
update commitment now requires that a plurality
of replica managers agrees on the stable order of
a given set of updates. In the case of network
partitions, a partition holding a sufficient num-
ber of replica managers to constitute a quorum is
thus able to commit updates. Some solutions do
not even require the quorum to be simultaneously
present in the same network partition. One exam-
ple is Deno (Section 10), which employs an epi-
demic voting scheme, hence enhancing the avail-
ability of the update commitment process.

One other important characteristic of this ap-
proach is that the decision of the final stable or-
der is no longer delivered to a single entity. Under
circumstances where replica managers do not trust
each other to carry out such decision, a quorum
solution is more appropriate. This is the case of
Oceanstore [KBC+00].

5.4 Log truncation

A replica manager keeps updates in a log for two
main reasons. Firstly, the tentative updates cannot
be applied onto the stable replica value. Since it is
tentative, it must not be executed until it becomes
stable.

On the other hand, stable updates that have al-
ready been applied to the stable replica value may
not have been received at every other replica man-
agers. Such stable updates should be stored in the
log so that they can be propagated to other replica
managers that haven’t yet received them.

The update log is, however, the main source of
memory overhead in an optimistic replicated sys-
tem. This is especially relevant in mobile envi-
ronments, where the memory resources of mobile
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devices are typically scarce. Therefore, a funda-
mental requirement is that such overhead is kept
low. To achieve this objective, replica managers
must be able to discard unnecessary updates in
their replica’s logs so as to keep acceptable log sizes.

5.4.1 Conservative log truncation

One common approach in conventional optimistic
replication systems is to discard updates from the
log whenever a replica manager knows that such
updates are no longer necessary to ensure replica
consistency. Such decision is typically taken by
each replica manager based on a worst case es-
timate of the updates received at the remaining
replica managers.

The Bayou (Section 8) and the Gossip framework
(Section 7) are systems which employ this conser-
vative approach. The first one allows any replica
manager to discard updates provided that they are
stable. The second example maintains a version
vector table to store a worst case estimate about
the updates received by every replica manager in
the system. When an update is known to have
been received by every replica manager according
to the version vector table, it is safe to discard it.

5.4.2 Relaxed log truncation

In some situations, though, using a conservative
approach for log truncation does not suffice to ef-
fectively reduce the storage overhead caused by the
log. In particular, network partitions or failure of
replica managers can cause situations where the
condition for discarding an update is not verified
until the network partition or the failure are re-
paired. If such events are to occur frequently, a
conservative approach may rapidly reach a state
where a replica cannot accept more updates be-
cause no more memory space is available for the
log.

One alternative would be to discard updates us-
ing a relaxed estimate. For instance, [KWK03] pro-
poses and analyzes using a simple aging method to
estimate when a given update is no longer needed
by other replica managers. When an update is
stored for more than a certain time in the log, it
can be discarded from the log.

Whenever an update is discarded from the log, a
replica manager must ensure that it has been ap-

plied to its stable replica value. Otherwise, the up-
date information might be lost if that replica man-
ager was the only one holding the update. The
problem arises when the update to be discarded is
a tentative update.

In this case, the tentative update must be ap-
plied to the stable replica value. Consequently,
such value ceases to be stable to become a tentative
replica value. Hence, the system looses its ability
to provide a stable view of the replicated object.
Such ability may be later regained if the replica
manager receives information that the every tenta-
tive updates which were applied to the replica value
have become stable.

5.4.3 No log

One extreme approach is not to maintain any up-
date log. This might be seen as a relaxed log trun-
cation approach in which an update log would be
immediately applied to the replica value and then
discarded.

Such solutions typically have no notion of update
stability. Therefore every update is tentative and
each replica manager simply maintains a tentative
replica value. The memory requirements of an up-
date log are thus avoided at the expense of weaker
consistency guarantees. Rumor and Roam (Section
9) are examples of replicated systems which employ
this approach.

6 Coda

Conventional distributed file systems, such as NFS
[Now89] and AFS [MSC+86], can also be regarded
as replicated systems. Here, the replicated objects
are files and directories that are replicated from
the server’s disks to client caches for better per-
formance. These systems are based on a client-
server architecture and employ pessimistic consis-
tency policies.

Such design options are appropriate for opera-
tion over a fixed network, where the server infras-
tructure should be always accessible to the wired
clients. Network partitions and server failures
are exceptional events that are expected to occur
rarely. In this context, the availability issue can
be traded by stronger consistency policies that en-
sure file system semantics closer to or equivalent to
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those of local file systems. The popularity and wide
use of these systems in fixed network domains is a
symptom of their effectiveness.

However, when one allows the possibility of mo-
bile clients, network partitions between such clients
and the server infrastructure are no longer negligi-
ble [JHE99]. To achieve a better availability in the
presence of such potentially disconnected clients,
the Coda distributed file system [Sat02] enables
clients to access the files stored in cache while being
disconnected from the server machines [KS91].

In addition to disconnected operation at clients,
Coda also enables optimistic read-write server
replication in order to achieve a better fault-
tolerance in the face of server failures. Since such
mechanism can be regarded as an extension of dis-
connected operation, it will not be further discussed
in the paper.

6.1 Disconnected Operation

Coda inherits most of AFS’s design options, includ-
ing whole-file caching. Under normal operation,
clients are connected to the server infrastructure
and AFS’s pessimistic cache consistency protocol
is employed. When a client becomes disconnected
from the servers, however, it adopts a distinct mode
of operation. An optimistic consistency strategy is
then used to enable the disconnected client to read
and update the contents of the locally cached files
and directories. A user can thus work on the doc-
uments cached on his disconnected mobile device
while he is away from his wired desktop PC.

A client, or Venus in AFS terminology, can be
in one of three distinct states throughout its exe-
cution: hoarding, emulation and reintegration. The
client is normally in the hoarding state, when it is
connected to the server infrastructure and relies on
its replication services. Upon disconnection, it en-
ters the emulation phase, during which update op-
erations to the cached objects are logged. When a
connection is again available, the reintegration oc-
curs, in which the update log is synchronized with
the objects stored in the servers’ disks. The hoard-
ing state is then entered.

6.2 Hoarding

A crucial factor on the effective availability that is
achieved by disconnected operation has to do with

the set of objects that are cached at the moment
when disconnection happens. If, at the moment of
disconnection, the set of cached files does not in-
clude those files that the mobile user will work on
during the emulation phase, cache misses will oc-
cur, therefore disrupting normal system operation.
If, otherwise, the set of cached files contains most
of the files that the user will access in the future,
disconnected operation can successfully achieve the
desired availability.

For the purpose of selecting the set of files that
should be cached during the hoarding phase, in an-
ticipation for a possible disconnection, Coda com-
bines two distinct strategies. The first is based on
implicit information gathered from the recent file
usage, by employing a traditional least recently used
cache substitution scheme. Complementarily, ex-
plicit information is used from a customized list of
pathnames of files of interest to each mobile user,
stored at a hoard database. Those files have an ini-
tial cache priority that is higher than the remain-
ing cached files, in order to meet users expectations
stated in the hoard database.

6.3 Replica State

Recalling the general replica state model described
in Section 5.1, a simple mapping can be made to
the state maintained at each Coda client in the em-
ulation phase.

Namely, the stable value corresponds to the
cached contents of files, obtained from the servers
during the hoarding phase. The update log con-
tains only the tentative updates that are issued at
that client during disconnection. Log truncation is
made at the end of a successful reintegration phase
and completely deletes the contents of the log.

6.4 Conflict detection and resolution

One consequence of disconnected operation is that
concurrent updates to different replicas that occur
while some of those replicas are disconnected can
lead to inconsistencies. This raises the problems of
conflict detection and resolution that characterize
any optimistic replication approaches. Such prob-
lems are handled during the reintegration phase.

Being a file system Coda has to deal with two
basic types of replicated objects: directories and
files. In contrast with files, directories have well
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known semantics which can be exploited by the file
system to automatically maintain their integrity in
the face of conflicting updates at different repli-
cas. Coda solves the problem of directory incon-
sistency by using a semantic approach that detects
and automatically resolves conflicts. An example of
such conflicts is when two disconnected clients each
create new files on a common replicated directory.
This will cause a conflict when the reintegration
phase of both clients happens, since the directory
replicas at each client have been concurrently up-
dated. Using semantic knowledge, however, Coda
easily solves this conflict by including both newly
created files on the merged directory value.

In the case of files, though, no semantic knowl-
edge is available about their contents. For this rea-
son a syntactic approach, based on version vectors,
is adopted. Each replicated file is assigned a Coda
Version Vector (CVV), which is a version vector
with one element for each server that stores that
file.

When a modified file is closed by a client, each
available server holding such file is sent an update
message, containing the new contents of the file and
the CVV currently held by that client, CV Vu. Each
server i checks if CV Vu ≥ CV Vi, where CV Vi is the
CVV held by server i for the modified file. If so,
the new update is applied at the server’s replica
and its associated CVV is modified to reflect the
set of servers that successfully applied the update.
If, otherwise, a conflict is detected at some server,
that file is marked as inoperable and its owner is
notified. If the client is operating in disconnected
mode, this procedure is postponed until being per-
formed during the reintegration phase.

6.5 Conclusions

Disconnected operation as defined by Coda still de-
pends strongly on the server infrastructure, since
the updates made during disconnection will only be
available to other clients after reconciliation with
the server. This may be acceptable in cases where
file sharing between mobile clients are rare situa-
tions or disconnection periods are short and infre-
quent. However, expected ad-hoc networking sce-
narios suggest that co-present collaborative activi-
ties in the absence of a fixed infrastructure should
occur frequently.

In those cases, Coda’s disconnected operation

model is inadequate, since the updates made in dis-
connected mode must be first propagated to the
server. Thus, each mobile client within an ad-hoc
network without access to the server infrastructure
would still act like an isolated file system client.
Probably, the updates made during the meeting
would only be propagated after each participant
had arrived at his office and synchronized his mo-
bile device with his desktop PC connected to the
wired infrastructure.

7 Gossip Framework

Ladin et al. [LLSG92] propose a framework for
providing high availability replication services for
applications with weak consistency requirements.

The Gossip framework considers three possible
update ordering modes: causal, forced and imme-
diate. Causal mode causes updates do be ordered
according to the happened-before relationship (Sec-
tion 3.2.2).

Forced and immediate updates are guaranteed to
be total and causally ordered. The difference be-
tween both is that forced updates are causal and to-
tally ordered with respect to other forced updates,
but only causally ordered within the remaining up-
dates. In contrast, immediate updates are causal
and totally ordered against all updates of all modes.

The choice of which ordering mode to use is as-
signed to the applications that issue each update.
However, the two stronger ordering modes have
significant costs on the effective availability of the
replicated system. They require the replica man-
ager to belong to a network partition where a ma-
jority of the remaining replica managers is accessi-
ble, which may be a significant limitation in poorly
connected environments.

A relaxed consistency protocol among the replica
managers guarantees that all replica managers
eventually receive all updates. Conversely, those
updates are eventually applied at each replica, ac-
cording to the ordering requirements associated
with each update. Gossip’s consistency protocol
is based on version vectors (Section 5.2.1).

The primary purpose of the Gossip architecture
is to provide highly available services through the
use of causal updates. For its relevance, the re-
maining subsections will only concentrate on such
operation mode.
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7.1 Replica state

Each replica manager contains a replica state which
is similar to that proposed in Section 5.1.

Two additional components are worth being
mentioned: an executed operation table, which con-
tains the identifiers of the updates that have al-
ready been executed by the replica manager; and a
timestamp table, which maintains the stable value
timestamps for each replica manager in the system.

The first structure is used to prevent updates
from being applied more than once. The second
structure is used for the purposes of log truncation
and for determining the set of updates to be prop-
agated to the other replica managers, as will be
described ahead.

A conservative approach for log truncation is
employed, based on the timestamps stored in the
timestamp table. According to such information,
the updates which are guaranteed to have been re-
ceived by all replicas are discarded from the log.

7.2 Conflict detection and resolution

Consistency between replica managers is achieved
by the propagation of gossip messages between
replica manager pairs. Gossip messages contain in-
formation about the updates known to a sending
replica in order to bring the receiving replica up to
date.

A gossip message has two components: the ten-
tative replica timestamp and a relevant portion of
the log of the replica manager which is sending the
gossip message. The information in the timestamp
table regarding the target replica manager is used
to provide an estimate of the set of updates that
must be sent in the gossip message. It is a worst-
case estimate, since the receiving replica manager
may have received more updates by the time the
gossip message is sent.

The Gossip consistency model ensures that the
stable causal updates are applied to the replica sta-
ble value according the partial order defined by
the happened-before relationship. In such ordering
mode, dealing with concurrent updates is straight-
forward: each replica manager adds the concurrent
updates to its replica’s update log in the same order
as it has received them. This means that different
replicas may reach distinct values after receiving
the same set of updates.

7.3 Additional consistency guaran-
tees

Clients of the replicated system can access any
available replica manager to issue read and write
requests. Since relaxed consistency is employed be-
tween replica managers, a client can perform re-
quests at replica managers with different replica
values. Therefore it is possible that a client con-
tacts a replica manager whose replicas reflect less
recent values than other replica managers which
have already been read by the client. To prevent
such inconsistent situations, the Gossip framework
ensures that each client obtains a consistent service
over time.

Each client maintains an associated version vec-
tor, prev, that reflects the latest version which was
accessed for a certain replica. Such version vector
is supplied along with every request that is made
at a replica manager.

In the case of a read operation, the contacted
replica manager only returns the desired data value
when the version vector which was sent along with
the request, read.prev, causally precedes or is equal
to the stable value timestamp of the replica man-
ager, stableTS. That is, if read.prev ≤ stableTS.

This condition guarantees that, if a client wishes
to retrieve data from a replica that is older than
other replicas from which it has already read from,
the corresponding replica manager will hold back
the result until the condition is fulfilled. This en-
sures that clients obtain a consistent service over
time. Such condition is equivalent to the mono-
tonic reads session guarantee which is referred in
Section 8.3 in the context of the Bayou replicated
system.

In the case of write operations, a similar scheme
is used. A logged update, u can only be applied
upon the stable replica value when Gossip’s stabil-
ity condition is verified: u.prev ≤ stableTS, where
stableTS is the current replica stable timestamp.
This condition states that, for an update to be-
come stable, all the updates on which it depends
on must have already been applied to the stable
replica value. This is conceptually similar to the
monotonic writes session guarantee (Section 8.3),
defined in the context of the Bayou replicated sys-
tem.

Along with the response to a read or write re-
quest, a new version vector is returned. In the case
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of read requests, the new version vector reflects the
accessed replica stable timestamp. If, otherwise, it
was a write request, the returned version vector is
the version timestamp which was assigned to that
update upon its reception by the replica manager.
In either case, such version vector is then merged
with the previous client prev version vector.

7.4 Conclusions

The Gossip framework offers high availability repli-
cation services by enforcing causal ordering guaran-
tees. Applications with relaxed correctness criteria
are able to use the framework’s services as long as
any replica manager is available. Hence, the ef-
fects of network partitions or failure of some replica
manager, which are likely to occur in mobile ad-hoc
environments, are minimized.

The applications benefiting from such causal or-
dering guarantees must have relaxed correctness
criteria. In particular, such applications have to
be able to tolerate the absence of total ordering
guarantees. In other words, the possibility of two
replicas having distinct values after receiving the
same set of updates must be regarded as correct.
For semantical domains with more demanding cor-
rectness criteria, forced and immediate updates can
be used at the cost of reduced availability.

The Gossip Framework requires each replica
manager to maintain an update log. A conserva-
tive log truncation approach ensures that, when
any two replica managers reconciliate, the logged
updates at each of them will suffice to synchronize
their replicas. Hence, transference of the complete
replica value will never be required, which is an
important feature when the size of the replicated
objects is significative.

On the other hand, network partitions or failure
of some replica manager may cause updates to re-
main indefinitely in a replica manager’s log, since
the unavailable replica managers have not yet re-
ceived such updates. This means that, under such
circumstances, the size of an update log can rapidly
grow, as updates continue to be issued while older
logged updates are not being discarded. For replica
managers running at mobile devices, with typically
poor memory resources, this is an important limita-
tion. In fact, if a replica manager runs out of avail-
able memory for its update log, it can no longer
receive update requests. Therefore, the system’s

availability is reduced.

8 Bayou

The Bayou System [DPS+94] is a mobile database
replication system that provides high availability
with weak consistency guarantees. Bayou employs
a semantic approach which supports application-
specific update conflict detection and resolution.
For that purpose, Bayou’s programming interface
requires applications to provide conflict detection
and resolution instructions along with each data
update they make.

A Bayou client can issue updates at any acces-
sible replica manager. Hence, a highly available
service is provided. Replica managers exchange re-
ceived updates in pairwise interactions called anti-
entropy sessions.

Bayou’s semantic approach to conflict detection
and resolution markedly differentiates it from weak
consistency systems whose consistency protocol is
based on a syntactic scheme (such as Coda, Rumor,
Roam or the Gossip framework). The expressive-
ness of the conflict detection and resolution instruc-
tions included in each Bayou update entrusts appli-
cations with stronger consistency guarantees than
those provided by semantically-blind alternatives.

8.1 Replica state

Each Bayou replica manager contains a replica
state which is similar to the one presented in Sec-
tion 5.1.

8.2 Conflict detection and resolution

Bayou uses a dynamic variant of version vectors
(Section 5.2.2) to syntactically identify and order
replica versions. Tentative updates are epidem-
ically propagated between replica managers and
stored at each one’s update log, ordered by the
causal order defined by the version vectors of each
update. Additionally, causally concurrent updates
are totally ordered according to the identifiers of
the replica managers that accepted such update
from clients. A total and causal ordering of up-
dates is therefore guaranteed.

A semantic strategy, however, complements the
syntactic consistency scheme. Every update con-
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tains conflict detection and resolution instruc-
tions, respectively designated as dependency checks
and merge procedures, specified by the application
which issued the update. Such components of an
update should reflect the issuing application’s se-
mantics.

A replica manager executes an update’s depen-
dency check before applying it. A dependency
check contains a query condition which is able to
examine any part of the replicated database to de-
termine whether a conflict exists or not. For in-
stance, an update which books an appointment in
a schedule database could check if, at the intended
hour, any other event is already filling that time
slot.

If the dependency check’s query detects a con-
flict, the update’s merge procedure is called. Such
procedure alters the effect of the update. In the
booking example, a merge procedure could rear-
range the booking specification so that it would
move to a nearby available time slot. Or, if no
suitable alternative is found, the merge procedure
can simply decide to abort the effect of the update.

Being an optimistic replicated system, it is pos-
sible that a replica manager receives, through anti-
entropy with other peers, updates which are older
than some of the tentative updates in the log.
Therefore, such updates are placed in its correct
position in the causal ordering, according to their
version vector. In such cases, conflict detection and
resolution need to be performed, not only upon the
newly received updates, but also upon those up-
dates that follow them in the log.

One important aspect is that merge procedures
are deterministic. This means that, if two replica
managers receive the same set of updates and order
them equally, their tentative replica values will be
the same.

8.3 Session guarantees

To accommodate for applications with stronger
consistency requirements, Bayou allows additional
consistency guarantees to be selected by each appli-
cation. Such consistency guarantees are designated
as session guarantees [DBTW94].

A session is an abstraction for a sequence of read
and update operations performed on a database
during the execution of an application. When
a session guarantee is selected by some applica-

tion, Bayou ensures that the sequence of operations
within the session’s duration will meet the consis-
tency requirements imposed by the session guaran-
tee. Four session guarantees are offered: Read Your
Writes, Monotonic Reads, Writes Follow Reads and
Monotonic Writes. A detailed specification of each
session guarantee can be found in [DBTW94]. That
is the trade-off for the increased consistency.

In order to enforce each of the four session guar-
antees, Bayou restricts the set of replica managers
that can be contacted by each client to issue an
operation request. Given a particular operation re-
quest, it can only be delivered at those replica man-
agers where reception of the request won’t violate
the currently selected session guarantees. For this
reason, requesting a session guarantee can have a
harmful impact on the availability of the replicated
system.

8.4 Update stability

Bayou adopts a hybrid replication strategy, in
which an eventually sequential consistent stable
value of the replicated data is also available, in ad-
dition to the tentative value. A primary commit
scheme (Section 5.3.2) is used in order to deter-
mine the stability of its updates [TTP+95].

In this scheme, a replica manager is designated as
the primary replica manager. The primary replica
manager takes responsibility for defining the fi-
nal ordering of the tentative updates as it receives
them. Those updates then become stable updates.
Such ordering information is then propagated to
the other replica managers by anti-entropy.

When a replica manager receives information
about an update that has become stable, that up-
date is inserted at the head of the stable portion
of the log. If its corresponding tentative update is
present in the update log, it is removed from there.

In response to the reordering of the update log
caused by the arrival of the new stable update, all
the tentative updates that succeed it in the log
must be undone. The new stable update is then
applied, which includes performing its conflict de-
tection and resolution procedures. Finally, all ten-
tative updates that follow it are re-applied.

Update log truncation is dependent in the com-
mit scheme, since a replica manager is allowed to
discard updates from its log as long as those up-
dates have become stable [TTP+95].
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8.5 Conclusions

Bayou’s semantical approach to conflict detection
and resolution makes replication non-transparent
to the applications. As a result, Bayou can exploit
such semantical knowledge to provide consistency
guarantees that are stronger than the causal consis-
tency guarantees of the Gossip Framework (Section
7).

As a drawback, application programmers are now
responsible for supplying dependency checks and
merge procedures. Depending on the application’s
semantics, the amount of conflicts that need to
be detected, along with their corresponding pos-
sible resolution actions, may severely increase the
programming complexity. Furthermore, some ap-
plication semantics may include complex conflicts
for which an appropriate resolution procedure may
require an external decision from the user. Since
merge procedures must be deterministic, such user
input is not allowed. The effectiveness of Bayou’s
semantical approach is, therefore, restricted to ap-
plication domains with underlying data semantics
of relative simplicity.

On the other hand, Bayou’s users must be will-
ing to deal with having the results of their data
operations changing over time. This can occur if
users read the tentative value of a replica after is-
suing some update, which may later have its effect
altered by its merge procedure as a result of the
receipt of some conflicting update [TDP+94].

Finally, Bayou’s performance is significantly con-
strained by the overhead resulting from the ap-
plication of dependency checks and merge proce-
dures. In particular, when an update is received
by a replica manager and inserted in the middle of
the update log, the dependency checks, and possi-
bly merge procedures, of the updates that follow it
in the log must be re-applied.

9 Roam

Roam [DRP99] is a optimistically replicated file
system intended for use in mobile environments.

Roam allows any replica manager to serve oper-
ation requests, without the need of accessing a cen-
tralized server. This contrasts with Coda’s model
of disconnected operation (Section 6), in which all
updates must be propagated first to a server ma-

Figure 8: An example of a simple ward configuration. Rec-
onciliation amongst Roam’s replica managers is based on
this topology.

chine that further propagates them to other clients.
Therefore, system operation is not dependent on

the availability of a server infrastructure. Instead,
any pair of mobile peers can exchange replica up-
dates while being disconnected to the fixed net-
work.

Roam is an extension to the Rumor file system
[GRR+98], which in turn borrowed much of the
replica consistency mechanisms from the Ficus file
system [GHM+90]. Roam operates at application
level, relying on the local file system services to
store each replica.

Gossip messages propagate information about
the updates that each replica has received so far
to the remaining replicas. Replica consistency is
achieved by performing periodic reconciliation ses-
sions between peers in which gossip messages are
exchanged.

9.1 Ward model

Roam’s architecture focuses on providing im-
proved scalability by adopting a hierarchical rec-
onciliation topology, designated as the ward model
[RRPK01]. It groups nearby peers into domains
called wards (wide area replication domains), ac-
cording to some measure of proximity. Each ward
has an assigned ward master. The result is a two-
level hierarchical topology (Figure 8).

Reconciliation amongst wards is performed ex-
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clusively between ward masters. Inside each ward,
all its ward members are configured into a concep-
tual ring. Such ring topology imposes that each
ward member reconciles only with the next ring
member. The ring is adaptive, in the sense that
it reconfigures itself in response to changes in the
ward composition. Therefore, enhanced scalability
is achieved.

9.2 Replica state

The replica state in Roam differs significantly from
the general model that was introduced in Section
5.1. For each replicated file, a replica manager only
stores the replica value and its associated version
identifier. No update log is maintained.

Roam’s consistency model does not consider the
notion of update stability. Thus, the replica value
that is stored at replica managers reflects its ten-
tative value.

9.3 Conflict detection and resolution

As with Coda, directory conflicts are automatically
resolved by taking into account their well know se-
mantics. In the case of files, the approach of dy-
namic version vectors is employed. Each file replica
is assigned a dynamic version vector and the con-
sistency protocol ensures strict causal guarantees.

Periodically, each replica manager reconciliates
its replicas with another replica manager, accord-
ing to the reconciliation topology imposed by the
ward model. The reconciliation procedure itself is
divided into three phases: scan, remote-contacting
and recon.

During the scan phase, the replica manager ex-
amines its file replicas to check for new versions
and, when necessary, update their version vector.
This is done by a simple comparison of the modifi-
cation times of each file replica, which are obtained
by querying the local file system. If the current
modification time of a file replica is greater than
that obtained during the last reconciliation, then a
new version exists and the replica’s version vector
is updates to reflect it.

In the second phase, a remote replica manager is
contacted, according to the current ward topology,
and asked for perform a similar version detection
on its set of file replicas. As a result, the list of
the file replicas and corresponding version vectors

of the remote replica manager is sent back to the
requesting replica manager.

Finally, version vectors of the files that are mutu-
ally replicated by both replica managers are com-
pared during the recon phase. If the remote ver-
sion of a file dominates the local version, its entire
contents are transferred from the remote peer to
update the local replica value. If, otherwise, the lo-
cal version dominates the remote version, no action
is taken since reconciliation in Roam is a one-way
operation.

There is support for integration of type-specific
file reconciliation tools into the conflict resolution
mechanisms. In the case of version conflicts regard-
ing types of files for which a reconciliation tool has
been installed, a replica manager automatically re-
solves the conflict and avoids notifying the user.
Otherwise, the user is notified by email of the con-
flict and no automatic resolution is performed.

9.4 Conclusions

The Roam replicated file system provides a server-
less service, intended for mobile networks. By using
an optimistic approach, any mobile replica manager
is able to accept operation requests, which allows
for enhanced availability.

Replica consistency relies on an epidemic propa-
gation of updates between replica managers. Roam
adopts a two level hierarchical topology in which
replica managers are grouped into wards. Update
propagation is achieved by reconciliation sessions
between pairs of replica managers within each ward
and between ward masters. The result is increased
scalability. Such architectural model, which dy-
namically adapts itself to reflect the proximity
amongst replica managers, is particularly effective
in supporting scenarios where ad-hoc co-present
groups of mobile devices are frequently formed.

To allow for a dynamic set of replica managers,
Roam uses dynamic version vectors to timestamp
replica versions. Section 5.2.3 discusses this ap-
proach in greater detail.

The consistency protocol itself is characterized
by its relative simplicity. The absence of an up-
date log avoids the need to keep track of each up-
date issued to the replicated file system objects.
Instead, new replica versions are detected only at
periodic reconciliation phases by analysis of their
modification times. Moreover, since no update log
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is maintained, Roam imposes a low memory over-
head. Such factor is especially adequate for mo-
bile devices, which typically have poor memory re-
sources.

A significant drawback is the consistency guar-
antees that Roam provides. Since no notion of sta-
bility exists, every read request that a client may
issue will only return tentative data. This aspect
restricts Roam’s applicability to applications whose
correctness criteria are sufficiently relaxed to toler-
ate dealing with tentative data.

10 Deno

Deno [Kel99] is a replicated database protocol de-
signed for use in mobile and weakly-connected en-
vironments. It adopts an optimistic strategy by
allowing updates to be received at any replica man-
ager in order to provide a highly available service.

Replica consistency is achieved through an epi-
demic update propagation scheme. Being an op-
timistic strategy, conflicting tentative updates can
be accepted at distinct replicas. Although the re-
quirements of certain applications allow them to
access the possibly inconsistent, tentative values of
replicas, other application domains require stronger
consistency guarantees. For such applications, the
only safe value to access is the stable value of a
replicated object.

Deno’s consistency protocol is responsible for
reaching a consensus amongst all replica managers
on which one of such conflicting, tentative updates
is to be committed. A distinguishing feature of
Deno’s design is that it relies on an voting approach
to achieve such goal.

This strategy eliminates the problem of a sin-
gle point of failure that characterizes primary com-
mit schemes (Section 5.3.2). To deal with frequent
disconnection, voting is performed by means of a
pairwise epidemic protocol. The following sections
further analyze Deno’s consistency protocol.

10.1 Elections

Deno regards update commitment as a series of
elections. Each election decides, amongst a col-
lection of concurrent tentative updates, which one
of them should be accepted as stable while the re-
maining updates are aborted. Each replica man-

ager acts as a voter in such elections. Similarly,
each tentative update acts as a candidate for one
election. Once an election is over, a new election is
started.

Each replica manager, or voter, has an assigned
currency, which determines that replica manager’s
weight during each voting round. An invariant of
the system is that there is a fixed amount of cur-
rency, 1.0, which is divided among all replica man-
agers of a given object. Currencies are not nec-
essarily distributed uniformly among replica man-
agers. Neither is their distribution static, since
replica managers can perform currency exchange
operations.

Voting takes place in a decentralized manner, re-
lying on epidemic information propagation between
voters to reach an eventual election result. The re-
sult of each election is, thus, determined individ-
ually by each voter in function of the information
propagated from its peers. A voter decides that an
election has terminated and update uj has won it
when:

(1) total currency voted so far in favor of uj > 0.5

or

(2) for each other candidate update, uk, (total
currency voted so far in uk + total currency of votes
not yet cast) < total currency voted so far in uj

Election information flows from voter to voter by
unidirectional interactions between voters, desig-
nated as anti-entropy sessions. In each anti-entropy
session, one voter propagates the voting informa-
tion he is aware of to another voter. Such infor-
mation includes (1) the elections that have already
terminated and their outcomes, and (2) the votes
that have been cast in the current election. The
receiving voter then updates his election state ac-
cording to such information. Additionally, if the
receiving voter hasn’t yet cast a vote, he automat-
ically votes on the same candidate which has been
voted by the voter which initiated the anti-entropy
session.

Whenever any of the election termination condi-
tions described above is verified by a replica man-
ager, it decides by self initiative that such election
is over and the winning candidate is acknowledged
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as a committed update. This style of information
flow causes situations in which the replica managers
have different views of the current election state.
However, the epidemic propagation by anti-entropy
sessions ensures that all replica managers will even-
tually reach the same state for every election that
occurs.

10.2 Replica state

A replica manager stores, for each replica, a state
that is similar to that proposed in Section 5.1. It
should be noted that the tentative updates in the
log constitute, in fact, a queue of candidate updates
waiting to be voted.

At a given moment, if a replica manager has a
non-empty set of tentative updates, then the first
of such updates is currently being voted in the elec-
tion that is taking place. It is competing against
concurrent tentative updates of other replica man-
agers.

10.3 Conflict detection and resolu-
tion

The voting process implicitly deals with the tasks
of conflict detection and resolution. When a ten-
tative update is issued at a given replica manager
without any pending tentative updates, it is auto-
matically placed as a candidate of the current elec-
tion. Additionally, the replica manager votes on
that candidate update.

If a conflict occurs it means that another con-
current tentative update was issued at a different
replica manager. In such case, both conflicting up-
dates will be rival candidates in the election.

Deno’s conflict resolution follows the strategy of
selecting only one of the conflicting updates and
aborting the remaining ones. The epidemic vot-
ing scheme Deno ensures that only one candidate
wins the election and such winner is the same at
every replica manager. Hence, conflict resolution is
accomplished when a election terminates.

10.4 Conclusions

Deno provides highly available replication services,
designed for use in mobile and weakly connected
environments.

It follows an optimistic replication strategy that
offers strict causal ordering of the tentative updates
received at each replica. Applications with relaxed
consistency requirements can access such tentative
replica state. In complement, an eventually sequen-
tially consistent stable value is also offered to appli-
cations with more demanding correctness criteria.

The main contribution of Deno’s protocol design
is the adoption of an epidemic voting scheme for up-
date commitment. In contrast to a primary com-
mit scheme, a voting scheme is no longer reliant
on a single replica manager. Instead, a quorum of
replica managers is required to decide which up-
date, amongst a collection of conflicting updates, is
to be committed. As a result, higher availability is
achieved for the update commitment scheme.

The performance and network usage overheads
inflicted by the voting scheme are its main disad-
vantages. In fact, under situations of high connec-
tivity amongst replica managers, defining one of
such replica managers as a primary server yields
significantly faster update commitment and less
network communication than using Deno’s voting
scheme [Kel99]. This is an expected consequence of
the centralized nature of the primary server scheme,
in contrast with the voting approach.

11 AdHocFS

AdhocFS is a distributed file system designed for
supporting pervasive computing in mobile ad-hoc
environments. The system is based on the premiss
that, on such scenarios, a fixed server infrastructure
that provides the file system’s services may not al-
ways be available. Therefore, AdHocFS’s goal is to
effectively support information replication between
mobile users in the absence of such infrastructure.

Furthermore, AdHocFS distinguishes between
situations where mobile devices are working in iso-
lation from any other devices and situations where
groups of mutually accessible mobile devices co-
operatively share and manipulate information. To
deal with the distinct characteristics of each of such
scenarios, AdHocFS uses distinct replica consis-
tency strategies for each case, as will be described
in the following subsections.
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11.1 Home Servers and Ad-Hoc
Groups

AdHocFS’s architecture considers the existence of
a trusted stationary server infrastructure and a
collection of wireless mobile devices that may fre-
quently be disconnected from such infrastructure.

Each file has a replica stored on a replica man-
ager located on the server infrastructure, which is
designated as the home server for that file.

Mobile devices can obtain a replica of the files
stored at a home server when a connection is avail-
able. Upon disconnection, mobile devices tenta-
tively operate upon the local replicas using a opti-
mistic replication strategy.

When disconnected from the fixed infrastructure,
mobile devices constitute ad-hoc groups. An ad-hoc
group is a collection of mobile devices which are
mutually accessible within one-hop wireless links.
One extreme case is a singleton group, in which
a group is formed by only one isolated device.
AdHocFS dynamically manages the membership
changes of ad-hoc groups as they are merged or
separated.

This ad-hoc group model shares some similari-
ties with the ward model of the Roam replicated
system (Section 9). However, one key aspect dif-
ferentiates it from the ward model. In the case of
the latter, replica managers are grouped with the
sole intention of achieving better scalability. On
the other hand, AdHocFS explores the high con-
nectivity that exists among the replica managers
within an ad-hoc group for consistency purposes.

A pessimistic replica consistency approach is
used within the members of each ad-hoc group,
complementing the general optimistic consistency
protocol. As a result, sequential consistency is ac-
complished if one only regards the set of replicas
located in each ad-hoc group. The next subsections
describe these issues in closer detail.

11.2 Replica state

Each home server stores file replicas, along with
a scalar timestamp for each of them. Such times-
tamps identify the current file versions stored at
the home server. Each time an update is applied
at the replica at the home server, upon request
by a mobile replica manager, the timestamp is in-
cremented. Regarding the model in Section 5.1,

the replica value at the home server represents the
stable value of the replicated file; conversely, the
timestamp associated with that replica stands for
the stable value timestamp.

When connected to the trusted infrastructure,
mobile devices can obtain a stable replica of a given
file, along with its associated stable value times-
tamp, by contacting its home server.

The replica value copied from the home server to
a replica manager initially reflects the stable value
of that replica, as stored in the home server. How-
ever, such value is actually used as the tentative
value of the replica, since the tentative updates that
are successfully received at a replica manager are
immediately applied to it.

Associated with each replica, a replica manager
maintains a log where it stores information about
the tentative updates that are issued during peri-
ods of disconnection from the home server. The log
maintained by AdHocFS’s replica managers is dif-
ferent from the update log description introduced
in Section 5.1. For each update, the correspond-
ing entry in the log is complemented with informa-
tion about the members that constituted the ad-
hoc group where the update was issued. On the
other hand, information about the updates itself
simply contains the file blocks’ addresses (instead
of their actual contents) which were affected by the
update. No additional update specification infor-
mation is stored in the log.

One important aspect is that no timestamps are
assigned to the updates referenced in the log. The
only information regarding the ordering of the up-
dates is their actual ordering in the log. This rep-
resentation of the update sequence is normally des-
ignated as a causal history [SM94].

Using AdHocFS terminology, the stable value
timestamp and the log constitute a Coherency Con-
trol List, or CCL.

11.3 Conflict detection and resolu-
tion

To allow mobile devices to operate while discon-
nected from the home servers of each file, AdHocFS
uses an overall optimistic replication strategy. This
way, read and update requests can be served, albeit
tentatively, by each mobile replica manager when
the home servers are not available.
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In such situations, any update that is issued to a
given replica is stored in its update log, along with
membership information about the current ad-hoc
group of the replica manager. For instance, if up-
date u1 is requested at replica manager A when it
is in a group formed by replica managers A, B and
C, the tuple < u1, {A,B, C} > is added to the log.

The generic consistency protocol relies on the
prefix relationship between CCLs. A CCL h1 is
a prefix of CCL h2 if and only if: (1) their sta-
ble value timestamps are equal and (2) the list of
tuples < update, ad − hocgroupcomposition > of
h1 is a prefix of the same element of h2. When-
ever the CCL of a certain replica is a prefix of an-
other replica’s CCL, the latter causally dominates
the former. In that case, synchronization can be
performed in a straightforward manner by prop-
agating the remaining tuples from the dominant
replica’s CCL to the other one.

When a mobile replica manager contacts the
home server of a given file to synchronize its replica
value, the generic consistency protocol is performed
between them, with one difference: the timestamp
comparison to determine the prefix relationship is
not considered. If the home server’s stable replica
dominates the mobile replica manager’s, it sends
the missing updates to the mobile replica. If, in-
stead, the replica at the mobile replica manager
is dominant, the home server receives the new up-
dates and accordingly applies them to its replica
stable value and increments its timestamp. In ei-
ther cases, the replica manager finally substitutes
the stable timestamp in the replica’s CCL by the
current timestamp, received from the home server.

On the other hand, mobile replica managers can
also synchronize their mobile replicas. All such
pairwise synchronization sessions occur within the
ad-hoc group, between its members.

Within an ad-hoc group situation, a stricter con-
sistency protocol is used. In such situations, a pes-
simistic, single-writer multiple-readers token ap-
proach (Section 4.2) is employed so as to explore
the high connectivity that is expected to exist
amongst the ad-hoc group members.

When a replica manager receives a client request
to access a logical file, it checks if it is holding the
necessary token for the operation. If not, the to-
ken needs to be obtained from the current token
holders. Obtaining a token requires the interested
replica manager to synchronize its file replica with

the replica stored by the replica manager that last
held a write token to that logical file. Synchroniza-
tion makes use of the generic optimistic protocol,
based on the CCLs associated with the file replicas.
When synchronization successfully finishes, the to-
ken is granted to the requesting replica manager,
which is then able to perform the desired access to
the replica.

It should be stressed out that the token approach
is a pessimistic strategy only in the scope of an ad-
hoc group. It ensures strong consistency amongst
the replicas of each ad-hoc group, but not amongst
every replica manager in the system. Consequently,
on a global scope, an optimistic approach still pre-
vails.

11.4 Conclusions

AdHocFS architecture is based on the existence of
fixed server infrastructures where the home servers
are located and where the stable replicas of files
are accessible. The mobile devices act as replica
managers and are able to optimistically work on
the local replicas while in disconnection from the
home servers.

Under such circumstances, an expected scenario
is that of mobile devices working cooperatively on
some shared files within an ad-hoc network. For the
duration of the ad-hoc network, its replica man-
agers benefit from high connectivity links to the
other ad-hoc members. This fact is explored by
AdHocFS by using a pessimistic strategy on the
scope of one-hop ad-hoc groups.

In such scenario, updates from multiple users to
the same shared files are expected to happen fre-
quently as a result of the cooperative interactions.
Using a flat optimistic approach with lazy update
propagation, most of such updates would probably
result in conflicting updates from the consistency
protocol’s point of view. This would happen if,
before an update was propagated in a lazy fash-
ion to every replica manager, a new update had
already been issued at some replica manager that
still hadn’t received the previous update.

Using the token strategy of AdHocFS, issued up-
dates are held back until a write token is granted to
the replica manager. That, in turn, won’t happen
until all the preceding updates have been received
by that replica manager. Therefore, consecutive
updates issued in an ad-hoc group that would oth-
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erwise be considered conflicting are now causally
related by the consistency protocol.

It should be noted, however, that the global repli-
cation protocol is still optimistic if one considers
every replica manager in the system and, conse-
quently, weak consistency guarantees are offered.

Three main drawbacks can be identified in Ad-
HocFS. Firstly, only the home servers provide ac-
cess to the stable values of each file. The mobile
replica managers hold only tentative replica values,
where tentative updates are immediately applied
upon being received. Hence, mobile users that are
disconnected from the home server are only able to
access the tentative version of files.

Additionally, the home servers act as the primary
servers described in Section 5.3.2. As discussed in
the same section, update commitment can be dis-
rupted by network partitions or failure of the home
servers.

Finally, a causal history approach is used for
representing the tentative updates at each replica.
This approach requires that, in order to determine
the prefix relationship between two replicas, the
contents of both replicas’ CCLs must be exam-
ined. This typically compels one CCL to be entirely
transferred to the other replica manager in order
to determine if the prefix relationship is met. Such
requirement is an important overhead in mobile en-
vironments, where network bandwidth is expected
to be scarce.

12 Overall comparison and
discussion

Tables 1 and 2 present an overall comparison be-
tween key design aspects of the surveyed systems.
The main implications of such design decisions are
summarized as follows.

Coda
Main Advantages:

• Effective, highly available solution for mobile
or weakly connected systems based on a
server infrastructure.

• Combined hoarding strategy uses implicit and
explicit file usage information.

Main Disadvantages:

• Collaborative activities in ad-hoc networks
disallowed: update propagation is dependent
on server infrastructure.

• Storage requirements of update log when in
disconnected mode.

• Applications must be willing to deal with
having their updates aborted as a result of
conflict resolution during reintegration phase.

Gossip Framework
Main Advantages:

• Optimistic approach for causal updates yields
high availability with no need for a fixed
infrastructure: only one replica manager has
to be accessible and updates are exchanged
between replica managers through an
epidemic propagation protocol.

• Adaptability to a wide range of correctness
criteria: causal, forced or immediate updates
provide distinct consistency guarantees.

Main Disadvantages:

• High availability only provided for causal
updates; forced and immediate updates
require replica manager to belong to a
majority partition.

• Applications’ semantics must accept that an
identical sequence of concurrent causal
updates can produce distinct results in
different replica managers.

• Conservative log truncation may require large
memory resources if unavailability of some
replica managers is frequent.

Bayou
Main Advantages:

• Optimistic approach yields high availability
with no nedd for fixed infrastructure: only
one replica manager has to be accessible and
updates are exchanged between replica
managers through an epidemic propagation
protocol.

• Exploits semantical knowledge to provide
stronger consistency guarantees.
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Table 1: Overall comparison of surveyed systems (Coda, Gossip Framework and Bayou).

• Adaptability to applications with different
correctness criteria, by allowing selection of
tentative or committed view of replicated
data.

Main Disadvantages:

• Non-transparent approach requires additional
application programming complexity.

• Effectiveness of semantic approach restricted
to simple application semantics.

• Users must be willing to deal with having the
results of data operations changing over time.

• Performance overhead caused by application
of dependency checks and merge procedures.

• Increasing replica manager identifier sizes due
to recursive naming scheme.

Roam
Main Advantages:

• Optimistic approach yields high availability
with no need for fixed infrastructure: only

one replica manager has to be accessible and
updates are exchanged between replica
managers through an epidemic propagation
protocol.

• Simplicity of consistency protocol, with low
memory requirements due to absence of
update log.

• Ward model provides increased scalability in
situations where mutually accessible groups
of replica managers are frequent.

Main Disadvantages:

• No notion of stability is offered.

• Applications must have sufficiently relaxed
correctness criteria to tolerate dealing only
with tentative data.

Deno
Main Advantages:

• Optimistic approach yields high availability
with no need for fixed infrastructure: only
one replica manager has to be accessible and
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Table 2: Overall comparison of surveyed systems (Roam, Deno and AdHocFS).

updates are exchanged between replica
managers through an epidemic propagation
protocol.

• Adaptability to applications with different
correctness criteria, by allowing selection of
tentative or committed view of replicated
data.

• High availability of update stability scheme,
by employing an epidemic voting protocol.

Main Disadvantages:

• Performance and network usage overhead in
situations of high connectivity.

• Applications must be willing to deal with
having their updates aborted as result of an
election.

AdHocFS
Main Advantages:

• Optimistic approach yields high availability:
only one replica manager has to be accessible
and updates are exchanged between replica
managers through an epidemic propagation
protocol.

• Pessimistic consistency protocol employed in
scenarios of co-present collaborative activities
provides stronger consistency guarantees
amongst the members of each ad-hoc group.

Main Disadvantages:

• Stable data is only available at home servers
infrastructure; disconnected applications
must tolerate manipulating tentative data.

• Update stability is disrupted by the
unavailability of the home server.

• Causal history approach imposes network
usage overhead for conflict detection.

13 Conclusions

The emergence of more powerful and resourceful
mobile devices, as well as new wireless communica-
tion technologies, is turning the concept of ad-hoc
networking into a viable and promising possibility
for ubiquitous information sharing. For that pur-
pose, this paper focuses on the issue of replication
strategies for mobile ad-hoc environments.
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The inherent characteristics of ad-hoc networks
bring up new challenges for which most conven-
tional replication systems don’t provide an appro-
priate response. This paper exposes the main
challenges of a replicated system operating in the
particular environment of mobile ad-hoc networks.
Based on a common conceptual model, some key
design strategies were described and compared in
terms of their adequacy to the mobile ad-hoc sce-
nario. Finally, a survey of some relevant state of
the art replicated solutions presented actual imple-
mentations of the main design alternatives.

As a conclusion from such analysis, some gen-
eral design guidelines towards an effective replica-
tion solution for mobile ad-hoc environments can
be drawn:

• High availability.

The high topological dynamism of mobile ad-
hoc networks entails frequent network parti-
tions. Moreover, the possible absence of a fixed
infrastructure means that most situations will
require the services within the network to be
offered by mobile devices themselves. Such de-
vices are typically severely energy constrained.
As a result, the services they offer are sus-
ceptible of frequent suspension periods in or-
der to save battery life of the server’s device.
From the client’s viewpoint, such occurrences
are similar to server failures.

These aspects emphasize the need for high
availability replication services, so as to min-
imize the effects of expectable network par-
titions and device suspension periods. Pes-
simistic replication strategies are normally
overly restrictive to fulfill such a requirement.

• Adaptability to different correctness criteria.

Optimistic replication strategies offer high
availability as a trade-off for consistency.
While certain applications are able to benefit
from such increased availability, some appli-
cation semantics demand stronger consistency
guarantees.

In order to be adaptable to a wider set of ap-
plications, replicated systems should offer mul-
tiple consistency levels: from a relaxed consis-
tency, highly-available to a sequentially consis-
tent mode of replica access. Hybrid solutions,

which allow applications to choose between the
tentative and a stable views of data, are an ex-
ample.

• Memory and bandwidth usage.

Whichever strategy is taken, the memory and
bandwidth limitations of mobile devices and
wireless links, respectively, must be taken into
account.

For optimistic strategies, the update log is the
main memory overhead and appropriate trun-
cation schemes must be employed. Conserva-
tive log truncation schemes may become inef-
fective in the presence of network partitions or
failures of some replica managers. Relaxed log
truncation schemes should be considered when
regarding the poor memory resources of mobile
devices.

Moreover, network usage is typically domi-
nated by replica synchronization. Maintaining
an update log allows for an incremental replica
synchronization, by transferring only the nec-
essary updates instead of an entire replica.

• Support for operation under ad-hoc groups.

An important usage scenario of ad-hoc net-
working is that of mutually accessible mobile
devices working cooperatively within an ad-
hoc network. In such ad-hoc groups, replica
managers benefit from high connectivity links
to the other group peers.

Accordingly, users expectations may assume
strong consistency guarantees due to the ac-
cessibility amongst the ad-hoc group mem-
bers. Therefore, pessimistic replication strate-
gies should be employed on the scope of each
ad-hoc group.
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