
Meaningful Metrics for
Evaluating Eventual Consistency⋆

João Barreto and Paulo Ferreira

INESC-ID / Technical University Lisbon
Rua Alves Redol, 9, 1000 Lisboa, Portugal

{joao.barreto, paulo.ferreira}@inesc-id.pt

Abstract. Optimistic replication is a fundamental technique for sup-
porting collaborative work practices in mobile environments. However,
eventual consistency, in contrast to immediate strong consistency in pes-
simistic replication, is much harder to evaluate. This paper analyzes dif-
ferent metrics for measuring the effectiveness of eventually consistent
systems. Using results from a simulated environment of relevant opti-
mistic replication protocols, we show that each metric hides previously
undocumented side effects. These add considerable imprecision to any
evaluation that exclusively relies on a single metric. Hence, we advo-
cate a combined methodology comprising three complementary metrics:
commit ratio, average agreement delay and average commit delay.

1 Introduction

The emerging paradigms of ubiquitous and pervasive computing [1,2] enable a
wide range of promising collaborative applications and systems, asynchronous
groupware applications [3,4] such as shared document editing, cooperative engi-
neering or software development [5,6,7], collaborative wikis [8,9], shared project
and time management [10,11], distributed file [12,13] or database systems [14].

It is well known that an easy way to support such applications and systems is
by data replication [15]. Optimistic replication (OR) [15] is especially interesting
in ubiquitous and pervasive environments, due to their inherent weak connec-
tivity. OR, in contrast to traditional pessimistic replication, enables access to
a replica without a priori synchronization with the other replicas. Hence, it
trades conflict-free, strong consistency for the possibility to access shared data
anytime and anywhere. As collaboration in ubiquitous and pervasive computing
environments becomes popular, the importance of OR increases.

Inevitably, however, consistency in OR is challenging [15]. Since one may
update a replica at any time and under any circumstance, the work of some
user or application at some replica may conflict with concurrent work at other
replicas. Hence, instead of immediate consistency, OR offers eventual consistency.
A replication protocol is responsible for disseminating updates among replicas
and eventually scheduling them consistently at each of them, according to some
consistency criterion. The last step of such a process is called update commitment.

⋆ This work was supported by FCT (INESC-ID multiannual funding) through the
PIDDAC Program funds and FCT Project Byzantium (PTDC/EIA/74325/2006).



Possibly, it may involve aborting (and rolling back) updates, in order to resolve
conflicts with updates that have committed.

In this paper we are concerned with correctly evaluating the usefulness of
OR systems. In pessimistic replication, we can tell how useful a system is by
measuring (i) the average proportion of time during which a given client was
able to access some replicated object, (ii) access latency, and (iii) memory and
network overheads. However, in OR, component (i) is no longer meaningful, as
the availability of an OR system is 100%1. Instead, there is a new component
to be measured: how good does the system converge in background towards
eventual consistency? Answering such a question is inherently more complex than
in the case of pessimistic strong consistency, as it depends one two contending
dimensions:

– Firstly, how much time does it take for each update to be (eventually) com-
mitted (or aborted, in the worst case)?

– Secondly, how many updates were aborted due to unresolved conflicts?

OR system should minimize the first and maximize the second. In other
words, minimize the time window during which users and application are forced
to access possibly inconsistent data, at the expense of as least aborted work as
possible. To a great extent, the ability of the OR system to do that determines
whether the users and applications working in weakly connected environments
such as ubiquitous or pervasive computing are willing to rely on such a highly
available, yet weakly consistent, alternative. If not, they will easily resort to more
limitative, yet less risky, pessimistic replication solutions.

Perhaps surprisingly, most OR literature seems to neglect the importance of
correctly and thoroughly evaluating eventual consistency. We observe that most
considered metrics are either not related, or only very indirectly related to the
ability of the systems to achieve eventual consistency. Furthermore, common
metrics related to eventual consistency, such as commit ratio, agreement and
commitment delays are typically considered individually. This paper questions
the meaningfulness of such metrics in evaluating the above two dimensions.

From a thorough experiment with three relevant OR protocols in a simulated
mobile collaborative environment, we show that each such metric is unexpectedly
affected by subtle, yet considerably misleading side effects. In most scenarios,
exclusively relying on a single metric to compare different OR systems can lead
to a unexpectedly imprecise and incomplete conclusions.

Our main contribution is, therefore, a methodology for precise and complete
evaluation of OR systems. We advocate that correct evaluation of OR systems
should rely on a combined analysis of three main metrics, namely commit ratio,
average agreement delay and average commit delay, and not less that those; and
describe under which experimental conditions each metric should be measured.
We support such claims with our experimental results and analysis.

The remainder of the paper is organized as follows. Section 2 describes how
literature addressing related work on eventually consistent OR systems evalu-
ates the corresponding solutions. Section 3 describes the experimental model and

1 Although this paper focuses on pure, full availability OR, our results are also ex-
tensible to eventually consistent solutions that can have less than 100% availability,
such as TACT [16], VFC [17] or Bayou’s Session Guarantees [18].



evaluated protocols that provided us with illustrative results that support our
analysis. Section 4 then addresses three metrics for evaluating eventual consis-
tency, applies each such metric to a simulation-based experiment and exposing
side effects and imprecisions of each metric. Finally, Section 5 draws conclusions,
advocating a methodology and guidelines for correct evaluation of eventually
consistent systems.

2 Related Work

The road to eventual consistency has two main stages: first, individual replicas
schedule new updates that they learn of in some way that is safe, i.e. free of
conflicts. Second, each such tentative schedule is submitted as a candidate for
some a distributed commitment protocol, which will, from such an input, agree
on a common schedule which will then be imposed to every replica. Commitment
is, thus, the key step that pushes the OR system towards eventual consistency
[15]. One may distinguish four main commitment approaches in OR literature.

A first approach may be designated as the unconscious approach [19]. In
this case, the protocol ensures eventual consistency; however, applications may
not determine whether replicated data results from tentative or committed up-
dates. These systems are adequate for applications with very weak consistency
demands, for which it is neither relevant to know whether previous tentative
is committed or aborted, nor when such decision has been taken. For example,
Usenet, DNS and Roam [20].

Other approaches, however, allow explicit commitment. A second approach
for commitment is to have a replica commit an update as soon as the replica
knows that every other replica have received the update [21,22]. This approach
has the drawbacks of halting while any single replica becomes unavailable and
of not handling update conflicts.

A third approach is a primary commit protocol [23]. It centralizes commit-
ment into a single distinguished primary replica that establishes a commitment
total order over the updates it receives. Such an order is then propagated back to
the remaining replicas. Primary commit is able to rapidly commit updates, since
it suffices for an update to be received by the primary replica to become com-
mitted. However, should the primary replica become unavailable, commitment
of updates generated by replicas other than the primary halts.

Finally, a fourth approach is by means of voting [24,25,26]. Here, divergent
update schedules constitute candidates in an election, while replicas act as vot-
ers. Once an update schedule has collected votes from a quorum of voters that
guarantee the election of the corresponding candidate, its updates may be com-
mitted in the corresponding order. Voting eliminates the single point of failure
of primary commit.

In particular, Keleher introduced voting in the context of epidemic commit-
ment protocols [27]; his protocol is used in the Deno [28] system. The epidemic
nature of the protocol allows updates to commit even when a quorum of replicas
is not simultaneously connected. Each replica, upon learning of enough votes
that guarantee that a given candidate update has already collected a plurality
of votes, unilaterally decides to commit the elected candidate. The same replica
considers the remaining rival updates as aborted. Similarly to Primary, such



commitment and abort decisions then propagate epidemically to other replicas.
This means that a replica can commit or abort an update by one of two means:
either (1) by receiving enough votes, or (2) by epidemically hearing about the
decision that some other replica that has decided by (1). As an update is elected
in a given election, a new election starts.

Deno requires one entire election round to be completed in order to commit
each single update [29]. The same happens with a closely related approach pro-
posed by Holliday et al. [30], which uses traditional coteries, such as majority
(instead of plurality).

VVWV [31] is an improvement over Deno and Holliday et al.’s protocols that
is able to commit chains of multiple happens-before-related updates on a single
election round. This is a frequent occurrence in OR systems running on fre-
quently partitioned environments, where applications will often issue sequences
of causally related updates before the first update in the sequence even gets
committed. In this case, the sequence can be committed as a whole in a single
election, rather than requiring a series of elections (one per each update in the
sequence).

Experimental evaluation of proposed commitment protocols is often scarce
and incomplete. Ideally, it should answer the two questions mentioned in Section
1, which are the main concerns of applications and users of the OR system.
Most work proposing OR systems limits their evaluation to memory and time
overheads associated with the maintenance of tentative versions and replica-to-
replica synchronization sessions (e.g. Coda [32], Bayou [23], ROAM [20]). Others
do focus on the ability to ensure eventual consistency, but analyze only a subset of
the metrics that we discuss next, namely commit ratio and average commitment
delay. Examples include Deno [27,28] and VVWV [31]. As we show next, such
an analysis is incomplete as it conceals the noise of some side effects.

3 Experimental Methodology

We have implemented a simple OR system with three variants, each using a
different commitment protocol offering explicit eventual consistency, from those
described in Section 2: Primary, Deno and VVWV. For simplicity, every imple-
mentation uses a syntactic approach to schedule updates and detect conflicts.
Update schedules consist of ordered sequences of updates related by the happens-
beforerelation [33]. If some replica receives an update that is concurrent (by
happens-before) with the most recent update in its local update schedule, the
former update is conservatively considered as conflicting with the latter; hence
one of them will (eventually) commit and the other abort.

We ran C# implementations of Primary, Basic WV and VVWV side-by-
side in a simulated environment. The simulator includes a collection of replicas
of a common logical object, randomly distributed by a set of network partitions.
Time is divided into logical time slices; at each time slice, each replica (1) with
a given mobility probability, migrates to a different, randomly chosen, network
partition; (2) executes a one-way synchronization session from some partner,
randomly selected from the set replicas present in its current partition; and, (3)
generates, with a given update probability, one tentative update.



Fig. 1. commit ratios vs. number of partitions. Both low and high site mobility are
considered (resp., mobProb=25% and mobProb=75%); and both low and high update

probabilities are considered (resp., updProb= 0.5%
5

and updProb= 0.9%
5

).

All the experiments discussed herein use a system of five replicas. We found
such a dimension to be sufficiently complete to illustrate our findings regarding
each metric that we address in the next sections. We consider two alternative
scenarios: low and high mobility, with mobility probabilities of 20% and 40%,
respectively. We adopt the following procedure for obtaining the measurements
on which our evaluation is based. We consider samples comprising measurements
from five simulation runs. Each run lasts for 2000 logical time steps and, before
each run, we initialize the simulator with a distinct randomization seed, so that
each of the five runs is effectively distinct. The results we present next are an
average of the measurements taken from the five runs.

We should add that this particular choice of protocols, mobility model and
update model was made with the sole intention of illustrating, in the most sim-
plified manner, enough experimental evidence that supports the conclusions we
draw in the following analysis. Needless to say, a larger set of state-of-the-art
eventually consistent systems exists, as Section 2). Moreover, more realistic mo-
bility models (e.g. [34]) and update models can be considered (e.g. [31]). The
conclusions we draw next, based on this simplified model and set of solutions, are
also nonetheless valid with other systems, mobility models and update models.

4 Evaluation

4.1 Commit Ratio

Probably the most common metric for evaluating the ability of an OR system
to achieve eventual consistency is commit ratio. We define commit ratio as the
percentage of issued updates that each protocol commits as executed at all repli-
cas (as opposed to the updates that it aborts). Figure 1 compares the commit
ratios of each protocol. As in previous measures, we consider both low and high
mobility, for and increasing number of partitions.



Commit ratio is directly affected by the efficiency of each evaluated protocol,
because if updates remain in their tentative state for longer periods, the proba-
bility of aborts is higher. What some authors call hidden conflicts [35] explains
this. Essentially, a hidden conflict occurs when a replica is aware of two or more
concurrent tentative versions. While no commitment decision has been taken
about which of such tentative versions will commit (and which will abort), the
replica must choose one of them to present to its applications. Any further up-
dates that the local applications may issue in the meantime will causally depend
on the chosen tentative version, and will be concurrent (hence conflicting) with
the other (hidden) tentative versions. If, by chance, the commitment protocol
decides that one of those concurrent versions is the one to commit, then all the
updates issued by the local applications in the meantime will be regarded as con-
flicting with the new committed version, hence aborted. We say these aborted
updates were caused by a hidden conflict.

Clearly, the probability of hidden conflicts increases with the time it takes
for the commitment decision to be taken. Hence, lower commit ratios reflect
longer delays imposed by the update commitment process. Figure 1 shows that,
as expected, Primary and VVWV ensure higher ratios than Deno, especially
as partitioning grows and/or mobility decreases; i.e., as connectivity becomes
weaker. In contrast, Primary and VVWV have nearly similar ratios. If one relied
solely on this metric, one would conclude that both protocols are identically
efficient in achieving eventual consistency. However, this metric hides a crucial
side of the actual experience of the applications and users of the OR system.

In fact, many applications using an OR system will tolerate accessing a
weakly consistent tentative value for some operations, but will wait until their
tentative work is finally incorporated into the strongly consistent value before
proceeding with some critical operations. The delay separating both moments
is, evidently, a crucial aspect to the effectiveness of a commitment protocol.

Of course, it is important that the commitment decision taken by the OR
system does not entail loosing any tentative work that application or user has
been carrying out. Still, in many scenarios it is just as important to learn what
that decision is within a reasonable time window. In most cases, a high delay
before receiving that decision can be as bad as knowing that our recent tentative
work needs to be discarded. Hence, we need to also take into account metrics
that more precisely reflect the delays imposed to users and applications.

4.2 Average Agreement Delays (AAD)

One way to take delays concerning eventual consistency into account is to mea-
sure the agreement delay of a commitment protocol. This is a combined metric,
which reflects the protocol’s commitment and abort delays.

We define commitment delay for an update, u, at some replica, r, as the
number of time steps separating the step where some replica issued u and the step
where r committed u. When u aborts, rather than committing, we reason about
its abort delay. We define the abort delay of u at r as the number of logical time
steps separating the issue of u and the first step where r commits a concurrent
update (by happens-before) with u. Note that this definition does not require r to
actually receive u and then abort it; it is sufficiently general to also consider the



Fig. 2. Average agreement delays, for low site mobility (mobProb=25%) and high site

mobility (mobProb=75%), updProb= 0.5%
5

= 0.1% and 11 Partitions.

cases where u does not even propagate to r, because r has already (implicitly)
aborted u by committing a concurrent update. Finally, the agreement delay of
an update is either its commitment and abort delay, depending on whether the
update commits or aborts.

A second experiment studies the average agreement delays (AAD) of Pri-
mary, Deno and VVWV under different networking conditions, both in terms
of number of partitions and of mobility probabilities. Figure 2 (left-hand graph)
presents the results, distinguishing two mobility scenarios (low mobility, with
mobProb=25% and high mobility, with mobProb=75%) for a situation of 11
partitions. For space limitations, we omit the figures for different partition num-
bers.

Analisys of AAD As expectable, AADs increase significantly as we weaken
connectivity with more partitions. This increase may be of almost one order of
magnitude as we depart from a single-partition situation to 11 partitions with
low mobility. High mobility of replicas strongly reduces the effect of partitioning,
typically accelerating agreement to less than half the delay with low mobility.

We start by comparing the AADs of Primary and VVWV (we proceed shortly
to compare VVWV with Deno). From Figure 2 (left-hand graph), we see that
Primary generally performs substantially better than VVWV for the first few
replicas.

For a higher replica order, however, the AADs of Primary converge with and,
in some cases, become higher than the AADs of the weighted voting alternatives
(VVWV and Deno). This behavior becomes more evident with larger systems.

This observation has already been documented in the context of the Deno
replicated system [28]. Keleher et al. explain it by the fact that, although the
Primary is able to commit rapidly (since it suffices for the update to arrive at
one replica, the primary), such a decision propagates relatively slowly to other
replicas. This is because all other replicas must learn of the commitment, directly
or indirectly, from the primary replica. In contrast, Deno and VVWV enable



1


2


3


4


5


0
 5
 10
 15
 20
 25
 30
 35

Logical Time Steps


VVWV, Decision
 VVWV, Commit (Store-One Mode)
 VVWV, Abort


it
h

 R
ep

lic
a 

to



D
ec

id
e/

C
o

m
m

it
/A

b
o

rt
 U

p
d

at
e


VVWV


Fig. 3. Average decision vs. commitment vs. abort delays for VVWV in a high-
contention scenario. 41 Partitions, mobProb=25%, updProb= 0.9%

5
= 0.18%.

distinct replicas to either learn the decision from other replicas (as in the case
of Primary), or decide the update independently by receiving sufficient votes.

Of course, an important aspect is to compare both epidemic weighted voting
protocols. As expectable, the AADs of VVWV become increasingly lower than
those of Deno as connectivity degrades with partitioning and/or low mobility.

Considerations on AAD AAD gives a realistic picture of the user experience
that a commitment protocol provides, since it tells us how much time a user has
to wait before receiving either a commit or an abort decision on some tentative
piece of work. However, we argue that AAD is not sufficiently meaningful as
a measure of the effectiveness of a protocol. We support such an argument by
decomposing AAD into commitment and abort delays, which allows for a better
understanding of the actual meaning of the AAD measure.

Figure 3 distinguishes the commitment and abort delays (as well as the
compound, agreement delays) of VVWV in a particular setting, with 41 Par-
titions and mobProb=25%. We chose a relatively high update probability (up-
dProb=0.18%), so that it induced a high contention scenario where comparable
numbers of commits and aborts occurred. As the results show, the time neces-
sary to commit an update is markedly higher than to abort an update. In the
setting that Figure 3 considers, commitment delay in VVWV is 18% and 9%
higher than abort delay for the first replica and last replica (to either commit or
abort), respectively. Significant differences exist with Primary (25% and 12%)
and Deno (31% and 15%) too. We obtained similar conclusions for the other pro-
tocols, which we omit for space limitations. Moreover, other values of mobProb,
updProb, and numPart also yield relevant differences between commitment and
abort delays.

Intuitively, we may justify the above difference by the fact that committing
an update requires a complete election to initiate (by proposing the update as a
candidate) and complete (by having the system vote for the update and electing
it); whereas aborting does not. In fact, aborting a given update happens once
some update that is concurrent with the former commits; the election of the
latter update may already have started when the aborted update was issued.



As an example, consider that an update u1, issued at time step 10, has already
collected a majority of votes, but a given replica, r, has neither yet received the
update nor its voting information. Assume that, at time step 21, r issues update
u2, concurrently with u1. Then, at time step 22, r receives u1 and its voting
information. Hence, at time 22, r commits u1, which has a commitment delay
of 22 − 10 = 12 at r; and, consequently, r aborts u2, which has an abort delay
of 22− 21 = 1 at r.

Therefore, the AAD measure tends to benefit (undesirable) protocols that
may be slow to commit but abort frequently. When compared to a (more inter-
esting) protocol that commits faster and more frequently, the former protocol
may achieve AADs that are only slightly higher or possibly even lower than those
of the latter protocol. This is due to the deceiving impact of small delays of fre-
quent aborts, which replace longer-to-complete commits. Further, abort delays
have a considerably high variance, due to their arbitrary nature, as described
above. Hence, when comparing two protocols that commit similar number of
updates, abort delay contributes with arbitrary noise to the overall AADs.

The previous observations show that the meaningfulness of AAD is actually
very limited. This might suggest that a more interesting alternative would be to
consider commitment delay only, which we discuss next.

4.3 Average Commitment Delays (ACD)

Figure 2 (right-hand graph) presents average commitment delays (ACD) for
each protocol, with 11 partitions, in two different scenarios of replica mobility.
We omit the figures for other partition numbers, again for space limitations.

Analysis of ACD Every observation that we make above for AAD remains
valid in the case of ACD. Namely:

– ACD grows as partitions increase and as mobility decreases.
– Primary obtains lower ACDs for the first replicas, while the weighted voting

protocols outperform Primary for higher order replicas to commit.
– VVWV attains lower ACDs than Deno, with more partitions.

The essential difference between ACD and AAD, as we discussed in Section
4.2, is that ACD is immune to the noise that abort delays introduce in AAD.
Since ACD does not take abort delays into account, it is generally higher than
AAD, as expectable.

Figure 2 (right-hand graph) unveils the relative variation in ACD from Pri-
mary to VVWV, and from VVWV to Deno, respectively. Curiously, ACDs reveal
that the noise of abort delays on AAD always benefits Primary over VVWV.
In fact, the difference between the ACDs of Primary and VVWV decreases in
comparison to the corresponding difference in terms of AAD. For instance, to the
highest difference between the AADs of VVWV and Primary, 152.6% (which oc-
curs with 41 partitions, low mobility), corresponds an ACD of 113.5%. We verify
the inverse when concerning Deno: the difference between the ACDs of VVWV
and Deno increases substantially in comparison to the corresponding difference
in terms of AAD. As an example, in the previous setting, the AAD of Deno is



16.3% higher than VVWV’s, while the difference in ACD is of 31.4%. Summing
up, the evaluation of the protocols from the point of view of ACD, rather than
of AAD, is substantially more positive for VVWV.

We may further characterize each protocol by individually comparing the
evolution from its AADs to its ACDs. Interestingly, in general (with some ex-
ceptions), Deno has the highest gap between AACs and ACDs. Since aborts
tend to contribute to lowering AAD (in relation to ACD), such an observation
suggests that Deno has lower commit ratios than the other protocols. Compar-
ing VVWV with Primary, a similar phenomenon happens for a number of cases;
accordingly, this suggests a lower commit ratio of VVWV in relation to Primary.

However, recalling the arbitrarity of the noise of abort delays in AAD, the
above previsions are very limited in accuracy. The next section tries to validate
them by studying the effective commit ratios of each protocol.

Considerations on ACD ACD gives a better understanding of the efficiency
of a protocol, since it avoids the noise that abort delays introduce in AAD.
However, it is still not a completely meaningful measure, due to the effect of
hidden conflicts, as we explain now.

Aborts due to hidden conflicts are prone to occur since commitment is not
immediate. By using a protocol that effectively commits faster, one reduces the
probability of hidden conflicts; hence, on average, one aborts less updates. There-
fore, the number of discarded updates also characterizes the effective efficiency
of a protocol.

However, ACD does not take discarded updates into account. It is a useful
measure to compare the efficiency of two protocols in executions where both
commit a similar (or nearly similar) set of updates. However, when one protocol
discards more updates because it is not as fast as another one, ACD does not
necessarily expose such a difference. It is, thus, necessary to complement this
metric with the commit ratio metric to have a complete understanding of the
each protocol’s efficiency in achieving eventual consistency.

5 Conclusions

The ability of an OR system to rapidly achieve eventual consistency at the ex-
pense of minimal aborted work is a crucial factor for the usefulness of that OR
system. To a great extent, it determines whether the users and applications work-
ing in weakly connected environments such as ubiquitous or pervasive computing
are willing to rely on such a highly available, yet weakly consistent, alternative;
or, otherwise, they will resort to a more limitative, yet less risky, pessimistic
replication solution.

Perhaps surprisingly, most OR literature seems to neglect the importance of
correctly and thoroughly evaluating eventual consistency. We observe that most
considered metrics are either not related, or only very indirectly related to the
ability of the systems to achieve eventual consistency. Furthermore, common
metrics related to eventual consistency, such as commit ratio, agreement and
commitment delays are typically considered individually.

In this paper, through a simple experiment with three OR commitment pro-
tocols, we show that such three metrics are affected by important obscure side



effects, which, to the best of our knowledge, were previously undocumented. Con-
sequently, each metric is not sufficiently meaningful by itself. We therefore pro-
pose a combined methodology for evaluating eventual consistency, which uses the
three metrics to evaluate different aspects of eventual consistency. The present
paper is an example of an application of such a methodology to compare three
relevant commitment protocols: primary, Deno and VVWV.

References

1. Weiser, M.: The computer for the twenty-first century. Scientific American 265
(1991) 94–104

2. Forman, G.H., Zahorjan, J.: The challenges of mobile computing. Computer 27
(1994) 38–47

3. Wilson, P.: Computer Supported Cooperative Work: An Introduction. Oxford,
Intellect Books (1991)

4. Carstensen, P.H., Schmidt, K.: Computer supported cooperative work: New
challenges to systems design. In Itoh, K., ed.: Handbook of Human Factors.
Asakura Publishing (1999) 619–636 in Japanese, English Version available from
http://www.itu.dk/people/schmidt/publ.html.

5. Cederqvist, P., et al.: Version management with CVS. [Online Manual]
http://www.cvshome.org/docs/manual/, as of 03.09.2002 (1993)

6. C. Michael Pilato, Ben Collins-Sussman, B.W.F.: Version Control with Subversion.
O’Reilly (2004)

7. Chou, Y.: Get into the Groove: Solutions for Secure and Dynamic Collaboration.
http://technet.microsoft.com/en-us/magazine/cc160900.aspx (2006)

8. Leuf, B., Cunningham, W.: The wiki way: Quick collaboration on the web.
Addison-Wesley (2001)

9. Ignat, C.L., Oster, G., Molli, P., Cart, M., Ferri, J., Kermarrec, A.M., Sutra, P.,
Shapiro, M., Benmouffok, L., Busca, J.M., Guerraoui, R.: A comparison of op-
timistic approaches to collaborative editing of wiki pages. In: CollaborateCom,
IEEE (2007) 474–483

10. Leonard Kawell, J., Beckhardt, S., Halvorsen, T., Ozzie, R., Greif, I.: Replicated
document management in a group communication system. In: CSCW ’88: Pro-
ceedings of the 1988 ACM conference on Computer-supported cooperative work,
New York, NY, USA, ACM Press (1988) 395

11. Byrne, R.: Building Applications with Microsoft Outlook 2000 Technical Reference.
Microsoft Press, Redmond, WA, USA (1999)

12. Nowicki, B.: Nfs: Network file system protocol specification. Internet Request for
Comment RFC 1094, Internet Engineering Task Force (1989)

13. Morris, J.H., Satyanarayanan, M., Conner, M.H., Howard, J.H., Rosenthal, D.S.,
Smith, F.D.: Andrew: a distributed personal computing environment. Communi-
cations of the ACM 29 (1986) 184–201

14. Thomas, G., Thompson, G.R., Chung, C.W., Barkmeyer, E., Carter, F., Temple-
ton, M., Fox, S., Hartman, B.: Heterogeneous distributed database systems for
production use. ACM Comput. Surv. 22 (1990) 237–266

15. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37 (2005)
42–81

16. Yu, H., Vahdat, A.: Design and evaluation of a continuous consistency model for
replicated services. In: Proceedings of Operating Systems Design and Implemen-
tation. (2000) 305–318

17. Santos, N., Veiga, L., Ferreira, P.: Vector-field consistency for ad-hoc gaming.
In: ACM/IFIP/Usenix International Middleware Conference (Middleware 2007).
Lecture Notes in Computer Science, Springer (2007)



18. D. B. Terry, A. J. Demers, K.P.M.J.S.M.M.T., Welch, B.B.: Session guarantees for
weakly consistent replicated data. In: Proceedings Third International Conference
on Parallel and Distributed Information Systems, Austin, Texas (1994) 140–149

19. Baldoni, R., Guerraoui, R., Levy, R.R., Quéma, V., Tucci Piergiovanni, S.: Uncon-
scious Eventual Consistency with Gossips. In: Eighth International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS 2006). (2006)

20. Ratner, D., Reiher, P., Popek, G.: Roam: A scalable replication system for mobile
computing. In: DEXA ’99: Proceedings of the 10th International Workshop on
Database & Expert Systems Applications, Washington, DC, USA, IEEE Computer
Society (1999) 96

21. Golding, R.: Modeling replica divergence in a weak-consistency protocol for global-
scale distributed data bases. Technical Report UCSC-CRL-93-09, UC Santa Cruz
(1993)

22. Fekete, A., Gupta, D., Luchangco, V., Lynch, N.A., Shvartsman, A.A.: Eventually-
serializable data services. In: Symposium on Principles of Distributed Computing.
(1996) 300–309

23. Petersen, K., Spreitzer, M.J., Terry, D.B., Theimer, M.M., Demers, A.J.: Flexible
update propagation for weakly consistent replication. In: Proceedings of the 16th
ACM Symposium on Operating SystemsPrinciples (SOSP-16), Saint Malo, France.
(1997)

24. Pâris, J.F., Long, D.D.E.: Efficient dynamic voting algorithms. In: Proceedings of
the Fourth International Conference on Data Engineering, Washington, DC, USA,
IEEE Computer Society (1988) 268–275

25. Jajodia, S., Mutchler, D.: Dynamic voting algorithms for maintaining the consis-
tency of a replicated database. ACM Transactions on Database Systems 15 (1990)
230–280

26. Amir, Y., Wool, A.: Evaluating quorum systems over the internet. In: Symposium
on Fault-Tolerant Computing. (1996) 26–35

27. Keleher, P.: Decentralized replicated-object protocols. In: Proc. of the 18th Annual
ACM Symp. on Principles of Distributed Computing (PODC’99). (1999)

28. Cetintemel, U., Keleher, P.J., Bhattacharjee, B., Franklin, M.J.: Deno: A decen-
tralized, peer-to-peer object replication system for mobile and weakly-connected
environments. IEEE Transactions on Computer Systems (TOCS) 52 (2003)

29. Çetintemel, U., Keleher, P.J., Franklin, M.J.: Support for speculative update prop-
agation and mobility in deno. In: IEEE International Conference on Distributed
Computing Systems (ICDCS). (2001) 509–516

30. Holliday, J., Steinke, R., Agrawal, D., Abbadi, A.E.: Epidemic algorithms for
replicated databases. IEEE Transactions on Knowledge and Data Engineering 15
(2003) 1218–1238

31. Barreto, J., Ferreira, P.: Version vector weighted voting protocol: efficient and
fault-tolerant commitment for weakly connected replicas. Concurrency and Com-
putation: Practice and Experience 19 (2007) 2271–2283

32. Kistler, J.J., Satyanarayanan, M.: Disconnected operation in the Coda file system.
In: Proceedings of 13th ACM Symposium on Operating Systems Principles, ACM
SIGOPS (1991) 213–25

33. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21 (1978) 558–565

34. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wireless Communications and Mobile Computing (WCMC): Special issue
on Mobile Ad Hoc Networking: Research, Trends and Applications 2 (2002) 483–
502

35. Barreto, J., Ferreira, P., Shapiro, M.: Exploiting our computational surroundings
for better mobile collaboration. In: 8th International Conference on Mobile Data
Management (MDM 2007), IEEE (2007) 110–117


