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Abstract

Epidemic quorum systems enable highly available agreement even
when a quorum is not simultaneously connected, making them suitable
for weakly connected environments. Although recent work has proposed
epidemic quorum algorithms, their availability and performance trade-
offs are not well studied.

This paper formally defines generic epidemic quorum systems. The
formalism unifies proposed epidemic quorum systems and is a framework
for devising and studying epidemic coteries. We prove the safety of the
resulting systems and analytically characterize their availability and per-
formance. In particular, we identify previously undocumented trade-offs
between both aspects that do not exist in the classical counterpart. Fur-
thermore, we present analytical results comparing the availability and
performance of relevant epidemic quorum systems, relating them to clas-
sical quorum systems.
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1 Introduction

Quorum systems are a basic tool for reliable agreement in distributed systems
[PW95]. Their applicability is wide, ranging from data replication protocols,
distributed mutual exclusion, name servers, selective dissemination of data,
and distributed access control and signatures [AW96].

Classical quorum systems require agreement on a value to be accepted
by a quorum of live processes that are simultaneously connected in the same
network partition. This is not adequate in weakly connected networks, e.g.
mobile or sensor networks, where connected quorums are improbable.

Epidemic quorum systems eliminate such shortcoming, allowing uncon-
nected quorums. An epidemic quorum algorithm tries to ensure agreement by
running a finite number of elections. Intuitively, on each election, each process
may vote for one proposed value. By epidemic propagation of votes, eventu-
ally each process should be able to determine, from its local state, whether the
system has agreed on a given value w, or the current election is inconclusive
and, hence, a new one starts.

Recent work [Kel99, HSAA03] has proposed epidemic quorum algorithms.
However, to the best of our knowledge, neither are epidemic quorum systems
well defined, nor are their availability or performance well studied. In ad-
dition, the extensive studies on classical quorum systems are not valid for
epidemic quorum systems, as their failure conditions and quorum definitions
are radically distinct.

This paper studies epidemic quorum systems and algorithms, introducing
novel results that help understand such an approach. Our contribution is
twofold:

1. We formally define epidemic coteries and a generic epidemic quorum
algorithm, and prove its safety. The formalism unifies proposed epidemic
quorum systems and is a framework for devising and studying epidemic
coteries.

2. Based on the formalism, we formally characterize the liveness of epidemic
quorum systems. Such characterization enables a novel, analytical com-
parison of the availability and performance of epidemic quorum systems.
Namely, we study two relevant epidemic quorum constructions, major-
ity and linear plurality. Further, we present conditions where epidemic
quorum systems decide faster than classical ones, and identify trade-offs
that do not exist in the classic approach.

2 Epidemic Quorum Systems

Consider a set of distributed processes, U , where |U | = y. It runs in an
asynchronous system, without any access to a global state or global clock.
Processes may fail permanently; we assume non-byzantine failures. Transient
network partitions may also occur, restricting communication to processes
inside the same partition.
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The distributed processes wish to agree on a single value, taken from a
set of values, V al, proposed during the agreement process; z = |V al| denotes
proposal contention. We address such a problem using epidemic quorum al-
gorithms. Similarly to classical quorum algorithms [PW95], epidemic quorum
algorithms ensure agreement on a single value by having coteries of processes
vote for the proposed values. However, the epidemic and classical notions of
coteries are distinct, as well as the corresponding algorithms.

This section formally defines epidemic quorum systems and algorithms,
presenting some fundamental properties. In Section 2.1 we describe epidemic
quorum systems. We then address epidemic quorum algorithms in Section 2.3
and their liveness properties in Section 3.

We have proven all the results presented in the paper. When absent in
the paper, the proof of each theorem/lemma/proposition may be found in the
complementary appendix.

2.1 Epidemic Coteries

We start with some definitions and lemmas that will allow us to construct and
reason about epidemic quorum systems in the remainder of the paper.

Definition 1. Vote set, vote configuration and q-vote configuration
A vote set s is a set of processes, s ⊆ U .
A vote configuration c is a set of non-empty vote sets, c = {s1, s2, .., sn},

such that ∀si, sj ∈ c, si ∩ sj = ø.
A q-vote configuration qc is a pair, qc = 〈Qqc, {A

1
qc, A

2
qc, .., A

nqc
qc }〉, where

{Qc, A
1
qc, .., A

nqc
qc } is a vote configuration.

A value-vote configuration vc is a set of pairs, vc = {〈 a1, va1

vc 〉, .., 〈 a
nvc , vanvc

vc 〉},
where {v1

vc, .., v
nvc
vc } is a vote configuration, each a1, .., anvc ∈ V al and, for all

i, j, ai 6= aj. We denote vote configuration {v1
vc, .., v

nvc
vc } by V Cfg(vc).

We use vote, q-vote and value-vote configurations to reason about the votes
that p is aware of in a given moment. Deciding election outcomes will require
speculating about the votes that some value may potentially receive in the
best case; i.e. if all processes whose vote is still ignored by p happen to vote
for that value.

Definition 2. Potential vote set
Let s be a vote set. The potential vote set of s in a vote configuration

c, denoted [s]c, is defined as [s]c = s ∪ (U\(
⋃

s : s ∈ c)}. In particular,
[ø]c = (U\(

⋃

s : s ∈ c)}.
Further, the potential vote set of s in a q-vote configuration qc, denoted

[s]qc, is defined as [s]qc = s ∪ (U\ (Qqc ∪ A1
qc ∪ .. ∪ A

nqc
qc )).

We are now able to define the notions of coverage and potential coverage
of a q-vote configuration by another one, the building blocks for a definition
of epidemic coterie. We say that a larger q-vote configuration, qc, covers a
smaller one, qd, when each vote set in the latter is a subset of a distinct vote
set of the former, where Qqc must be the superset of Qqd. Similarly, potential
coverage means that a q-vote configuration may still grow (with the unknown
votes) to cover another one.
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Definition 3. Coverage and potential coverage between q-vote configurations
Let qc and qd be q-vote configurations.
We say qc covers qd, or qc � qd, if and only if:

1. Qqc ⊇ Qqd, and

2. There exists an injective function f : {1, .., nqd} → {1, .., nqc} such that

∀1≤ k ≤ nqd
: A

f(k)
qc ⊇ Ak

qd.

We say qc may cover qd, or qc B qd, if and only if:

1. [Qc]qc ⊇ Qqd, and

2. There exists an injective function f : {1, .., nqd} → {1, .., nqc} such that

∀1≤ k ≤ nqd
: [A

f(k)
qc ]qc ⊇ Ak

qd or [ø]qc ⊇ Ak
qd.

Proposition 1. Let c and d be q-vote configurations such that d � c. For
any Ai

d, either there exists Aj
c such that [Aj

c]c ⊇ [Ai
d]d, or [ø]c ⊇ [Ai

d]d.

We may finally define epidemic coteries (EC).

Definition 4. Epidemic Coterie
Let E be a non-empty set of q-vote configurations. E is an Epidemic Coterie

(EC) if, ∀c, d ∈ E : c 6= d:

1. ∀j : 〈Aj
c, {Qc} ∪ {A

i
c : i 6= j}〉 7 d, and

2. 〈ø, {Qc} ∪ {A
1
c , .., A

nc
c }〉 7 d, and

3. c � d.

We denote by QSet(E) the set of every Qc : c ∈ E, and by AQSet(E) the

set of every Aj
c : c ∈ E, for all j. We call each Qc the quorum of c. Also, we

call each Aj
c an anti-quorum of c.

Intuitively, the above definition ensures that, from a given q-vote config-
uration in the EC, no other conflicting q-vote configuration (in the sense of
having a quorum formed exclusively by voters not in the former’s quorum)
may be reached.

2.2 Examples: Majority and Linear Plurality ECs

This section defines and characterizes two example ECs, EMaj and LP, in a
system with five processes, U = {p1, p2, p3, p4, p5}. EMaj and LP are instances
of majority and linear plurality constructions, respectively; such constructions
are subjacent to the systems proposed and empirically studied by Holliday et
al. [HSAA03] and Keleher [Kel99].

We start by defining the ECs. EMaj is the set of q-vote configurations such
that QSet(EMaj) is the collection of all sets of 3 processes (i.e. (y +1)/2), and
AQSet(EMaj) is the empty set.
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Quorum Anti-Quorums

p1, p2, p3

p1, p2, p4

p1, p2, p5

p1, p3, p4

p1, p3, p5

p1, p4, p5

p2, p3, p4

p2, p3, p5

p2, p4, p5

p3, p4, p5

Quorum Anti-Quorums

p1, p2 {p3}, {p4}
p1, p2 {p3}, {p5}
p1, p2 {p4}, {p5}

p1, p3 {p2}, {p4}
p1, p3 {p2}, {p5}
p1, p3 {p4}, {p5}

p1, p4 {p2}, {p3}
p1, p4 {p2}, {p5}
p1, p4 {p3}, {p5}

p1, p5 {p2}, {p3}
p1, p5 {p2}, {p4}
p1, p5 {p3}, {p4}

Quorum Anti-Quorums

p2, p3 {p1}, {p4, p5}
p2, p3 {p1}, {p4}, {, p5}

p2, p4 {p1}, {p3, p5}
p2, p4 {p1}, {p3}, {, p5}

p2, p5 {p1}, {p3, p4}
p2, p5 {p1}, {p3}, {, p4}

p3, p4 {p1}, {p2}, {, p5}

p3, p5 {p1}, {p2}, {, p4}

p4, p5 {p1}, {p2}, {, p3}

p1 {p2}, {p3}, {, p4}, {, p5}

Figure 1: Q-vote configurations comprising LP, as obtained from Definition
5. EMaj is a subset of LP, and corresponds to the left-most table only.

LP is a larger coterie. Plurality requires that, in order to decide a value v,
the number of voters for v (the quorum) must be higher than the size of the
potential vote set of voters for every all other value (the anti-quorums). Linear
plurality assumes a total order among processes, and, in addition to the case
above, it also allows the quorum to be equally sized as some anti-quorums in
the same q-vote configuration, as long as the lowest processes of the potential
vote sets of the former are higher than that of the latter. More precisely:

Definition 5. Majority and linear plurality ECs

EMaj = {〈q, ø〉 : q ⊆ U ∧ |q| = 3}

LP =







qc :







∀k, |Qqc| > |[A
k
qc]qc| or (|Qqc| = |[A

k
qc]qc| ∧ ∃i∈ Qqc : ∀l∈ [Ak

qc]qc
, i < l)

and
∀qd ∈ LP, qc � qd







Figure 1 presents the q-vote configurations that respectively comprise EMaj and
LP. Naturally, EMaj is a subset of LP. As the reader may confirm, both
EMaj and LP are ECs.

2.3 Epidemic Quorum Algorithm

This section presents an algorithm that relies on a given EC, E , for achieving
distributed consensus, and proves its safety. We start by defining the local
state the algorithm maintains at each process. Let p ∈ U be a process. The
local state of p includes:

1. A current election identifier, ep ∈ N ;

2. A value-vote configuration, Vp = {〈 a1, va1

p 〉, .., 〈 anp , vanp

p 〉}.

We call each vai

p the local vote set at p for value ai. We designate the

vote configuration cp = {v1
p, .., v

n
p } as the local vote configuration at p. For
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simplicity of presentation, when there does not exist any value-vote pair for
some value ax in Vp, vax

p denotes the empty set, ø.
The state of each process p evolves as p proposes a value, receives voting

information from other processes, and determines the outcome of each election.
Algorithms 2, 3 and 4 describe each of such steps, respectively.

Algorithm 1 merge(Vr)

1: for all 〈 ai, vai

r 〉 ∈ Vr do

2: if ∃j : aj = ai then

3: vj
p ← vj

p ∪ vi
r

4: else

5: Vp ← Vp ∪ 〈 ai, vai

r 〉
6: end if

7: end for

Algorithm 2 propose(v)

1: if ∀i : p /∈ vi
p then

2: merge({〈 v, {p}〉})
3: else

4: merge({〈 v, ø〉})
5: end if

When a value v is proposed at process p (Algorithm 2), p votes for it in
case it has not yet voted for another value in the current election; this means
adding p to the vote set corresponding to v in Vp (line 2). For fairness, the
algorithm ensures that, even if p has already voted in the current election, Vp

includes an entry for v, possibly with an empty vote set (line 4); this way,
processes other than p may still vote for v.

Algorithm 3 receiveVotesFrom(r)

1: if ep < er then

2: ep ← er

3: for all 〈 ai, vai

p 〉 ∈ Vp do

4: vj
p ← ø

5: end for

6: end if

7: if ep = er then

8: merge(Vr)
9: if ∀i : p /∈ vi

p then

10: choose some j : 1 ≤ j ≤ |Vp|
11: propose(ap)
12: end if

13: end if

When p is accessible from some process r, p may receive voting information
from r, as Algorithm 3 describes. If r already holds information about a later
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election, then p discards its obsolete vote information (in Vp) and sets ep to
the more recent election, er(lines 2 to 5).

Finally, if both processes end up in the same election (this does not happen
if er < ep), then p complements Vp with new votes learned from r (line 8).
Further, in case p has not yet voted in its current election, it may cast a vote
for one of the newly received values (lines 10 and 11).

Algorithm 4 checkOutcome()

1: if repeat-condition then

2: Vp ← ø
3: ep ← ep + 1
4: end if

5: if decide-condition(w) then

6: decide w
7: end if

Based exclusively on its local state, each process determines if an election
is guaranteed to produce the same outcome at every other process. Two
possible outcomes are possible: the election may either decide one of the
proposed values (decide), or not decide any value (repeat). In the latter case,
a new election starts; this is repeated until an election decides, as Algorithm
4 describes.

The conditions for each outcome are based on the EC the algorithm uses.
They are the following.

Definition 6. decide-condition(w) and repeat-condition
Let p ∈ U be a process in an EC E.

• decide-condition(w) at p is defined as:

∃w : ∃d ∈ E : 〈vw
p , {vj

p : j 6= w}〉 � d.

• repeat-condition at p is defined as:

∀w : @d ∈ E : 〈vw
p , {vj

p : j 6= w}〉 B d.

Intuitively, each local vote set at p, vp
i , grows monotonically as votes are

cast and propagated. Ideally, the local vote sets should grow so that eventually
they can form a q-vote configuration that covers one q-vote configuration in the
EC. The set vp

w that corresponds to the quorum in the former q-vote configu-
ration determines the decision of value w. Hence, while decide-condition(w) is
not verified yet, one may determine if the local vote sets may still form a
q-vote configuration that may cover some q-vote configuration in the EC. If
that does not hold, then the current election round will never decide any value,
and a new one may then safely start; in this case, each vp

i is emptied and its
monotonic growth restarts.

As an example, recall the ECs EMaj and LP, introduced in Section 2.1.
Consider that p has the following local vote sets: va

p = {p2, p4}, vb
p = {p3}

and vc
p = {p5}. At this moment, neither decide-condition(a), nor decide-

condition(b), nor decide-condition(b), nor repeat-condition are verified (nei-
ther for EMaj , nor for LP). Hence, p waits for further votes. Consider
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that p later learns that p1 has voted for c (i.e. vc
p = {p1, p5}). If we con-

sider EMaj , then clearly the local vote-sets of p1 can cover no q-vote con-
figuration in EMaj ; hence, repeat-condition holds and a new election starts.
If, otherwise, we consider LP, p decides c, as there exists a q-vote con-
figuration d = 〈{p1, p5}, {{p2}, {p3}}〉 in LP, such that 〈vc

p, {v
a
p , vb

p}〉, i.e.
〈{p1, p5}, {{p2, p4}, {p3}}〉, covers d.

The definition of EC ensures the safety of agreed values, according to the
requirements of classical consensus [Lam05].

Lemma 1. Let p and r be two processes where ep = er. Then, vx
p ⊆ [vx

r ]cr for
all x ∈ V al.

Theorem 1. The epidemic quorum algorithm satisfies the following require-
ments:

1. Any value decided must have been proposed at some process (nontrivial-
ity).

2. A process can only decide a single value (stability).

3. Two different processes cannot decide different values (consistency).

Proof. Clearly, the algorithm ensures nontriviality and stability. To prove
consistency, assume, for purposes of contradiction, that two processes, p and
r, decide different values a and b (resp.), at elections ep and er (resp.).

Let us first assume that ep = er. By Def.6, when p decides, ∃x ∈ E :

〈va
p , {vj

p : j 6= a}〉 � x. So, by Prop.1, for any ai ∈ V al, either ∃Aj
x

such that [Aj
x]c ⊇ [vai

p ]cp , or [ø]c ⊇ [vai

p ]cp . Since E is an EC, we know

that, for any y ∈ E (y 6= x), ∀j : 〈Aj
x, {Qx} ∪ {A

i
x : i 6= j}〉 7 y, and

〈ø, {Qx}∪{A
1
x, .., Anx

x }〉 7 y; this implies 〈vb
p, {v

j
p : j 6= b}〉 7 y (1). However,

since the outcome of the same election at r was decide for value b, then, at
the time of such decision, ∃y ∈ E : 〈vb

r, {v
j
r : j 6= b}〉 � y. Then, by Lemma

1, for any ai, vai

r ⊆ [vai

p ]cp . Hence, 〈vb
p, {v

j
p : j 6= b}〉 B 〈vb

r, {v
j
r : j 6= b}〉, and

finally 〈vb
p, {v

j
p : j 6= b}〉 � y, which contradicts (1).

Let us now assume that ep < er (or vice-versa). Clearly, at least one
process t (possibly r = t) must have determined the outcome of election ep as
repeat ; otherwise, r would not have reached er. In such a moment, by Def.
6, @x ∈ E : 〈[vb

t ]ct , {[v
j
t ]ct : j 6= b}〉 � x. However, since the outcome of the

same election at p was decide, ∃y ∈ E : 〈vb
p, {v

j
p : j 6= b}〉 � y. It follows

from Lemma 1 that ∀i, vi
p ⊆ [vb

t ]ct . Hence, 〈[vb
t ]ct , {[v

j
t ]ct : j 6= b}〉 � 〈vb

p, {v
j
p :

j 6= b}〉, and thus 〈[vb
t ]ct , {[v

j
t ]ct : j 6= b}〉 � y, which is a contradiction.

3 Liveness of Epidemic Quorum Systems

We characterize the liveness of an EC by its availability and the time to decide.
Since we deal with a distributed system, measures are obtained at a particular,
arbitrary process p; e.g. availability means the availability seen by arbitrary
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process p. Also, we start measuring the time p takes to decide at the moment
when p first voted for a value.

We divide time into communication rounds (or simply rounds). We as-
sume a round to be an upper bound on the time needed for p to send and,
subsequently, receive vote information to/from every other correct (i.e. not
faulty) process in its current partition. Further, we assume communication
is live between processes simultaneously in the same partition and partition
changes occur only at the end of each communication round.

We use a simple probabilistic failure model where the probability of perma-
nent, non-byzantine failures is constant and uniform; we denote it by pf . For
simplicity, we assume the probability that a correct process votes in a value in
V al to be uniform, 1

z
. Finally, we assume eventual vote propagation between

correct processes; i.e., in spite of transient partitioning, p is able to eventually
send and receive vote information to/from any other correct process.

Given a particular EC E , we characterize it by two probability values,
decE(n) and repE(n). decE(n) (resp. repE(n)) denotes the probability that p,
having collected n votes in a given election, evaluates decide-condition(w) for
some w (resp. repeat-condition) as true. More precisely:

Definition 7. decE and repE
Let Tall(n) be the collection of value-vote configurations such that, for each

vci ∈ Tall(n),
∑

s∈V Cfg(vci)
|s| = n. Given an EC E, let T E

d (n) and T E
r (n) be:

T E
d (n) = {c : c ∈ Tall(n) and ∃s ∈ V Cfg(c) : ∃d ∈ E : 〈s, {t : t ∈ (V Cfg(c)\{s})}〉 � d}

T E
r (n) = {c : c ∈ Tall(n) and ∀s ∈ V Cfg(c) : @d ∈ E : 〈s, {t : t ∈ (V Cfg(c)\{s})}〉 B d}

We define decE and repE as: decE(n) = |T E
d (n)|/zn and repE(n) = |T E

r (n)|/zn.

Clearly, repE(n) and decE(n) correspond to exclusive events; hence, repE(n)+
decE(n) ≤ 1 for all n. Hereafter, we assume that ∀n : repE(n) < 1. Otherwise,
decE(n) would be zero for all n, which would mean a useless EC that decided
in no execution.

decE(n) and repE(n) allow us to abstract our study from each particular
EC. We are now able to characterize availability and number of rounds to
decide in any generic EC.

Hereafter, we write (x
y) to denote the binomial coefficient of x and y.

3.1 Availability

First, we define availability as the probability that the system will eventually
agree on some value. Since we assume eventual vote propagation between
correct processes, transient partitioning is irrelevant when quantifying eventual
decision; thus, we look at the system of correct processes as co-existing in the
same (imaginary) partition.

Agreement is achieved by a possibly null, finite sequence of elections with
a repeat outcome, followed by one election with a decide outcome.
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Theorem 2. The availability of EC E is given by:

y
∑

n=0

(

y
n

)

(1− pf )n p
(y−n)
f decE(n)

1− repE(n)
(1)

Proof. Assuming n correct processes, the probability of eventual decision is the
probability of any possible sequence of consecutive repeats, followed by one de-
cide. Since such sequences are exclusive events, their probability is the follow-
ing sum of a geometric series: decE(n) + decE(n)repE(n) + decE(n)repE(n)2 +

.. = decE(n)
∑∞

i=0 repE(n) i = decE (n)
1−repE(n) . The probability of exactly n cor-

rect processes out of y is (y
n)(1 − pf )n p

(y−n)
f . Again, the events of exactly n

(with 0 ≤ n ≤ y) processes are exclusive; hence, it follows directly that the
probability for any n and any decision sequence is given by (1).

Due to [FLP85], availability is less than one if at least one process may be
faulty. Looking at the above expression, this implies ∀n, decE(n)+repE(n) < 1,
which means that an election may block (i.e. never return any outcome).

3.2 Communication rounds to decide

We are also interested in the probability of decision within a given number of
rounds, r. We denote such probability distribution as P E

d (r). It characterizes
system performance when agreement is possible.

In order to derive P E
d (r), we need to obtain the probability that p collects

new votes at each round. pv(vi → vr; r) denotes the probability that, starting
from vi votes, p collects vf votes after r rounds. pv depends on how one
models network inaccessibility due to transient partition changes. However,
independently of such model, we know that pv(vi → vr; r) = 0 if vf < vi; it is
trivial to show that the algorithm ensures such property.

One possible model of network inaccessibility is the following: at the end
of a given communication round, the partition p belongs to does not include a
given correct process with a constant and uniform probability, h. We designate
such model as Mp. The definition of pv when Mp is assumed is given and
proved in Appendix. Without loss of generality, we use Mp when needed for
examples in the remainder of the paper.

We may finally obtain the probability of decision within a given number
of rounds.

Theorem 3. Probability of decision within r rounds
The probability that an arbitrary process, p, starting with Vp = ø, decides

any value within r or less rounds, P E
d (r), is given by:

P E
d (r) =

{

0, if r = 0
∑y

vr=0 pv(0→ vr; r)decE(vr) + f(0, r), if r > 0
(2)

where f is defined as:

f(vi, r) =

y
∑

vx=vi

pv(vi → vx; 1)[(repE(vx)−repE(vi))P
E
d (r−1)+f(vx, r−1)] (3)
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Naturally, P E
d (0) is zero. With r > 0, one may distinguish two situations

that fulfill decide-condition, (a) and (b) (P E
d (r > 0) = P (a) + P (b)). Fig-

ure 2 depicts such situations. (a) corresponds to the cases where, after r or
less rounds, p collected enough votes, vr, to decide in a single election. The
cases where at least one repeat-condition is verified, and followed by a decide,
correspond to (b). A detailed proof is provided in Appendix.

Corollary 1. Availability grows as decE and repE grow.

Corollary 2. P E
d grows as decE grows, and decreases as repE grows.

Proof. By standard manipulation of the expressions in Theorems 2 and 3.

The above corollaries unveil an interesting trade-off between availability
and performance that is intrinsic to ECs. It is not present in the classical
counterpart. Its effective outcome on the availability and performance of an
epidemic quorum system is not evident and depends on each specific EC. The
next section illustrates the trade-off with the liveness study of the majority
(EMaj) and linear plurality (LP) ECs, defined in Section 2.2.

3.3 Liveness Study of Majority and Linear Plurality ECs

From EMaj and LP(see Figure 1), and by standard combinatorics, one may
obtain the corresponding decEMaj

and repEMaj
, and decLP and repLP , respec-

tively. Figures 3 and 4 depict such values, for different z and n values. As
expected, repLP is always zero, as LP may always decide, provided enough
votes are collected. Further, decEMaj

and decLP are similar when z is either 1
or 2; in this case, the q-vote configurations of LP with more than one anti-
quorum are of no use, and thus, in practice, LP induces a similar behavior as
EMaj .

Most importantly, when z > 2, decLP is higher than decEMaj
, while repLP is

lower than repEMaj
. Intuitively, this suggests the following trade-off. On

one hand, the higher decLP means that p will more easily satisfy decide-
condition(w), (i.e. with less votes), thus increasing availability and perfor-
mance.

On the other hand, when one considers repeat-condition, the effect of larger
ECs is inverse. The higher decEMaj

allows p to more easily fulfill repeat-
condition. A repeat outcome is useful in situations where the local vote set has
reached a state where decide-condition(w) depends on the votes of a number of
inaccessible processes (e.g. permanently faulty processes). In such situation,
a repeat outcome triggers a new election, which acts as a new opportunity for
decision; in spite of the inaccessible processes, the new election may eventually
lead to a different local vote configuration that finally fulfills repeat-condition.
If, instead, repeat-condition is not met, the election outcome is halted until new
votes arrive, which may never happen. Therefore, the higher repEMaj

increases
availability, at the cost of more elections (hence, more communication rounds).

We analytically deduce the effective outcome of the trade-off using The-
orems 2 and 3. Figures 5, 6 and 7 present the availability and performance
results, assuming pf = 0.1 and the Mp with h = 0.1. We can see that, in
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this case, the effect of a higher decLP always dominates the effect of a higher
repMajEp, as LPalways achieves higher availability and performance. Though
not presented herein, the advantage of LP is verified for any value of pf and
h.

4 Comparison with Classical Quorum Systems and

Discussion

The availability of classical quorum systems is extensively studied [JM90,
CW96, IK01, PW95, JM05]. However, such results are not valid for epidemic
quorum systems, as both approaches differ radically in the way processes ob-
tain quorums. In the classical approach, a coordinator (typically the process
proposing the value) runs a synchronous atomic commit (e.g. two-phase com-
mit) to obtain a quorum to atomically vote for a value. The epidemic approach
collects votes in an asynchronous coordinator-free way, by means of pair-wise
epidemic propagation of vote information. Furthermore, in the classical ap-
proach, the coordinator decides whether to proceed with the agreement (if it
has obtained a quorum of voters), or to withdraw the votes (due to unavail-
able quorum). The epidemic approach does not allow vote withdrawal before
agreement, and agreement is a local decision of each process, based on the
locally collected vote information.

In consequence, ECs, in contrast to classical coteries, may take into ac-
count, not only the set of voters for a given value (the quorum), but also
the set of voters for the competing values (the anti-quorums); plurality-based
weighted voting [Kel99] is an example of a coterie that the classical approach
does not allow.

One may compare classical and epidemic quorum systems by trying to
answer two questions: (a) can one build an epidemic quorum system from
a classical one (and vice-versa)?; and (b) given a classical and an epidemic
quorum system, which one is better?

The first question has already been partially answered by Holliday et al.
[HSAA03]. They propose epidemic quorum systems constructed from classical
coteries [PW95]. A classical coterie is a set of sets of processes, Q1, ..Qm, such
that, for all Qi and Qj , Qi ∩ Qj 6= ø (intersection property) and ∀Qj ∈
QSet(Ecl), Qi * Qj (minimality property). We formalize their idea and prove
it safe as follows.

Definition 8. EC equivalent of classical coterie
Let C be a classical coterie. Its EC equivalent, denoted EC, is a set of q-vote

configurations such that QSet(EC) = C and AQSet(EC) = ø.

Proposition 2. Let C be a classical coterie. Its EC equivalent, EC, is an EC.

The EMaj EC introduced in Section 2.2 is an example of an EC equivalent
of a classical coterie.

Since the universe of ECs is larger than the universe of EC equivalents,
one cannot always build a classical quorum system from an epidemic one. An
example is the LP EC.

12



Concerning the second question, we may try to compare our results with
the results available for classical quorum systems. Consider an EC, E , and a
classical coterie, C. Further, assume Mp.

The probability of a quorum of C being accessible to p, qC , is given by
qC = 1−

∑y
i=0 aCi f i(1− f)y−i; where (aC0 , .., aCy) is the availability profile of C

[PW95], and f denotes the probability of each process either being correct or
not in the same partition as p. Using our model, f is given by pf + (1− pf )h.

Hence, the probability of a quorum being accessible to p within r rounds,
qr
C is given by the sum of a geometric series:

qr
C =

r−1
∑

x=0

(1− qC)
xqC =

qC(1− (1− qC)
r)

qC

qC is an upper bound on the effective availability of C, as it ignores con-
tention and faults that may occur during the quorum obtention process.1 Fur-
ther, qr

C is an upper bound on P C
d . Still, it enables us to determine a sufficient

(not necessary) condition for E to outperform C:

P E
d (r) > qr

C , for all r > 0.

The above condition is a partial answer to the second question. A more
precise definition of qC , which takes into account the effects of contention and
faults during quorum obtention, would produce a more satisfactory comparison
of classical and epidemic quorum systems. This is a goal for future work.

5 Related Work

Epidemic algorithms have recently become popular due to their robustness
and scalability [EGKM04]. However, to the best of our knowledge, little work
has been devoted to the formal study epidemic quorum systems.

Holliday et al. [HSAA03] have proposed epidemic quorum systems built
from classical coteries, introducing the notion of anti-quorums. Their goal is
to ensure global serialization of updates in a replicated system. Their algo-
rithm may only decide in the first election, and aborts in the case of a repeat.
Our study can be made applicable to such algorithm by artificially defining
repeat-condition as always false and repE(n) = 0 for all E and n.

Keleher [Kel99] has proposed a weighted voting system based on linear
plurality, for the purpose of data replication. Its linear plurality system differs
slightly from ours since ties are broken by comparison of the proposers of the
contending values, rather than by comparison of their voters; our formalism
may be enhanced so as to support such EC. Being based on linear plurality,
Keleher’s algorithm only takes one election to decide a value, as repeat is an
impossible outcome in linear plurality.

VVWV [BF05] is an epidemic commitment protocol that optimizes Kele-
her’s algorithm to be able to decide sequences of multiple happens-before-
related of updates in a single election. Sutra et al. [SSB06] generalize VVWV
to the case where rich semantics are available to the protocol.

1As Ingols and Keidar note and experimentally study in [IK01].
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The above systems have been evaluated both in simulations ([BF05, HSAA03,
Kel99]) and empirically ([CKBF03]). However, comparative results (either for-
mal or experimental) between different ECs (e.g. majority vs. linear plural-
ity) are nonexistent. Further, neither is the liveness of the proposed epidemic
quorum systems formally studied, nor has it been compared to the classical
counterpart. We formally study such problems.

The Paxos algorithm [Lam98] allows multiple election instances in an asyn-
chronous system in order to deal with elections where majorities are not achiev-
able (as an epidemic quorum algorithm, as we define it, does). Nevertheless,
Paxos is fundamentally different from our algorithm, requiring two rounds of
messages to decide, whereas ours may decide in one round. As future work,
we plan to analytically compare our algorithm with Paxos. A further point of
future work is to generalize Paxos to work with ECs.

6 Concluding Remarks

Although recent work has proposed epidemic quorum algorithms, neither are
epidemic quorum systems well defined nor is their liveness well studied. We
formalize epidemic quorum systems and provide a generic characterization of
their availability and performance. Our contribution highlights previously un-
documented trade-offs that arise in epidemic quorum systems. Further, to
the best of our knowledge, it provides the first analytical comparative results
between proposed epidemic and classical quorum systems. Finally, the formal-
ism serves as a framework for the definition of novel epidemic quorum systems,
and for subsequent obtention of new results concerning these systems.

References

[AW96] Yair Amir and Avishai Wool. Evaluating quorum systems over the internet. In
Symposium on Fault-Tolerant Computing, pages 26–35, 1996.

[BF05] João Barreto and Paulo Ferreira. An efficient and fault-tolerant update com-
mitment protocol for weakly connected replicas. In Euro-Par, pages 1059–1068,
2005.

[CKBF03] U. Cetintemel, P. J. Keleher, B. Bhattacharjee, and M. J. Franklin. Deno:
A decentralized, peer-to-peer object replication system for mobile and weakly-
connected environments. IEEE Transactions on Computer Systems (TOCS), 52,
July 2003.

[CW96] Ing-Ray Chen and Ding-Chau Wang. Analyzing dynamic voting using petri
nets. In SRDS ’96: Proceedings of the 15th Symposium on Reliable Distributed
Systems (SRDS ’96), page 44, Washington, DC, USA, 1996. IEEE Computer
Society.

[EGKM04] P. Eugster, R. Guerraoui, A. M. Kermarrec, and L. Massoulie. From epidemics
to distributed computing. IEEE Computer, 37(5):60–67, May 2004.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382, April
1985.

[HSAA03] JoAnne Holliday, Robert Steinke, Divyakant Agrawal, and Amr El Abbadi. Epi-
demic algorithms for replicated databases. IEEE Transactions on Knowledge and
Data Engineering, 15(5):1218–1238, 2003.

14



[IK01] K. Ingols and I. Keidar. Availability study of dynamic voting algorithms. In
ICDCS ’01: Proceedings of the The 21st International Conference on Distributed
Computing Systems, page 247, Washington, DC, USA, 2001. IEEE Computer
Society.

[JM90] S. Jajodia and David Mutchler. Dynamic voting algorithms for maintaining the
consistency of a replicated database. ACM Trans. Database Syst., 15(2):230–280,
1990.

[JM05] Flavio Paiva Junqueira and Keith Marzullo. Coterie availability in sites. In
DISC, pages 3–17, 2005.

[Kel99] P. Keleher. Decentralized replicated-object protocols. In Proc. of the 18th An-
nual ACM Symp. on Principles of Distributed Computing (PODC’99), 1999.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Sys-
tems, 16(2):133–169, May 1998. http://doi.acm.org/10.1145/279227.279229.

[Lam05] Leslie Lamport. Generalized consensus and Paxos. Technical Report MSR-TR-
2005-33, Microsoft Research, March 2005. ftp://ftp.research.microsoft.

com/pub/tr/TR-2005-33.pdf.

[PW95] David Peleg and Avishai Wool. The availability of quorum systems. Information
and Computation, 123(2):210–223, 1995.

[SSB06] Pierre Sutra, Marc Shapiro, and Joao Barreto. An asynchronous, decentralised
commitment protocol for semantic optimistic replication. Research Report 6069,
INRIA, 12 2006.

15



Complementary Figures
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Figure 2: Illustration of the probabilities that comprise P E
d (r), up to 3 rounds.

Decision cases are greyed out, and correspond to components (a) and (b).
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A Complementary Proofs of Section 2.1

Proposition 1. Let c and d be q-vote configurations such that d � c. For
any Ai

d, either there exists Aj
c such that [Aj

c]c ⊇ [Ai
d]d, or [ø]c ⊇ [Ai

d]d.

Proof. Clearly,
⋃

i A
c
i ⊆

⋃

j Ad
j , which implies [ø]c ⊇ [ø]d (1). Let f be the

injective function such that ∀1≤ k ≤ nc
: Ak

c ⊆ A
f(k)
d . For each i ∈ {1, .., nc},

Ai
c ⊆ Aj

d, thus Aj
d = Ai

c ∪ (Aj
d\A

i
c), since c ⊆ d. Since d is a q-vote config-

uration, Aj
d ∩ Ax

d = ø, ∀x 6= j; which implies (Aj
d\A

i
c) ∩ Ax

d = ø (2). Since

∀Ay
c : y 6= i, ∃Aj

d : Aj
d ⊇ Ay

c , then it follows from (2) that (Aj
d\A

i
c) ∩ Ay

c = ø.

Thus, (Aj
d\A

i
c) ⊆ [ø]c. Finally, [Aj

d]d = Aj
d ∪ [ø]d = Ai

c ∪ (Aj
d\A

i
c) ∪ [ø]d, which

implies, by (1) and (2), [Aj
d]d ⊆ Ai

c ∪ [ø]c.

The proof for the case of each Aj
d such that @i ∈ {1, .., nc} : f(i) = j is

direct. Clearly, Aj
d ∩ Ax

c = ø, ∀x 6= j; so, Aj
d ⊆ [ø]c. Therefore, [Aj

d]d =

Aj
d ∪ [ø]d ⊆ [ø]c.

B Complementary Proofs of Section 2.3

Lemma 1. Let p and r be two processes where ep = er. Then, vx
p ⊆ [vx

r ]cr

for all x ∈ V al.

Proof. Clearly, the algorithm ensures that only the vote of a given process
may only be cast by the process itself, and only once each election. Hence,
vx
p ∩ vy

r = ø for any processes p, r and values x, y. Therefore, vx
p\v

y
r ⊆ [ø]cr .

By standard set manipulation, we get [vx
p ]cr = vx

p ∪ [ø]cr ⊇ (vx
p ∩ vy

r ) ∪ [ø]cr ⊇
(vx

p ∩ vy
r ) ∪ (vx

p\v
y
r ) = vx

p .

C Complementary Proofs of Section 3

Lemma 2. In Mp, pv is given by:

pv(vi → vf ; r) =







∑vi

n=0

(

vi

n

) (

y − vi

y − vf

)

h(y−vf+n)(1− h)(vf−n), if r = 1
∑vf

vx=vi
pv(vx → vf ; 1)pv(vi → vx; r − 1), if r > 1

(4)

Proof. Starting with vi votes, at the end of one round, the number of votes
(vf ) is the number of correct processes in the partition of p whose vote was
not yet known by p, plus vi (where n of the voters that have contributed to
vi are inaccessible). As Figure 8 depicts, the number of inaccessible processes,
f , is given by y − vf + n.

pv(vi → vf ; 1) is given by the summing the probabilities of collecting vf

votes for each n, ranging from 0 to vi. For each value n, p collects vf votes at
the end of the round if: (i) n out of the vi votes is inaccessible, and (ii) out
of the processes that started the round without vote (y − vi), y − vf remain
in that condition. By simple combinatorial reasoning, the number of such
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vi processes for which p has votes
in the beginning of the round (I)

y total processes (Proc)
n processes inaccessible at the end of the
round, for which p had already a vote at the
beginning of the round (F intercepted with I)

f=y-vf+n processes that are inaccessible
at the end of the round (F)

F I

Proc

vf processes for which p has votes at the end of the round

Figure 8: Event sets when considering a round where p, starting with vi votes,
ends up collecting vr votes.

events is given by (vi
n )(y−vi

y−vf
). Further, the probability of each such event is the

probability of exactly f processes being inaccessible at the end of the round;
i.e. h(y−vf+n)(1− h)(vf−n).

The case of r > 1 is simpler. At a first round, p may collect vx votes (where
vi ≤ vx ≤ vf ) (with probability pv(vx → vf ; 1)) and collect the votes still
missing in the remaining rounds (with probability pv(vi → vx; r−1)). Clearly,
pv(vi → vf ; r) is given by the sum of the probabilities for each vx.

Theorem 3. Probability of decision within r rounds
The probability that an arbitrary process, p, starting with Vp = ø, decides

any value within r or less rounds, P E
d (r), is given by:

P E
d (r) =

{

0, if r = 0
∑y

vr=0 pv(0→ vr; r)decE(vr) + f(0, r), if r > 0
(5)

where f is defined as:

f(vi, r) =

y
∑

vx=vi

pv(vi → vx; 1)[(repE(vx)−repE(vi))P
E
d (r−1)+f(vx, r−1)] (6)

Proof. P E
d (0) is zero since decide-condition is impossible with an empty Vp.

With r > 0, one may distinguish two situations that fulfill decide-condition,
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(a) and (b); Figure 2 depicts such situations. (a) corresponds to the cases
where, after r or less rounds, p collected enough votes, vr, to decide in a single
election. The probability of (a) is the sum, for each vr, of the probability of
collecting exactly vr votes and deciding with such an amount of votes; i.e.,
∑y

vr=0 pv(0→ vr; r)decE(vr).
The cases where at least one repeat-condition is verified, and followed by

a decide, correspond to (b). We will show that, at the start of a given round,
having vi initial votes, the probability of deciding, including at least one repeat,
within the next r or less rounds, is given by f(vi, r). In such round, at the end
of which vx ≥ vi votes are collected, f(vi, r) is given by the sum of the prob-
abilities of two exclusive events (multiplied by the probability of collecting vx

votes, pv(vi → vx; 1), for each vr ≥ vi): (i) either vx produce the repeat out-
come, and so a new election starts; or (ii) no such outcome occurs. Hence,
(i) happens if, at the end of the round, p determines repeat without previously
having obtained such outcome with vi votes (probability of repE(vx)−repE(vi))
and decides in the remaining elections (P E

d (r−1)). Otherwise (ii), a decide af-
ter at least one repeat may still occur, starting with the new vr votes, and
within the remaining rounds (r − 1) (with probability f(vx, r − 1)).

Clearly, (b) is obtained by f(0, r). (a) + (b) gives the probability P E
d (r)

when r > 0.

D Complementary Proofs of Section 4

Theorem 2. Let C be a classical coterie. Its EC equivalent, EC , is an EC.

Proof. By Def. 4, and since has empty anti-quorums, EC is an EC if, ∀qc, qd ∈
EC , (1) ∀j : [Aj

qc]qc + Qqd, (2) [ø]qc + Qqd, and (3)qc * qd and qd * qc. (1)
is vacuously true. (3) is ensured by the minimality property. To prove (2),
assume, for the purpose of contradiction, that there exists qd ∈ EC such that
[ø]qc ⊇ Qqd. By the intersection property, ∃X 6= ø : Qqc∩Qqd = X. Therefore,
X ⊆ Qqd ⊆ [ø]qc (hence, X ⊆ [ø]qc), and X ⊆ Qqc. So, X ⊆ Qqc ∩ [ø]qc. Thus
Qqc ∩ [ø]qc 6= ø; however, it follows directly from Def. 2 that Qqc ∩ [ø]qc = ø,
which is a contradiction.
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