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Summary. Parallel operating systems are the interface between parallel comput-
ers (or computer systems) and the applications (parallel or not) that are executed
on them. They translate the hardware's capabilities into concepts usable by pro-
gramming languages.

Great diversity marked the beginning of parallel architectures and their op-
erating systems. This diversity has since been reduced to a small set of dominat-
ing con�gurations: symmetric multiprocessors running commodity applications and
operating systems (UNIX and Windows NT) and multicomputers running custom
kernels and parallel applications. Additionally, there is some (mostly experimen-
tal) work done towards the exploitation of the shared memory paradigm on top of
networks of workstations or personal computers.

In this chapter, we discuss the operating system components that are essential
to support parallel systems and the central concepts surrounding their operation:
scheduling, synchronization, multi-threading, inter-process communication, mem-
ory management and fault tolerance.

Currently, SMP computers are the most widely used multiprocessors. Users �nd
it a very interesting model to have a computer, which, although it derives its pro-
cessing power from a set of processors, does not require any changes to applications
and only minor changes to the operating system. Furthermore, the most popular
parallel programming languages have been ported to SMP architectures enabling
also the execution of demanding parallel applications on these machines.

However, users who want to exploit parallel processing to the fullest use those
same parallel programming languages on top of NORMA computers. These mul-
ticomputers with fast interconnects are the ideal hardware support for message
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passing parallel applications. The surviving commercial models with NORMA ar-
chitectures are very expensive machines, which one will �nd running calculus in-
tensive applications, such as weather forecasting or 
uid dynamics modelling.

We also discuss some of the experiments that have been made both in hardware
(DASH, Alewife) and in software systems (TreadMarks, Shasta) to deal with the
scalability issues of maintaining consistency in shared-memory systems and to prove
their applicability on a large-scale.
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1. Introduction

Parallel operating systems are primarily concerned with managing the re-

sources of parallel machines. This task faces many challenges: application

programmers demand all the performance possible, many hardware con�gu-

rations exist and change very rapidly, yet the operating system must increas-

ingly be compatible with the mainstreamversions used in personal computers

and workstations due both to user pressure and to the limited resources avail-

able for developing new versions of these system.

In this chapter, we describe the major trends in parallel operating systems.

Since the architecture of a parallel operating system is closely in
uenced by

the hardware architecture of the machines it runs on, we have divided our pre-

sentation in three major groups: operating systems for small scale symmetric

multiprocessors (SMP), operating system support for large scale distributed

memory machines and scalable distributed shared memory machines.

The �rst group includes the current versions of Unix and Windows NT

where a single operating system centrally manages all the resources. The sec-

ond group comprehends both large scale machines connected by special pur-

pose interconnections and networks of personal computers or workstations,

where the operating system of each node locally manages its resources and

collaborates with its peers via message passing to globally manage the ma-

chine. The third group is composed of non-uniform memory access (NUMA)

machines where each node's operating system manages the local resources

and interacts at a very �ne grain level with its peers to manage and share

global resources.

We address the major architectural issues in these operating systems,

with a greater emphasis on the basic mechanisms that constitute their core:

process management, �le system, memorymanagement and communications.

For each component of the operating system, the presentation covers its archi-

tecture, describes some of the interfaces included in these systems to provide

programmers with a greater level of 
exibility and power in exploiting the

hardware, and addresses the implementation e�orts to modify the operat-

ing system in order to explore the parallelism of the hardware. These top-

ics include support for multi-threading, internal parallelism of the operating

system components, distributed process management, parallel �le systems,

inter-process communication, low-level resource sharing and fault isolation.

These features are illustrated with examples from both commercial operating

systems and research proposals from industry and academia.

2. Classi�cation of Parallel Computer Systems

2.1 Parallel Computer Architectures

Operating systems were created to present users and programmers with a

view of computers that allows the use of computers abstracting away from the
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details of the machine's hardware and the way it operates. Parallel operating

systems in particular enable user interaction with computers with parallel

architectures. The physical architecture of a computer system is therefore an

important starting point for understanding the operating system that controls

it. There are two famous classi�cations of parallel computer architectures:

Flynn's [Fly72] and Johnson's [Joh88].

2.1.1 Flynn's classi�cation of parallel architectures. Flynn divides

computer architectures along two axes according to the number of data

sources and the number of instruction sources that a computer can process

simultaneously. This leads to four categories of computer architectures:

SISD - Single Instruction Single Data. This is the most widespread archi-

tecture where a single processor executes a sequence of instructions that

operate on a single stream of data. Examples of this architecture are the

majority of computers in use nowadays such as personal computers (with

some exceptions such as Intel Dual Pentium machines), workstations and

low-end servers. These computers typically run either a version of the Mi-

crosoft Windows operating system or one of the many variants of the UNIX

operating system (Sun Microsystems' Solaris, IBM's AIX, Linux...) although

these operating systems include support for multiprocessor architectures and

are therefore not strictly operating systems for SISD machines.

MISD - Multiple Instruction Single Data. No existing computer corresponds

to the MISD model, which was included in this description mostly for the

sake of completeness. However, we could envisage special purpose machines

that could use this model. For example, a "cracker computer" with a set of

processors where all are fed the same stream of ciphered data which each

tries to crack using a di�erent algorithm.

SIMD - Single Instruction Multiple Data. The SIMD architecture is used

mostly for supercomputer vector processing and calculus. The programming

model of SIMD computers is based on distributing sets of homogeneous data

among an array of processors. Each processor executes the same operation

on a fraction of a data element. SIMD machines can be further divided into

pipelined and parallel SIMD. Pipelined SIMD machines execute the same

instruction for an array of data elements by fetching the instruction from

memory only once and then executing it in an overloaded way on a pipelined

high performance processor (e.g. Cray 1). In this case, each fraction of a data

element (vector) is in a di�erent stage of the pipeline. In contrast to pipelined

SIMD, parallel SIMD machines are made from dedicated processing elements

connected by high-speed links. The processing elements are special purpose

processors with narrow data paths (some as narrow as one bit) and which

execute a restricted set of operations. Although there is a design e�ort to

keep processing elements as cheap as possible, SIMD machines are quite rare

due to their high cost, limited applicability and to the fact that they are

virtually impossible to upgrade, thereby representing a "once in a lifetime"

investment for many companies or institutions that buy one.
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An example of a SIMD machine is the Connection Machine (e.g. CM-2)

[TMC90a], built by the Thinking Machines Corporation. It has up to 64k

processing elements where each of them operates on a single bit and is only

able to perform very simple logical and mathematical operations. For each set

of 32 processing cells there are four memory chips, a numerical processor for


oating point operations and a router connected to the cell interconnection.

The cells are arranged in a 12-dimensional hyper-cube topology. The concept

of having a vast amount of very simple processing units served three purposes:

to eliminate the classical memory access bottleneck by having processors

distributed all over the memory, to experiment with the scalability limits of

parallelism and to approximate the brain model of computation.

The MasPar MP-2 [Bla90] by the MasPar Computer Corporation is an-

other example of a SIMD machine. This computer is based on a 2 dimensional

lattice of up to 16k processing elements driven by a VAX computer that serves

as a front end to the processing elements. Each processing element is con-

nected to its eight neighbours on the 2D mesh to form a torus. The user

processes are executed on the front-end machine that passes the parallel por-

tions of the code to another processor called the Data Parallel Unit (DPU).

The DPU is responsible for executing operations on singular data and for

distributing the operations on parallel data among the processing elements

that constitute the lattice.

MIMD - Multiple Instruction Multiple Data. These machines constitute the

core of the parallel computers in use today. The MIMD design is a more

general one where machines are composed of a set of processors that execute

di�erent programs which access their corresponding datasets1. These archi-

tectures have been a success because they are typically cheaper than special

purpose SIMD machines since they can be built with o�-the-shelf compo-

nents. To further detail the presentation of MIMD machines it is now useful

to introduce Johnson's classi�cation of computer architectures.

2.1.2 Johnson's classi�cation of parallel architectures. Johnson's

classi�cation [Joh88] is oriented towards the di�erent memory access meth-

ods. This is a much more practical approach since, as we saw above, all but

the MIMD class of Flynn are either virtually extinct or never existed. We

take the opportunity of presenting Johnson's categories of parallel architec-

tures to give some examples of MIMD machines in each of those categories.

Johnson divides computer architectures into:

UMA { Uniform Memory Access. UMA machines guarantee that all pro-

cessors use the same mechanism to access all memory positions and that

those accesses are performed with similar performance. This is achieved with

a shared memory architecture where all processors access a central mem-

ory unit. In a UMA machine, processors are the only parallel element (apart

from caches which we discuss below). The remaining architecture components

1 although not necessary in mutual exclusion.
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(main memory, �le system, networking...) are shared among the processors.

Each processor has a local cache where it stores recently accessed memory

positions. Most major hardware vendors sell UMA machines in the form of

symmetric multiprocessors with write-through caches. This means that writes

to cache are immediately written to main memory. In the alternative policy

of write-back caching, writes to the cache are only written to main memory

when the cache line containing the write is evicted from the processor's cache.

In order to keep these processor caches coherent and thereby give each

processor a consistent view of the main memory a hardware coherence pro-

tocol is implemented. There are two techniques for maintaining cache coher-

ence: directory based and bus snooping protocols. Bus snooping is possible

only when the machine's processors are connected by a common bus. In this

case, every processor can see all memory accesses requested on the common

bus and update its own cache accordingly. When snooping is not possible, a

directory-based protocol is used. These protocols require that processor keeps

a map of how memory locations are distributed among all processors in order

to be able �nd it among the machine's processors when requested. Typically,

bus snooping is used in shared memory SMPs and directory-based protocols

are used in distributed memory architectures such as the SGI Origin 2000.

The Alpha Server family [Her97], developed by the Digital Equipment

Corporation (now owned by Compaq), together with Digital UNIX has been

one of the most commercially successful server and operating system solu-

tions. Alpha Servers are symmetricmultiprocessor based on Alpha processors,

up to 4 of them, connected by a snoopy bus to a motherboard with up to 4

GByte of memory. The Alpha Server has separate address and data buses and

uses a cache write-back protocol. When a processor writes to its cache, the

operation is not immediately passed on to main memory but only when that

data element has to be used by another memory block. Therefore, processors

have to snoop the bus in order to reply to other processors that might request

data whose more recent version is in their cache and not in main memory.

A more recent example of a UMA multiprocessor is the Enterprise 10000

Server [Cha98], which is Sun Microsystems' latest high-end server. It is con-

�gured with 16 interconnected system boards. Each board can have up to

4 UltraSPARC 336MHz processors, up to 4GB of memory and 2 I/O con-

nections. All boards are connected to four address buses and to a 16x16

connection Gigaplane-XB interconnection matrix. This architecture, called

Star�re, is a mixture between a point- to-point processor/memory topology

and a snoopy bus. The system board's memory addresses are interleaved

among the four address buses, which are used to send packets with memory

requests from the processors to the memory. The requests are snooped by all

processors connected to the bus, which allows them to implement a snooping

coherency protocol. Since all processors snoop all requests and update their

caches, the replies from the memory with the data requested by the proces-

sors do not have to be seen and are sent on a dedicated high-throughput
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Gigaplane connection between the memory bank and the processor thereby

optimisingmemory throughput. Hence, the architecture's bottleneck is at the

address bus, which can't handle as many requests as the memory and the Gi-

gaplane interconnection. The Enterprise 10000 runs Sun's Solaris operating

system.

NUMA { Non-Uniform Memory Access. NUMA computers are machines

where each processor has its own memory. However, the processor intercon-

nection allows processors to access another processor's local memory. Natu-

rally, an access to local memory has a much better performance than a read

or write of a remote memory on another processor. The NUMA category

includes replicated memory clusters, massively parallel processors, cache co-

herent NUMA (CC-NUMA such as the SGI Origin 2000) and cache only

memory architecture. Two recent examples of NUMA machines are the SGI

Origin 2000 and Cray Research's T3E. Although NUMA machines give pro-

grammers a global memory view of the processors aggregate memory, per-

formance conscious programmers still tend to try to locate their data on the

local memory portion and avoid remote memory accesses. This is one of the

arguments used in favour of MIMD shared memory architectures.

The SGI Origin 2000 [LL94] is a cache coherent NUMA multiprocessor

designed to scale up to 512 nodes. Each node has one or two R10000 195MHz

processors with up to 4GB of coherent memory and a memory coherence con-

troller called the hub. The nodes are connected via a SGI SPIDER router

chip which routes tra�c between six Craylink network connections. These

connections are used to create a cube topology were each cube vertex has a

SPIDER router with two nodes appended to it and additional three SPIDER

connections are used to link the vertex to its neighbours. This is called a

bristle cube. The remaining SPIDER connection is used to extend these 32

processors (4 processor x 8 vertices) by connecting it to other cubes. The

Origin 2000 uses a directory-based cache coherence protocol similar to the

Stanford DASH protocol [LLT+93]. The Origin 2000 is one of the most in-

novative architectures and is the setting of many recent research papers (e.g.

[JS98] [BW97]).

The Cray T3E is a NUMA massively parallel multicomputer and one of

the most recent machines by the Cray Research Corporation (now owned

by SGI). The Cray T3E has from 6 to 2048 Alpha processors (some con-

�gurations use 600MHz processors) connected in a 3D cube interconnection

topology. It has a 64-bit architecture with a maximum distributed globally

addressable memory of 4 TBytes where remote memory access messages are

automatically generated by the memory controller. Although remote memory

can be addressed, this is not transparent to the programmer. Since there is

no hardware mechanism to keep the Cray's processor caches consistent, they

contain only local data. Each processor runs a copy of Cray's UNICOS mi-

crokernel on top of which language speci�c message-passing libraries support
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parallel processing. The I/O system is distributed over a set of nodes on the

surface of the cube.

NORMA { No Remote Memory Access. In a NORMA machine a processor

is not able to access the memory of another processor. Consequently, all

inter-processor communication has to be done by the explicit exchange of

messages between processors and there is no global memory view. NORMA

architectures are more cost-e�ective since they don't need all the hardware

infrastructure associated with allowing multiple processor to access the same

memory unit and therefore provide more raw processing power for a lower

price at the expense of the system's programming model's friendliness.

The CM-5 [TMC90b] by the Thinking Machine Corporation is a MIMD

machine, which contrasts with the earlier SIMD CM-1 and CM-2, a further

sign of the general tendency of vendors to concentrate on MIMD architec-

tures. The CM-5 is a private memory NORMAmachine with a special type of

processor interconnection called a fat tree. In a fat tree architecture, proces-

sors are the leaves of an interconnection tree where the bandwidth is bigger at

the branches placed higher on the tree. This special interconnection reduces

the bandwidth degradation implied by an increase of the distance between

processors and it also enables bandwidth to remain constant as the number

of processors grows. Each node in a CM-5 has a SPARC processor, a 64k

cache and up to 32MB of local 64 bit-word memory. The CM-5 processors,

which run a microkernel, are controlled by a control processor running UNIX,

which serves as the user front end.

The Intel Paragon Supercomputer [Div95] is a 2D rectangular mesh of

up to 4096 Intel i860 XP processors. This supercomputer with its 50Mhz

42 MIPS processors connected point-to-point at 200MByte/sec full duplex

competed for a while with the CM-2 for the title of the "world's fastest su-

percomputer". The processor mesh is supported by I/O processors connected

to hard disks and other I/O devices. The Intel Paragon runs the OSF/1 op-

erating system, which is based on Mach.

In conclusion, it should be said that, after a period when very varied

designs coexisted, parallel architectures are converging towards a generalized

use of shared memory MIMD machines. There are calculus intensive domains

were NORMA machines, such as the CRAY T3-E, are used but the advan-

tages o�ered by the SMP architecture, such as the ease of programming,

standard operating systems, use of standard hardware components and soft-

ware portability, have overwhelmed the parallel computing market.

2.2 Parallel Operating Systems

There are several components in an operating system that can be parallelized.

Most operating systems do not approach all of them and do not support par-

allel applications directly. Rather, parallelism is frequently exploited by some

additional software layer such as a distributed �le system, distributed shared
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memory support or libraries and services that support particular parallel

programming languages while the operating system manages concurrent task

execution.

The convergence in parallel computer architectures has been accompanied

by a reduction in the diversity of operating systems running on them. The

current situation is that most commercially available machines run a 
avour

of the UNIX OS (Digital UNIX, IBM AIX, HP UX, Sun Solaris, Linux).

Others run a UNIX based microkernel with reduced functionality to optimise

the use of the CPU, such as Cray Research's UNICOS. Finally, a number

of shared memory MIMD machines run Microsoft Windows NT (soon to be

superseded by the high end variant of Windows 2000).

There are a number of core aspects to the characterization of a parallel

computer operating system: general features such as the degrees of coordi-

nation, coupling and transparency; and more particular aspects such as the

type of process management, inter-process communication, parallelism and

synchronization and the programming model.

2.2.1 Coordination. The type of coordination among processors in paral-

lel operating systems is a distinguishing characteristic, which conditions how

applications can exploit the available computational nodes. Furthermore, ap-

plication parallelism and operating system parallelism are two distinct issues:

While application concurrency can be obtained through operating system

mechanisms or by a higher layer of software, concurrency in the execution of

the operating system is highly dependant on the type of processor coordina-

tion imposed by the operating system and the machine's architecture. There

are three basic approaches to coordinating processors:

{ Separate supervisor - In a separate supervisor parallel machine each node

runs its own copy of the operating system. Parallel processing is achieved

via a common process management mechanism allowing a processor to

create processes and/or threads on remote machines. For example, in a

multicomputer like the Cray T3E, each node runs its own independent

copy of the operating system. Parallel processing is enabled by a concur-

rent programming infrastructure such as an MPI library (see Section 4.)

whereas I/O is performed by explicit requests to dedicated nodes. Having

a front-end that manages I/O and that dispatches jobs to a back-end set of

processors is the mainmotivation for separate supervisor operating system.

{ Master-slave - A master-slave parallel operating system architecture as-

sumes that the operating system will always be executed on the same

processor and that this processor will control all shared resources and in

particular process management. A case of master-slave operating system,

as we saw above, is the CM-5. This type of coordination is particularly

adapted to single purpose machines running applications that can be bro-

ken into similar concurrent tasks. In these scenarios, central control may

be maintained without any penalty to the other processors' performance

since all processors tend to be beginning and ending tasks simultaneously.
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{ Symmetric - Symmetric OSs are the most common con�guration currently.

In a symmetric parallel OS, any processor can execute the operating system

kernel. This leads to concurrent accesses to operating system components

and requires careful synchronization. In Section 3. we will discuss the rea-

sons for the popularity of this type of coordination.

2.2.2 Coupling and transparency. Another important characteristic in

parallel operating systems is the system's degree of coupling. Just as in the

case of hardware where we can speak of loosely coupled (e.g. network of

workstations) and highly coupled (e.g. vector parallel multiprocessors) archi-

tectures, parallel OS can be meaningfully separated into loosely coupled and

tightly coupled operating systems.

Many current distributed operating systems have a highly modular archi-

tecture. There is therefore a wide spectrum of distribution and parallelism in

di�erent operating systems. To see how in
uential coupling is in forming the

abstraction presented by a system, consider the following extreme examples:

on the highly coupled end a special purpose vector computer dedicated to

one parallel application, e.g. weather forecasting, with master-slave coordi-

nation and a parallel �le system, and on the loosely coupled end a network

of workstations with shared resources (printer, �le server) running each their

own application and maybe sharing some client-server applications.

Within the spectrum of operating system coupling there are three land-

mark types:

{ Network Operating Systems - These are implementations of a loosely cou-

pled operating systems on top of loosely coupled hardware. Network op-

erating systems are the software that supports the use of a network of

machines and provide users that are aware of using a set of computers,

with facilities designed to ease the use of remote resources located over

the network. These resources are made available as services and might be

printers, processors, �le systems or other devices. Some resources, of which

dedicated hardware devices such as printers, tape drives, etc... are the clas-

sical example, are connected to and managed by a particular machine and

are made available to other machines in the network via a service or dae-

mon. Other resources, such as disks and memory, can be organized into true

distributed systems, which are seamlessly used by all machines. Examples

of basic services available on a network operating system are starting a

shell session on a remote computer (remote login), running a program on

a remote machine (remote execution) and transferring �les to and from

remote machines (remote �le transfer).

{ Distributed Operating Systems - True distributed operating systems cor-

respond to the concept of highly coupled software using loosely coupled

hardware. Distributed operating systems aim at giving the user the possi-

bility of transparently using a virtual uniprocessor. This requires having an

adequate distribution of all the layers of the operating system and provid-

ing a global uni�ed view over process management, �le system and inter-
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process communication, thereby allowing applications to perform trans-

parent migration of data, computations and/or processes. Distributed �le

systems (e.g. AFS, NFS) and distributed shared memories (e.g. Tread-

Marks [KDC+94], Midway[BZ91], DiSoM [GC93]) are the most common

supports for migrating data. Remote procedure call (e.g. Sun RPC, Java

RMI, Corba) mechanisms are used for migration of computations. Process

migration is a less common feature. However, some experimental platforms

have supported it [Nut94], e.g. Sprite, Emerald.

{ Multiprocessor Timesharing OS - This case represents the most common

con�guration of highly coupled software on top of highly coupled software.

A multiprocessor is seen by the user as a powerful uniprocessor since it

hides away the presence of multiple processor and an interconnection net-

work. We will discuss some design issues of SMP operating systems in the

following section.

2.2.3 HW vs. SW. As we mentioned a parallel operating system provides

users with an abstract computational model over the computer architecture.

It is worthwhile showing that this view can be achieved by the computer's

parallel hardware architecture or by a software layer that uni�es a network

of processors or computers. In fact, there are implementations of every com-

putational model both in hardware or software systems:

{ The hardware version of the shared memory model is represented by sym-

metric multiprocessors whereas the software version is achieved by unifying

the memory of a set of machines by means of a distributed shared memory

layer.

{ In the case of the distributed memory model there are multicomputer ar-

chitectures where accesses to local and remote data are explicitly di�erent

and, as we saw, have di�erent costs. The equivalent software abstractions

are explicit message-passing inter-process communication mechanisms and

programming languages.

{ Finally, the SIMD computation model of massively parallel computers is

mimicked by software through data parallel programming.Data parallelism

is a style of programming geared towards applying parallelism to large data

sets, by distributing data over the available processors in a "divide and

conquer" mode. An example of a data parallel programming language is

HPF (High Performance Fortran).

2.2.4 Protection. Parallel computers, being multi-processing environments,

require that the operating system provide protection among processes and

between processes and the operating system so that erroneous or malicious

programs are not able to access resources belonging to other processes. Pro-

tection is the access control barrier, which all programs must pass before

accessing operating system resources. Dual mode operation is the most com-

mon protection mechanism in operating systems. It requires that all oper-

ations that interfere with the computer's resources and their management
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is performed under operating system control in what is called protected or

kernel mode (in opposition to unprotected or user mode). The operations

that must be performed in kernel mode are made available to applications as

an operating system API. A program wishing to enter kernel mode calls one

of these system functions via an interruption mechanism, whose hardware

implementation varies among di�erent processors. This allows the operating

system to verify the validity and authorization of the request and to exe-

cute it safely and correctly using kernel functions, which are trusted and

well-behaved.

3. Operating Systems for Symmetric Multiprocessors

Symmetric Multiprocessors (SMP) are currently the predominant type of par-

allel computers. The root of their popularity is the ease with which both

operating systems and applications can be ported onto them. Applications

programmed for uniprocessors can be run on an SMP unchanged, while port-

ing a multitasking operating system onto an SMP requires minor changes.

Therefore, no other parallel architecture is so 
exible running both parallel

and commodity applications on top of generalist operating systems (UNIX,

NT). The existence of several processors raises scalability and concurrency

issues, e.g. hardware support for cache coherence (see Section 2.), for the

initialisation of multiple processors and the optimisation of processor inter-

connection. However, regarding the operating system, the speci�c aspects to

be considered in a SMP are process synchronization and scheduling.

3.1 Process Management

A process is a program's execution context. It is a set of data structures that

specify all the information needed to execute a program: its execution state

(global variables), the resources it is using (�les, processes, synchronization

variables), its security identity and accounting information.

There has been an evolution in the type of tasks executed by computers.

The state description of a traditional process contains much more information

than what is needed to describe a simple 
ow of execution and therefore

commuting between processes can be a considerably costly operation. Hence,

most operating systems have extended processes with lightweight processes

(or threads) that represent multiple 
ows of execution within the process

addressing space. A thread needs to maintain much less state information

than a process, typically it is described by its stack, CPU state and a pointer

to the function it is executing, since it shares process resources and parts of

the context with other threads within the same address space. The advantage

of threads is that due to their low creation and context switch performance

penalties they become a very interesting way to structure computer programs

and to exploit parallelism.
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There are operating systems, which provide kernel threads (Mach, Sun

Solaris), while others implement threads as a user level library. In particular,

user threads, i.e. threads implemented as a user level library on top of a

single process, have very low commuting costs. The major disadvantage of

user-level threads is the fact that the assignment of tasks to threads at a

user-level is not seen by the operating system which continues to schedule

processes. Hence, if a thread in a process is blocked on a system call (as is

the case in many UNIX calls), all other threads in the same process become

blocked too.

Therefore, support for kernel threads has gradually appeared in conven-

tional computer operating systems. Kernel threads overcame the above dis-

advantages of user level threads and increased the performance of the system.

A crucial aspect of thread performance is the locking policy within the

thread creation and switching functions. Naive implementations of these fea-

tures, guarantee their execution as critical sections, by protecting the thread

package with a single lock. More e�cient implementations use �ner and more

careful locking implementations.

3.2 Scheduling

Scheduling is the activity of assigning processor time to the active tasks (pro-

cesses or threads) in a computer and of commuting them. Although sophisti-

cated schedulers implement complex process state machines there is a basic

set of process (or thread) states that can be found in any operating system:

A process can be running, ready or blocked. A running process is currently

executing on one of the machine's processor whereas a ready process is able

to be executed but has no available processor. A blocked process is unable to

run because it is waiting for some event, typically the completion of an I/O

operation or the occurrence of a synchronization event.

The run queue of an operating systems is a data structure in the ker-

nel that contains all processes that are ready to be executed and await an

available processor. Typically processes are enqueued in a run queue and

are scheduled to the earliest available processor. The scheduler executes an

algorithm, which places the running task in the run queue, selects a ready

task from the run queue and starts its execution. At operating system level,

what unites the processors in an SMP is the existence of a single run queue.

Whenever a process is to be removed from a processor, this processor runs

the scheduling algorithm to select a new running process. Since the scheduler

can be executed by any processor, it must be run as a critical section, to

avoid the simultaneous choice of a process by two separate executions of the

scheduler. Additionally, most SMP provide methods to allow a process to run

only on a given processor.

The simplest scheduling algorithm is �rst-come �rst-served. In this case,

processes are ordered according to their creation order and are scheduled

in that order typically by means of �rst-in �rst-out (FIFO) queue. A slight
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improvement in overall performance can be achieved by scheduling jobs ac-

cording to their expected duration. Estimating this duration can be a tricky

issue.

Priority scheduling is the approach taken in most modern operating sys-

tem. Each job is assigned a priority and scheduled according to that value.

Jobs with equal priorities are scheduled in FIFO order.

Scheduling can be preemptive or non-preemptive. In preemptive schedul-

ing, a running job can be removed from the processor if another job with

a higher priority becomes active. The advantage of non-preemption is sim-

plicity: by avoiding to preempt a job, the operating system knows that the

process has left the processor correctly without leaving its data structures or

the resources it uses corrupted. The disadvantage of non-preemption is the

slowness of reaction to hardware events, which cannot be handled until the

running process has relinquished the processor.

There are a number of measures of the quality of an OS' scheduling algo-

rithm. The �rst is CPU utilization. We would like to optimise the amount of

time that the machine's processors are busy. CPU utilization is not however

a user oriented metric. Users are more interested in other measures, notably

the amount of time a job needs to run and, in an interactive system, how

responsive the machine is, i.e. whether a user-initiated request yields results

quickly or not. A measure that translates all these concerns well is the aver-

age waiting time of a process, i.e. the amount of time a process spends in the

waiting queue.

The interested reader may �nd more about scheduling strategies in Chap-

ter VI.

3.3 Process Synchronization

In an operating system with multiple threads of execution, accesses to shared

data structures require synchronization in order to guarantee that these are

used as critical sections. Gaining permission to enter a critical section, which

involves testing whether another process has already an exclusive access to

this section, and if not, locking all other processes out of it, has to be per-

formed atomically. This requires hardware mechanisms to guarantee that this

sequence of actions is not preempted. Mutual exclusion in critical sections is

achieved by requiring that a lock is taken before entering the critical section

and by releasing it after exiting the section.

The two most common techniques for manipulating locks are the test-

and-set and swap operations. Test-and-set atomically sets a lock to its locked

state and returns the previous state of that lock to the caller process. If the

lock was not set, it is set by the test and set call. If it was locked, the calling

process will have to wait until it is unlocked.

The swap operation exchanges the contents of two memory locations.

Swapping the location of a lock with a memory location containing the value

corresponding to its locked state is equivalent to a test-and-set operation.
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Synchronizing processes or threads on a multiprocessor poses an addi-

tional requirement. Having a busy-waiting synchronization mechanism, also

known as a spin lock, in which a process is constantly consuming bandwidth

on the computer's interconnection to test whether the lock is available or

not, as in the case of test-and-set and swap, is ine�cient. Nevertheless, this

is how synchronization is implemented at the hardware level in most SMP,

e.g. those using Intel processors. An alternative to busy-waiting is suspending

processes which fail to obtain a lock and sending interrupt calls to all sus-

pended processes when the lock is available again. Another synchronization

primitive which avoids spin a lock are semaphores. Semaphores consist of a

lock and a queue, which is manipulated in mutual exclusion, containing all

the processes that failed to acquire the lock. When the lock is freed, it is

given to one of the enqueued processes, which is sent an interrupt call. There

are other variations of synchronization primitives such as monitors [Hoa74],

eventcount and sequencers [RK79], guarded commands [Dij75] and others

but the examples above illustrate clearly the issues involved in SMP process

synchronization.

3.4 Examples of SMP Operating Systems

Currently, the most important examples of operating systems for parallel

machines are UNIX and Windows NT running on top of the most ubiquitous

multi-processor machines, which are symmetric multiprocessors.

3.4.1 UNIX. UNIX is one the most popular and certainly the most in
uen-

tial operating system ever built. Its development began in 1969 and from then

on countless versions of UNIX have been created by most major computer

companies (AT&T, IBM, Sun, Microsoft, DEC, HP). It runs on almost all

types of computers from personal computers to supercomputers and will con-

tinue to be a major player in operating system practice and research. There

are currently around 20 di�erent 
avours of UNIX being released. This di-

versity led to various e�orts to standardize UNIX and so there is an ongoing

e�ort by the Open Group, supported by all major UNIX vendors, to create

a uni�ed interface for all UNIX 
avours.

Architecture. UNIX was designed as a time-sharing operating system where

simplicity and portability are fundamental. UNIX allows for multiple pro-

cesses that can be created asynchronously and that are scheduled according

to a simple priority algorithm. Input and output in UNIX is as similar as pos-

sible among �les, devices and inter-process communication mechanisms. The

�le system has a hierarchical structure and includes the use of demountable

volumes. UNIX was initially a very compact operating system. As technology

progressed, there have been several additions to it such as support for graph-

ical interfaces, networking and SMP that have increased its size considerably,

but UNIX has always retained its basic design traits.
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UNIX is a dual mode operating system: the kernel is composed of a set

of components that are placed between the system call interface provided to

the user and the kernel's interface to the computer's hardware. The UNIX

kernel is composed of:

{ Scheduler - The scheduler is the algorithm which decides which process

is run next (see Process management below). The scheduling algorithm is

executed by the process occupying the processor when it is about to relin-

quish it. The context switch between processes is performed by the swapper

process, which is one of the two processes constantly running (the other

one is the init process which is the parent process of all other processes on

the machine).

{ File system - A �le in UNIX is a sequence of bytes, and the operating system

does not recognize any additional structure in it. UNIX organizes �les in

a hierarchical structure that is captured in a metadata structure called

the inode table. Each entry in the inode table represents a �le. Hardware

devices are represented in the UNIX �le system in the /dev directory which

contributes to the interface standardization of UNIX kernel components.

This way, devices can be read and written just like �les. Files can be known

in one or more directories by several names, which are called links. Links

can point directly to a �le within the same �le system (hard links) or

simply refer to the name of another �le (symbolic links). UNIX supports

mount points, i.e. any �le can be a reference to another physical �le system.

inodes have a bit for indicating whether they are mount points or not.

If a �le that is a mount point is accessed, a table with the equivalence

between �lenames and mounted �le system, the mount table, is scanned

to �nd the corresponding �le system. UNIX �lenames are sequences of

�lenames separated by '/' characters. Since UNIX supports mount points

and symbolic links, �lename parsing has to be done on a name by name

basis. This is required because any �lename along the path to the �le being

ultimately referred to can be a mount point or symbolic link and indirect

the path to the wanted �le.

{ Inter-process communication (IPC) mechanisms - Pipes, sockets and, in

more recent versions of UNIX, shared memory are the mechanisms that

allow processes to exchange data (see below).

{ Signals - Signals are a mechanism for handling exceptional conditions.

There are 20 di�erent signals that inform a process of events such as arith-

metical over
ow, invalid system calls, process termination, terminal inter-

rupts and others. A process checks for signals sent to it when it leaves the

kernel mode after ending the execution of a system call or when it is inter-

rupted. With the exception of signals to stop or kill a process, a process can

react to signals as it wishes by de�ning a function, called a signal handler,

which is executed the next time it receives a particular signal.

{ Memory management - Initially, memory management in UNIX was based

on a swapping mechanism. Current versions of UNIX resort also to paging
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to manage memory. In non-paged UNIX, processes were kept in a con-

tiguous address space. To decide where to create room for a process to be

brought from disk into memory (swapped-in), the swapper process used a

criterion based on the amount of idle time or the age of processes in mem-

ory to choose which one to send to disk (swap-out). Conversely, the amount

of time a process has been swapped out was the criterion to consider it for

swap-in.

Paging has two great advantages: it eliminates external memory fragmen-

tation and it eliminates the need to have complete processes in memory,

since a process can request additional pages as it goes along. When a pro-

cess requests a page and there isn't a page frame in memory to place the

page, another page will have to be removed from the memory and written

to disk.

The target of any page replacement algorithm is to replace the page that

will not be used for the longest time. This ideal criterion cannot be ap-

plied because it requires knowledge of the future. An approximation to this

algorithm is the least-recently-used (LRU) algorithm which removes from

memory the page that hasn't been accessed for the longest time. However,

LRU requires hardware support to be e�ciently implemented. Since most

systems provide a reference bit on each page that is set every time the

page is accessed, this can be used to implement a related page replacement

algorithm, one which can be found in some implementations of UNIX, e.g.

4.3BSD, the second chance algorithm. It is a modi�ed FIFO algorithm.

When a page is selected for replacement its reference bit is �rst checked. If

this is set, it is then unset but the page gets a second chance. If that page

is later found with its reference bit unset it will be replaced.

Several times per second, there is a check to see if it is necessary to run

the page replacement algorithm. If the number of free page frames falls

beneath a threshold, the pagedaemon runs the page replacement algorithm.

In conclusion, it should be mentioned that there is an interaction between

swapping, paging and scheduling: as a process looses priority, accesses to

its pages become more infrequent, pages are more likely to be paged out

and the process risks being swapped out to disk.

Process management. In the initial versions of UNIX, the only execution con-

text that existed were processes. Later several thread libraries were developed

(e.g. POSIX threads). Currently, there are UNIX releases that include ker-

nel threads (e.g. Sun's Solaris 2) and the corresponding kernel interfaces to

manipulate them.

In UNIX, a process is created using the fork system call, which generates

a process identi�er (or pid). A process that executes the fork system call

receives a return value, which is the pid of the new process, i.e. its child

process, whereas the child process itself receives a return code equal to zero.

As a consequence of this process creation mechanism, processes in UNIX are

organized as a process tree. A process can also replace the program it is
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executing with another one by means of the execve system call. Parent and

children processes can be synchronized by using the exit and wait calls. A

child process can terminate its execution when it calls the exit function and

the parent process can synchronize itself with the child process by calling

wait, thereby blocking its execution until the child process terminates.

Scheduling in UNIX is performed using a simple dynamic priority algo-

rithm, which bene�ts interactive programs and where larger numbers indicate

a lower priority. Process priority is calculated using:

Priority = Processor time +Base priority[+nice]

The nice factor is available for a processor to give other processes a higher

priority. For each quantum that a process isn't executed, it's priority improves

via:

Processor time = Processor time=2

Processes are assigned a CPU slot, called a quantum, which expires by

means of a kernel timeout calling the scheduler. Processes cannot be pre-

empted while executing within a kernel. They relinquish the processor either

because they blocked waiting for I/O or because their quantum has expired.

Inter-process communication. The main inter-process communication mech-

anism in UNIX are pipes. A pipe is created by the pipe system call, which

establishes a reliable unidirectional byte stream between two processes. A

pipe has a �xed size and therefore blocks writer processes trying to exceed

their size. Pipes are usually implemented as �les, although they do not have

a name. However, since pipes tend to be quite small, they are seldom written

to disk. Instead, they are manipulated in the block cache, thereby remain-

ing quite e�cient. Pipes are frequently used in UNIX as a powerful tool for

concatenating the execution of UNIX utilities. UNIX shell languages use a

vertical bar to indicate that a program's output should be used as another

program's input, e.g. listing a directory and then printing it (ls j lpr).
Another UNIX IPC mechanism are sockets. A socket is a communica-

tion endpoint that provides a generic interface to pipes and to networking

facilities. A socket has a domain (UNIX, Internet or Xerox Network Ser-

vices), which determines its address format. A UNIX socket address is a �le

name while an Internet socket uses an Internet address. There are several

types of sockets. Datagram sockets, supported on the Internet UDP proto-

col, exchange packets without guarantees of delivery, duplication or ordering.

Reliable delivered message sockets should implement reliable datagram com-

munication but they are not currently supported. Stream sockets establish

a data stream between two sockets, which is duplex, reliable and sequenced.

Raw sockets allow direct access to the protocols that support other socket

types, e.g. to access the IP or Ethernet protocols in the Internet domain.

Sequenced packet sockets are used in the Xerox AF NS protocol and are

equivalent to stream sockets with the addition of record boundaries.

A socket is created with a call to socket, which returns a socket descriptor.

If the socket is a server socket, it must be bound to a name (bind system call)
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so that client sockets can refer to it. Then, the socket informs the kernel that

it is ready to accept connections (listen) and waits for incoming connections

(accept). A client socket that wishes to connect to a server socket is also

created with a socket call and establishes a connection to a server socket.

Its name is known after performing a connect call. Once the connection is

established, data can be exchanged using ordinary read and write calls.

A system call complementary to UNIX IPC mechanisms is the select call.

It is used by a process that wishes to multiplex communication on several

�les or socket descriptors. A process passes a group of descriptors into the

select call that returns the �rst on which activity is detected.

Shared memory support has been introduced in several recent UNIX ver-

sions, e.g. Solaris 2. Shared memory mechanisms allow processes to declare

shared memory regions (shmget system call) that can then be referred to via

an identi�er. This identi�er allows processes to attach (shmat) and detach

(shmdt) a shared memory region to and from its addressing space. Alterna-

tively, shared memory can be achieved via memory-mapped �les. A user can

choose to map a �le (mmap/munmap) onto a memory region and, if the �le is

mapped in a shared mode, other processes can write to that memory region

thereby communicating among them.

Internal parallelism. In a symmetric multiprocessor system, all processors

may execute the operating system kernel. This leads to synchronization prob-

lems in the access to the kernel data structures. The granularity at which

these data structures are locked is highly implementation dependent. If an

operating system has a high locking cost it might prefer to lock at a higher

granularity but lock less often. Other systems with a lower locking cost might

prefer to have complex �ne-grained locking algorithms thereby reducing the

probability of having processes blocked on kernel locks to a minimum. An-

other necessary adaptation besides locking of kernel data structures is to

modify the kernel data structures to re
ect the fact that there is a set of

processors.

3.4.2 Microsoft Windows NT. Windows NT [Cus93] is the high end of

Microsoft Corporation's operating systems range. It can be executed on sev-

eral di�erent architectures (Intel x86, MIPS, Alpha AXP, PowerPC) with

up to 32 processors. Windows NT can also emulate several OS environments

(Win32, OS/2 or POSIX) although the primary environment is Win32. NT is

a 32-bit operating system with separate per-process address spaces. Schedul-

ing is thread based and uses a preemptive multiqueue algorithm. NT has an

asynchronous I/O subsystem and supports several �le systems: FAT, high-

performance �le system and the native NT �le system (NTFS). It has inte-

grated networking capabilities which support 5 di�erent transport protocols:

NetBeui, TCP/IP, IPX/SPX, AppleTalk and DLC.

Architecture. Windows NT is a dual mode operating system with user-level

and kernel components. It should be noted that not the whole kernel is ex-
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ecuted in kernel mode. The Windows NT components that are executed in

kernel mode are:

{ Executive - The executive is the upper layer of the operating system and

provides generic operating system services for managing processes, threads

and memory, performing I/O, IPC and ensuring security.

{ Device Drivers - Device drivers provide the executive with a uniform in-

terface to access devices independently of the hardware architecture the

manufacturer uses for the device.

{ Kernel - The kernel implements processor dependent functions and related

functions such as thread scheduling and context switching, exception and

interrupt dispatching and OS synchronization primitives

{ Hardware Abstraction Layer (HAL) - All these components are layered

on top of a hardware abstraction layer. This layer hides hardware speci�c

details, such as I/O interfaces and interrupt controllers, from the NT ex-

ecutive thereby enhancing its portability. For example, all cache coherency

and 
ushing in a SMP is hidden beneath this level.

The modules that are executed in user mode are:

{ System & Service Processes - These operating system processes provide

several services such as session control, logon management, RPC and event

logging.

{ User Applications

{ Environment Subsystems - The environment subsystems use the generic

operating system services provided by the executive to give applications

the interface of a particular operating system. NT includes environment

subsystems for MS-DOS, 16 bit Windows, POSIX, OS/2 and for its main

environment, the Win32 API.

In NT, operating system resources are represented by objects. Kernel

objects include processes and threads, �le system components (�le han-

dles, logs), concurrency control mechanisms (semaphores, mutexes, waitable

timers) and inter-process communication resources (pipes, mailboxes, com-

munication devices). In fact, most of the objects just mentioned are NT exec-

utive interfaces to low-level kernel objects. The other two types of Windows

NT OS objects are the user and graphical interface objects which compose

the graphical user interface and are private to the Win32 environment.

Calls to the kernel are made via a protected mechanism that causes an

exception or interrupt. Once the system call is done, execution returns to

user-level by dismissing the interrupt. These are calls to the environment

subsystems libraries. The real calls to the kernel libraries are not visible at

user-level.

Security in NT is based on two mechanisms: processes, �les, printers and

other resources have an access control list and active OS objects (processes

and threads) have security tokens. These tokens identify the user on behalf

of which the process is executing, what privileges that user possesses and can
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therefore be used to check access control when an application tries to access

a resource.

Process management. A Windows NT process is a data structure where the

resources held by an execution of a program are managed and accounted for.

This means that a process keeps track of the virtual addressing space and the

corresponding working set its program is using. Furthermore an NT process

includes a security token identifying its permissions, a table containing the

kernel objects it is using and a list of threads. A process' handle table is

placed in the system's address space and therefore protected from user-level

"tampering".

In NT, a process does not represent a 
ow of execution. Program execution

is always performed by a thread. In order to trace an execution a thread is

composed of a unique identi�er, a set of registers containing processor state,

a stack for use in kernel mode and a stack for use in user mode, a pointer

to the function it is executing, a security access token and its current access

mode.

The Windows NT kernel has a multi-queue scheduler. It has 32 di�erent

priority levels. The upper 15 are reserved for real time tasks. Scheduling is

preemptive and strictly priority driven. There is no guaranteed execution

period before preemption and threads can be preempted in kernel mode.

Within a priority level, scheduling is time-sliced and round robin. If a thread

is preempted it goes back to the head of its priority level queue. If it exhausts

its CPU quantum, it goes back to the tail of that queue.

Regarding multiprocessor scheduling, each task has an ideal processor,

which is assigned, at the thread's creation, in a round-robin fashion among all

processors. When a thread is ready, and more than one processor is available,

the ideal processor is chosen. Otherwise, the last processor where the thread

ran is used. Finally, if the thread has not been waiting for too long, the

scheduler checks to see if the next thread in the ready state can run on its

ideal processor. If it can, this second thread is chosen. A thread can run on

any processor unless an a�nitymask is de�ned. An a�nity mask is a sequence

of bits where each represents a processor and which can be set to restrict the

processors where a thread is allowed to execute. However, this this forced

thread placement, called hard a�nity, may lead to a reduced execution of

the thread.

Inter-process communication. Windows NT provides several di�erent inter-

process communication (IPC) mechanisms:

Windows sockets. The Windows Sockets API provides a standard Win-

dows interface to several communication protocols with di�erent addressing

schemes, such as TCP/IP and IPX. The Windows Sockets API was devel-

oped to accomplish two things. One was to migrate the sockets interface,

developed for UNIX BSD in the early 1980s, into the Windows NT environ-

ments, and the other was to establish a new standard interface capable of

supporting emerging network capabilities such as real time communications
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and QoS (quality of service) guarantees. The Windows Sockets, currently in

their version 2, are an interface for networking, not a protocol. As they do

not implement a particular protocol, the Windows Sockets do not a�ect the

data being transferred through them. The underlying transport protocol can

be of any type. Besides the usual datagram and stream sockets, it can, for

example, use a protocol designed for multimedia communications. The trans-

port protocol and name providers are placed beneath the Windows Socket

layer.

Local Procedure Calls. LPC is a message-passing facility provided by the NT

executive. The LPC interface is similar to the standard RPC but it is opti-

mised for communication between two processes on the same machine. LPC

communication is based on ports. A port is a kernel object that can have

two types: connection port and communication port. Connections are estab-

lished by sending a connect request to another process' connection port. If

the connection is accepted, communication is then established via two newly

created ports, one on each process. LPC can be used to pass messages di-

rectly through the communication ports or to exchange pointers into memory

regions shared by both communicating processes.

Remote Procedure Calls (RPC). Apart from the conventional inter-computer

invocation procedure, the Windows NT RPC facility can use other IPC mech-

anisms to establish communications between the computers on which the

client and the server portions of the application exist. If the client and server

are on the same computer, the Local Procedure Call (LPC) mechanism can be

used to transfer information between processes and subsystems. This makes

RPC the most 
exible and portable IPC choice in Windows NT.

Named pipes and mailslots. Named pipes provide connection-oriented mes-

saging that allows applications to share memory over the network. Windows

NT provides a special application programming interface (API) that increases

security when using named pipes.

The mailslot implementation in Windows NT is a subset of the Microsoft

OS/2 LAN Manager implementation. Windows NT implements only second-

class mailslots. Second class mailslots provide connectionless messaging for

broadcast messages. Delivery of the message is not guaranteed, though the

delivery rate on most networks is high. It is most useful for identifying other

computers or services on a network. The Computer Browser service under

Windows NT uses mailslots. Named pipes and mailslots are actually imple-

mented as �le systems. As �le systems, they share common functionality,

such as security, with the other �le systems. Local processes can use named

pipes and mailslots without going through the networking components.

NetBIOS. NetBIOS is a standard programming interface in the PC envi-

ronment for developing client-server applications. NetBIOS has been used

as an IPC mechanism since the early 1980s. From a programming aspect,

higher level interfaces such as named pipes and RPCs are superior in their
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exibility and portability. A NetBIOS client-server application can commu-

nicate over various protocols: NetBEUI protocol (NBF), NWLink NetBIOS

(NWNBLink), and NetBIOS over TCP/IP (NetBT).

Synchronization. In Windows NT, the concept of having entities through

which threads can synchronize their activities is integrated in the kernel ob-

ject architecture. The synchronization objects, objects on which a thread can

wait and be signalled, in the NT executive are: process, thread, �le, event,

event pair, semaphore, timer and mutant (seen at Win32 level as a mutex).

Synchronization on these objects di�ers in the conditions needed for the ob-

ject to signal the threads that are waiting on it. The circumstances in which

synchronization objects signal waiting threads are: processes when their last

thread terminates, threads when they terminate, �les when an I/O opera-

tion �nishes, events when a thread sets them, semaphores when their counter

drops to zero, mutants when holding threads release them, timers when their

set time expires. Synchronization is made visible to Win32 applications via

a generic wait interface (WaitForSingleObject or WaitForMultipleObjects).

4. Operating Systems for NORMA environments

In Section 2. we showed that parallel architectures have been restricted

mainly to symmetric multiprocessors, multicomputers, computer clusters and

networks of workstations. There are some examples of true NORMA ma-

chines, notably the Cray T3E. However since networks of workstations and/or

personal computers are the most challenging NORMA environments today,

we chose to approach the problem of system level support for NORMA par-

allel programming to raise some of the problems that arise in the network of

workstations environment. Naturally, most of those problems are also highly

prominent in NORMA multiprocessors.

While in a multiprocessor every processor is exactly like every other in

capability, resources, software and communication speed, in a computer net-

work that is not the case. As a matter of fact, the computers in a network

are most probably heterogeneous, i.e. they have di�erent hardware and/or

operating systems. More precisely, the heterogeneity aspects that must be

considered, when exploiting a set of computers in a network, are the follow-

ing: architecture, data format, computational speed, machine and network

load.

Heterogeneity of architecture means that the computers in the network

can be Intel personal computers, workstations, shared-memory multiproces-

sors, etc... which poses the problems of incompatible binary formats and

di�erent programming methodologies.

Data format heterogeneity is an important obstacle to parallel computing

because it prevents computers from correctly interpreting the data exchanged

among them.
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The heterogeneity of computational speed may result in unused processing

power because the same task can be accomplished much faster in a multi-

processor than in a personal computer, for example. Thus, the programmer

must be careful at splitting the tasks among the computers in the network

so that no computer sits idle.

The computers in the network have di�erent usage patterns, which lead

to di�erent loads. The same reasoning applies to network load. This may lead

to a situation in which a computer takes a lot of time to execute a simple

task, because it is too loaded, or stays idle, because it is waiting for some

message.

All these problems must be solved in order to take advantage of the bene-

�ts of parallel computing on networks of computers, which can be summarized

as follows:

{ low price given that the computers already exist;

{ optimised performance by assigning the right task to the most appropriate

computer (taking into account its architecture, operating system and load);

{ the resources available can easily grow by simply connecting more comput-

ers to the network (possibly with more advanced technologies);

{ programmers still use familiar tools such as in a single computer (editors,

compilers, etc.)

4.1 Architectural Overview

Currently, stand-alone workstations and personal computers are very ubiq-

uitous and almost always connected by means of a network. Each machine

provides a reasonable amount of processing power and memory which re-

mains unused for long periods of time. The challenge is to provide a platform

that allows programmers to take advantage of such resources easily. Thus,

the computational power of such computers can be applied to solve a variety

of computationally intensive applications. In other words, this network-based

approach can be e�ective in coupling several computers, resulting in a con�g-

uration that might be economically and technically di�cult to achieve with

supercomputer hardware.

On the other extreme of the spectrum of NORMA systems are of course

multicomputers generally running separate supervisor microkernels. These

machines derive their performance from high performance interconnection

and from very compact and therefore very fast operating system. The paral-

lelism is exploited not directly by the operating system but by some language

level functionality. Since each node is a complete processor and not a simpli-

�ed processing node as in SIMD supercomputers, the tasks it performs can

be reasonably complex.

System level support for NORMA architectures involves providing mech-

anism to overcome the physical processor separation and to coordinate ac-

tivities on processors running independent operating systems. This section
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discusses some of these basic mechanisms: distributed process management,

parallel �le systems and distributed recovery.

4.2 Distributed Process Management

In contrast with the SMP discussed in the previous section that are generally

used as glori�ed uniprocessor in the sense that they execute an assorted set

of applications, NORMA systems are targeted at parallel applications. Load

balancing is an important feature to increase the performance of many parallel

applications. However, e�cient load balancing, in particular receiver initiated

load balancing protocols, where processors request tasks from others, requires

an underlying support for process migration.

4.2.1 Process migration. Process migration [Nut94] is the ability to move

an executing process from one processor to another. It is a very useful func-

tionality although it is costly to execute and challenging to implement. Ba-

sically, migration consists of halting a process in a consistent state in the

current processor, packing a complete description of its state, choosing a new

processor for the process, shipping the state description to the destination

processor and restarting it there. Process migration is most frequently mo-

tivated by the need to balance the load of a parallel application. However,

it is also useful for reducing inter-process communication (processes commu-

nicating with increasing frequency should be moved to the same processor),

recon�guring a system for administrative reasons or exploiting a special ca-

pability speci�c of a particular processor. There are several systems that

implemented process migration such as Sprite[Dou91], Condor [BLL92] or

Accent [Zay87]. More recently, as migration capabilities where introduced in

object oriented distributed and parallel systems, the interest in migration

has shifted into object migration, or mobile objects as in Emerald[MV93] or

COOL[Lea93]. However, the core di�culties remain the same: ensuring that

the migrating entity's state is completely described and capturing, redirect-

ing and replaying all interactions that would have taken place during the

migration procedure.

4.2.2 Distributed recovery. Recovery of a computation in spite of node

failures is achieved via checkpointing, which is the procedure of saving the

state of an ongoing distributed computation so that it can be recovered from

that intermediate state in case of failure. It should be noted that checkpoint-

ing allows a computation to recover from a system failure. However, if an

execution fails due to an error induced by the process' execution itself, the

error will repeat itself after recovery. Another type of failures not addressed

by checkpointing are secondary storage failures. Hard disk failures have to

be addressed by replication using mirrored disks or RAID (cf. Section 8.4 of

Chapter V).

Checkpointing and process migration require very similar abilities from

the system point of view since the complete state of a process must be saved
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so that the processor (the current one in the case of checkpointing or another

in the case of process migration) can be correctly loaded and restarted with

the process' saved state. There are four basic approaches for checkpointing

[EJW96]:

{ Coordinated checkpointing - In coordinated checkpointing, the processes

involved in a parallel execution execute their checkpoints simultaneously

in order to guarantee that the saved system state is consistent. Thus, the

processes must periodically cooperate in computing a consistent global

checkpoint. Coordinated checkpoints were devised because simplistic pro-

tocols with lack of coordination tend to create a so-called domino e�ect.

The domino e�ect is due to the existence of orphan messages. An orphan

message appears when a process, after sending messages to other processes,

needs to rollback to a previous checkpoint. In that case, there will be pro-

cesses that have received messages, which, from the point of view of the

failed process that has rolled back, haven't been sent. Suppose that in a

group of processes each saves its state independently. Then, if a failure

occurs and a checkpoint has to be chosen in order to rollback to it, it is

di�cult to �nd a checkpoint where no process has orphan messages. As a

result the system will regress inde�nitely trying to �nd one checkpoint that

is consistent for all processors. Coordinated checkpointing basically elimi-

nates the domino e�ect, given that processes always restart from the most

recent global checkpointing. This coordination even allows for processes to

have non-deterministic behaviours. Since all processors are restarted from

the same moment in the computation, the new computation could take

a di�erent execution path. The main problem with this approach is that

it requires the coordination of all the processes, i.e. process autonomy is

sacri�ced and there is a performance penalty to be paid when all processes

have to be stopped in order to save a globally consistent state.

{ Uncoordinated checkpointing - With this technique, processes create check-

points asynchronously and independently of each other. Thus, this ap-

proach allows each process to decide independently when to take check-

points. Given that there is no synchronization among computation, com-

munication and checkpointing, this optimistic recovery technique can toler-

ate the failure of an arbitrary number of processors. For this reason, when

failures are very rare, this technique yields better throughput and response

time than other general recovery techniques.

When a processor fails, processes have to �nd a set of previous checkpoints

representing a consistent system state. The main problem with this ap-

proach is the domino e�ect, which may force processes to undo a large

amount of work. In order to avoid the domino e�ect, all the messages re-

ceived since the last checkpoint was created would have to be logged.

{ Communication-induced checkpointing - This technique complements un-

coordinated checkpoints and avoids the domino e�ect by ensuring that all

processes verify a system-wide constraint before they accept a message



IV. Parallel Operating Systems 193

from the outside world. A number of such constraints that guarantee the

avoidance of a domino e�ect have been identi�ed and this method requires

that any incoming message is accompanied by the necessary information

to verify the constraint. If the constraint is not veri�ed, then a checkpoint

must be taken before passing the message on to the parallel application.

An example of a constraint for communication induced logging is the one

proposed in Programmer Transparent Coordination (PTC) [KYA96] which

requires that each process take a checkpoint if the incoming message makes

it depend on a checkpoint that it did not previously depend upon.

{ Log-based rollback recovery - This approach requires that processes save

their state when they perform a checkpoint and additionally save all data

regarding interactions with the outside world, i.e. emission and reception

of messages. This stops the domino e�ect because the message log bridges

the gap between the checkpoint to which the failed process rolled back and

the current state of the other processes. This technique can even include

non-deterministic events in the process' execution if these are logged too.

A common way to perform logging is to save each message that a process

receives before passing it on to the application code.

During recovery the logged events are replayed exactly as they occurred

before the failure.

The di�erence of this approach with respect to to the previous ones is

that in both, coordinated and uncoordinated checkpointing, the system

restarts the failed processes by restoring a consistent state. The recovery

of a failed process is not necessarily identical to its pre-failure execution

which complicates the interaction with the outside world. On the contrary,

log-based rollback recovery does not have this problem since it recorded all

its previous interactions with the outside world.

There are three variants of this approach: pessimistic logging, optimistic

logging, and causal logging.

In pessimistic logging, the system logs information regarding each non-

deterministic event before it can a�ect the computation, e.g. a message is

not delivered until it is logged.

Optimistic logging takes a more relaxed but more risky approach. Non-

deterministic events are not written to stable storage but saved in a faster

volatile log and only periodically written in an asynchronous way to a

stable storage. This is a more e�cient approach since it avoids constantly

waiting for costly writes to a stable storage. However, should a process fail,

the volatile log will be lost and there is the possibility of thereby creating

orphan messages and inducing a domino e�ect.

Causal logging uses the Lamport happened-before relation [Lam78], to es-

tablish which events caused a process' current state, and guarantee that

all those events are either logged or available locally to the process.
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4.3 Parallel File Systems

Parallel �le systems address the performance problem faced by current net-

work client-server �le systems: the read and write bandwidth for a single

�le is limited by the performance of a single server (memory bandwidth,

processor speed, etc.). Parallel applications su�er from the above-mentioned

performance problem because they present I/O loads equivalent to traditional

supercomputers, which are not handled by current �le servers. If users resort

to parallel computers in search of fast execution, the �le systems of parallel

computers must also aim at serving I/O request rapidly.

4.3.1 Striped �le systems. Dividing a �le among several disks enables

an application to access that �le quicker by issuing simultaneous requests to

several disks [CK93]. This technique is called declustering. In particular, if

the �le blocks are divided in a round-robin way among the available disks it

is called striping. In a striped �le system, either individual �les are striped

across the servers (per-�le striping), or all the data is striped, independently

of the �les to which they belong, across the servers (per-client striping). In

the �rst case, only large �les bene�t from the striping. In the second case,

given that each client forms its new data for all �les into a sequential log,

even small �les bene�t from the striping.

With per-client striping, servers are used e�ciently, regardless of �le sizes.

Striping a large amount of writes allows them to be done in parallel. On the

other hand, small writes will be batched.

4.3.2 Examples of parallel �le systems. CFS (Concurrent File System)

[Pie89] is one of the �rst commercial multiprocessor �le systems. It was de-

veloped for the Intel iPSC and Touchstone Delta multiprocessors. The basic

idea of CFS is to decluster �les across several I/O processors, each one with

one or more disks. Caching and prefetching are completely under the control

of the �le system; thus, the programmer has no way to in
uence it. The same

happens with the clustering of a �le across disks, i.e. it is not predictable by

the programmer.

CFS constitutes the secondary storage of the Intel Paragon. The nodes use

the CFS for high-speed simultaneous access to secondary storage. Files are

manipulated using the standard UNIX system calls in either C or FORTRAN

and can be accessed by using a �le pointer common to all applications, which

can be used in four sharing modes:

{ Mode 0: Each node process has its own �le pointer. It is useful for large

�les to be shared among the nodes.

{ Mode 1: The computer nodes share a common �le pointer, and I/O requests

are serviced on a �rst-come-�rst-serve basis.

{ Mode 2: Reads and writes are treated as global operations and a global

synchronization is performed.

{ Mode 3: A synchronous ordered mode is provided, but all write operations

have to be of the same size.
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The PFS (Parallel File System) [Roy93] is a striped �le system which

stripes �les (but not directories or links) across the UNIX �le systems that

were assembled to create the �le system. The size of each stripe, the stripe

unit is determined by the system administrator.

Contrary to the previous two �le systems, the �le system for the nCUBE

multiprocessor [PFD+89] allows the programmer to control many of its fea-

tures. In particular, the nCUBE �le system, which also uses �le striping,

allows the programmer to manipulate the striping unit size and distribution

pattern.

IBM's Vesta �le system [CFP+93], a striped �le system for the SP-1 and

SP-2 multiprocessors, allows the programmer to control the declustering of a

�le when it is created. It is possible to specify the number of disks, the record

size, and the stripe-unit size. Vesta provides users with a single name space.

Users can dynamically partition �les into sub�les, by breaking a �le into rows,

columns, blocks, or more complex cyclic partitioning. Once partitioned, a �le

can be accessed in parallel from a number of di�erent processes of a parallel

application.

4.4 Popular Message-Passing Environments

4.4.1 PVM. PVM [GBD94] supports parallel computing on current com-

puters by providing the abstraction of a parallel virtual machine which com-

prehends all the computers in a network. For this purpose, PVM handles

message routing, data conversion and task scheduling among the participat-

ing computers.

The programmer develops his programs as a collection of cooperating

tasks. Each task interacts with PVM by means of a library of standard inter-

face routines that provide support for initiating and �nishing tasks on remote

computers, sending and receiving messages and synchronizing tasks.

To cope with heterogeneity, the PVM message-passing primitives are

strongly typed, i.e. they require type information for bu�ering and trans-

mission.

PVM allows the programmer to start or stop any task, or to add or

delete any computer in the network from the parallel virtual machine. In

addition, any process may communicate or synchronize with any other. PVM

is structured around the following notions:

{ The user with an application running on top of PVM can decide which

computers will be used. This set of computers, a user-con�gured host pool,

can change during the execution of an application, by simply adding or

deleting computers from the pool. This dynamic behaviour is very useful

for fault-tolerance and load-balancing.

{ Application programmers can specify which tasks are to be run on which

computers. This allows the explicit exploitation of special hardware or

operating system capabilities.
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{ In PVM, the unit of parallelism is a task that often, but not necessarily,

is a UNIX process. There is no process-to-processor mapping implied or

enforced by PVM.

{ Heterogeneity: Varied networks and applications are supported. In par-

ticular, PVM allows messages containing more than one data type to be

exchanged by machines with di�erent data representations.

{ PVM uses native message-passing support on those computers in which

the hardware provides optimised message primitives.

4.4.2 MPI. MPI [MPI95] stands for Message Passing Interface. The goal

of MPI is to become a widely used standard for writing message-passing

programs. It is a standard that de�nes both the syntax and semantics, of a

message-passing library that can e�ciently be implemented on a wide range of

computers. The de�ned interface attempts to establish a practical, portable,

e�cient, and 
exible standard for message-passing. The MPI standard pro-

vides MPI vendors with a clearly de�ned base set of routines that they can

implement e�ciently or, in some cases, provide hardware support for, thereby

enhancing scalability.

MPI has been strongly in
uenced by work at the IBM T. J. Watson

Research Center, Intel's NX/2, Express, nCUBE's Vertex, and p4.

Blocking communication is the standard communication mode in MPI.

By default, a sender of a message is blocked until the receiver calls the ap-

propriate function to receive the message. However, MPI does support non-

blocking communication.Although MPI is a complex standard, six basic calls

are enough to create an application:

{ MPI Init - initiate a MPI computation

{ MPI Finalize - terminate a computation

{ MPI Comm size - determine the number of processes

{ MPI Comm rank - determine the current process' identi�er

{ MPI Send - send a message

{ MPI Recv - receive a message

MPI is not a complete software infrastructure that supports distributed

computing. In particular, MPI provides neither process management, i.e. the

ability to create remote tasks, nor support for I/O. So, MPI is a communica-

tions interface layer that will be built upon native facilities of the underlying

hardware platform. (Certain data transfer operations may be implemented

at a level close to hardware.) For example, MPI could be implemented on

top of PVM.

5. Scalable Shared Memory Systems

Traditionally parallel computing has been based on the message-passing

model. However there are a number of experiences with distributed shared
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memory that have shown that there is not necessarily a great performance

penalty to pay for this more amenable programming model. The great ad-

vantage of shared memory is that it hides the details of interprocessor com-

munication from the programmer. Furthermore, this transparency allows for

a number of performance-enhancing techniques, such as caching and data

migration and replication, to be used without changes to application code.

Of course, the main advantage of shared memory, transparency, is also the

major 
aw, as pointed out by the advocates of message-passing: a program-

mer with application speci�c knowledge can better control the placement and

exchange of data than an underlying system can do it in an implicit, auto-

matic way. In this section, we present some of the most successful scalable

shared memory systems.

5.1 Shared Memory MIMD Computers

5.1.1 DASH. The goal of the Stanford DASH [LLT+93] project was to ex-

plore large-scale shared-memory architecture with hardware directory-based

cache coherency. DASH consists of a two dimensional mesh of clusters. Each

cluster contains four processors (MIPS R3000 with two levels of cache), up to

28 MB of main memory, a directory controller, which manages the memory

metadata, and a reply controller, which is a board that handles all requests is-

sued by the cluster. Within each cluster cache consistency is maintained with

a snoopy bus protocol. Between clusters, cache consistency is guaranteed by a

directory-based protocol. To enforce this protocol a full-map scheme is imple-

mented. Each cluster has a complete map of the memory indicating whether

a memory location is valid on the local memory or if the most recent value

is held at a remote cluster. Requests for memory locations that are locally

invalid are sent to the remote cluster, which replies to the requesting cluster.

The DASH prototype is composed of 16 clusters with a total of 64 proces-

sors. Due to the various caching levels, locality is a relevant factor for the

performance of DASH whose performance degrades as application working

sets increase.

5.1.2 MIT Alewife. The MIT Alewife's architecture [ACJ+91] is similar to

that of the Stanford DASH. It is composed by a 2Dmesh of nodes, each with a

processor (a modi�ed SPARC called Sparcle), memory and a communication

switch. However, the Alewife uses some interesting techniques to improve

performance. The Sparcle processor is able to switch quickly context between

threads. So when a thread accesses data that is not available locally, the

processor, using independent register sets, quickly switches to another thread.

Another interesting feature of the Alewife is its LimitLESS cache coherence

technique. LimitLESS emulates a directory scheme similar to that of the

DASH but it uses a very small map of cache line descriptors. Whenever a

cache line is requested that is outside that limited set, the request is handled

by a software trap. The leads to a much smaller performance degradation
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than should be expected and has the obvious advantage of reducing memory

occupation.

5.2 Distributed Shared Memory

Software distributed shared memory (DSM) systems aim at capturing the

growing computational power of workstations and personal computers and

the improvements in the networking infrastructure to create a parallel pro-

gramming environment on top of them.We present two particularly successful

implementations of software DSM: TreadMarks and Shasta.

5.2.1 TreadMarks. TreadMarks [KDC+94] is a DSM platform developed

by Rice University, which uses lazy release consistency as its memory consis-

tency model. A memory consistency model de�nes under which circumstances

memory is updated in a DSM system. The release consistency model depends

on the existence of synchronization variables whose accesses are divided into

acquire and release. The release consistency model requires that accesses to

regular variables are followed by the release of a synchronization variable

which must be acquired by any other process before accessing the regular

variables again. In particular, the lazy release consistency model postpones

the propagation of memory updates performed by a process until another

process acquires the corresponding synchronization variable.

Another fundamental option in DSM is deciding how to detect that ap-

plications are attempting to access memory. If the DSM layer wants to do

the detection automatically by using memory page faults then the unit of

consistency, i.e., the smallest amount of memory that can be updated in a

consistency operation will be a memory page. Alternatively, smaller consis-

tency units can be used but in this case the system can no longer rely on

page faults and changes have to be made to the application code to indicate

where data accesses are going to occur.

The problem with big consistency units is false sharing. False sharing

happens when two processes are accessing di�erent regions of a common con-

sistency unit. In this case, they will be communicating frequently to exchange

updates of that unit although in fact they are not sharing data at all.

The designers of TreadMarks chose the page-based approach. However

they use a technique called lazy di� creation for reducing the amount of data

exchanged to update a memory page. When an application �rst accesses a

page TreadMarks creates a copy of the page (a twin). When another process

requests an update of the page, a record of the modi�cations made to the

page (a di�) is created by comparing the two twin pages, the initial and the

current one. It is this di� that is sent to update the requesting processes page.

TreadMarks has been used for several applications, such as genetic research

where it was particularly successful.
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5.2.2 Shasta. Shasta [SG97] is a software DSM system that runs on Al-

phaServer SMPs connected by a Memory Channel interconnection. The Mem-

ory Channel is a memory-mapped network that allows a process to transmit

data to a remote process without any operating system overhead via a simple

store into a mapped page. Processes check for incoming memory transfers by

polling a variable.

Shasta uses variable sized memory units, which are multiples of 64 bytes.

Memory units are managed using a per-processor table where the state of

each block is kept. Additionally, each processor knows for each of its local

memory units, the ones initially placed in its memory, which processors are

holding those memory units.

Shasta implements its memory consistency protocol by instrumenting the

application code, i.e. altering the binary code of the compiled applications.

Each access to application data is bracketed in code that enforces memory

consistency. The added code doubles the size of applications. However using a

set of optimisations, such as instrumenting sequences of contiguous memory

accesses as a single access, this overhead drops to an average of 20 %. Shasta

is a paradigmatic example of a non-intrusive transition of a uniprocessor

application to a shared memory platform: the designers of Shasta were able

to execute the Oracle database transparently on top of Shasta.
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