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Abstract

The need for sharing is well-known in a large number

of distributed collaborative applications. These appli-

cations are diÆcult to develop for an environment in

which network connections are slow and not reliable.

For this purpose, we developed a platform called OBI-

WAN that: i) allows the application programmer to

decide the mechanism by which objects should be in-

voked, remote method invocation or invocation on a lo-

cal replica, and ii) provides hooks for the application

programmer to implement a set of application speci�c

properties such as transactional support, for example.

This functionality allows the application programmer

to deal with situations that frequently occur in a wide-

area network, such as disconnections and slow links. As

a matter of fact, as long as the objects needed by an

application are locally accessible, there is no need to

be connected to the network. In addition, it allows the

programmer to easily replace, in run-time, remote by

local invocations, thus improving the performance of his

application and its adaptability.

The prototype is developed in Java, is very small and

simple to use, the preliminary performance results are

very encouraging, and existing applications can be easily

modi�ed to take advantage of the OBIWAN functional-

ity.

1 Introduction

There is a clear need for data sharing and collabora-

tion support in a large number of applications in di�er-

ent domains. In OBIWAN, we focus on applications in

the area of co-operative work within virtual organiza-

tions; for example, a virtual teaching community, a vir-

tual enterprise grouping several companies from di�er-

ent countries, a widely distributed software development

team, a distributed game involving people anywhere in

the world, etc.

�OBIWAN stands for Object Broker Infrastructure forWide

Area Networks.

This need for information sharing is increasing along

two main axis: wide area (i.e., across the Internet) and

mobility (i.e., portable computers, webpads, personal

digital assistants, smart cellular phones, etc.). As a

matter of fact, besides the growing number of desktop

computers connected to the Internet, there are other

devices, generally called information appliances (info-

appliances, for short), that are gaining enormous popu-

larity; personal digital assistants (PDAs) is just one of

them.

The role of these info-appliances, currently handling

agendas, calendars, etc. will certainly grow as more

computing power and communications capability can be

included. This is con�rmed by the existence of operat-

ing systems and virtual machines for such devices; for

example, Windows CE [11] for a number of PDAs cur-

rently in the market, and Java for PalmPilot VII [12].

In addition, the foreseen increase of bandwidth in wire-

less communication makes the connection of these info-

appliances to the Internet a reality [10].

We envisage a general scenario in which a user will

want to access data using a PC in his oÆce, using a

laptop while in the airport or in the hotel, using a PDA

in a taxi, etc. The user wants to live in this \data ubiq-

uitous world" with no other concern besides doing his

own work and, as much as possible, to keep on work-

ing in spite of any system problem that may occur (e.g.

network partitions).

So, there is a constant need to access shared data no

matter where you are and the info-appliance you use,

and users want the same degree of responsiveness and

performance as in a fully high-bandwidth low-latency

wired connected environment. Sometimes these require-

ments may be impossible to ful�ll but the system should

be able to minimize the number of such occurrences.

1.1 Environment

Wide area fully wired computing environments are char-

acterized by a fair amount of bandwidth and low la-

tency when compared to wireless networks. However,

when compared to local area networks, the bandwidth
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is not that big and latency can be clearly noticeable. In

addition, partitions do occur making most distributed

applications to malfunction.

Thus, we can say that the quality of service we ob-

serve in wide area networks is acceptable for most used

current applications (such as web browsers) as long

as there are no partitions and the network is not too

loaded. The problem is that partitions and overload

do occur and, as a result, a disruptive latency is fre-

quently observed when accessing, for example, a remote

web server. Complex applications, i.e. those e�ectively

supporting collaboration among di�erent users with a

strong need for accessing shared data simply stop work-

ing when the quality of service degrades.

If accessing data on some remote server is not pos-

sible for some reason, the application should not stop

working; instead, it should, at least, automatically pro-

pose to the user an alternative access to such data from

another server, even if such data is not up to date.

On the other hand, mobile computing is character-

ized by signi�cant and rapid changes in its supporting

infrastructure and, in particular, in the quality of service

available from the underlying communication channels;

wireless links provide lower bandwidth, possibly higher

error rates than wired networks, and periods of discon-

nection and intermittent or variable connectivity may

occur.

Network partitions are rare in stationary local area

networks; on the contrary, they occur in greater num-

ber in wide area mobile networks. Most applications

consider them to be failures that are exposed to users.

In the mobile environment, applications will face fre-

quent, lengthy network partitions. Some of these parti-

tions will be involuntary (e.g., due to a lack of network

coverage), while others will be voluntary (e.g., due to

a high dollar cost). Mobile applications should handle

such partitions gracefully and as transparently as possi-

ble. In addition, users should be able, as far as possible,

to continue working as if the network was still available.

In particular, users should be able to modify local copies

of global data.

1.2 OBIWAN

The overall objective of the OBIWAN project is to de-

sign and implement a system that: (i) is well suited

to support distributed applications with strong sharing

needs, and (ii) facilitates application development by re-

leasing programmers from the need to handle complex

system issues such as fault-tolerance, memory manage-

ment, etc., while providing the right level of abstraction

and functionality to deal with unexpected situations.

We believe that the notion of a generic object broker

infrastructure provides the means to the kind of sharing

described above. Intuitively, to describe our object bro-

ker infrastructure, we can say that OBIWAN supports

applications that manipulate an ocean of objects; these

objects are scattered over a variety of locations and info-

appliances, can 
ow among such appliances, and contain

innumerous references connecting them.

More precisely, OBIWAN provides support for such

objects in the sense that they can be invoked either re-

motely, via remote method invocation (RMI) [1, 13], or

locally via local method invocation (LMI) based on a

replication mechanism that brings objects to the info-

appliance where an application is running [7].

This 
exibility of the invocation mechanism allows

the application programmer to develop his application

so that it resists to network failures, and allows the user

to work disconnected from the network (either volun-

tary or not). As a matter of fact, as long as the objects

needed by an application are locally accessible, there is

no need to be connected to the network. In addition,

by replicating objects in the info-appliance where an ap-

plication using them is running, the overall performance

can be improved w.r.t. an approach in which objects are

always invoked via RMI. In this paper we focus on this

issue, i.e. invocation of distributed objects in OBIWAN.

This paper is organized as follows. In the next sec-

tion we present the design and implementation of OBI-

WAN focusing on the support for object replication. In

Sections 3 and 4 we present some performance results

and related work, respectively. Finally, in Section 5 we

present some conclusions and plans for future work.

2 Object Invocation

As a basic functionality, OBIWAN allows the applica-

tion programmer, if he wants so, to control which ob-

jects should invoked remotely or locally. Obviously, the

programmer can simply provide hints to the system and

let it decide what the best option is. In addition, the

programmer can also control, or simply provide hints to

the system so that it can decide, what part of an object

should be brought near an application, e.g. the whole

object (data and code) or just its data or just its code.

We claim that this notion of a generic object broker is

mostly adequate to the speci�c needs of wide area mo-

bile sharing and collaboration support.

OBIWAN gives to the application programmer the

view of a network of machines in which one or more

processes run; objects exist inside processes. An object

can be invoked locally or remotely (by means of RMI).

An object that is invoked locally can be a replica of a

master in some remote process; in this case, the master

replica can still be invoked via RMI (see Figure 1). So,

at any time, both replicas, the master and the local,
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Process P1

stack

Process P2

stack

reference used 
to invoke via RMI

object is replicated 
(or updated) from P2 to P1

O2O1

O2'

reference  used 
 to invoke   locally

master replica is 
replaced from P1 to P2

Figure 1: Object O2 in P2 is the master replica; O2' in P1

is a replica that can be invoked locally.

can be freely invoked. It is the programmer who decides

what the best option is.

The local replica can be updated from the master

whenever the programmer wants; conversely, the local

replica can replace the master whenever the programmer

wants. There is no limit to the number of replicas.

Obviously, due to replication, the issue of replicas'

consistency arises. We leave the responsibility of main-

taining (or not) the consistency of replicas to the pro-

grammer. However, OBIWAN may provide a set of

classes implementing well-known consistency policies,

ready to be used by the programmer.

The OBIWAN system is a software layer on top of a

virtual machine. This virtual machine must support dis-

tributed object-oriented applications by means of RMI

and dynamic code loading.

2.1 Implementation

The OBIWAN system runs on top of the Java virtual

machine. For us, this was the obvious choice given that

it is portable, free, simple to use, and supports the ba-

sic functionality required, i.e. RMI and dynamic code

loading.

OBIWAN is a set of interfaces, an automatic code

generator to help the application programmer, and

a methodology for programming distributed applica-

tions. The programming of a distributed application

with OBIWAN, when compared to a standard approach

based on RMI, is simpler. As a matter of fact, the pro-

grammer only has to write: i) an interface specifying

the methods that an object will service, and ii) a class

implementing the just mentioned interface. All the rest,

i.e. the code handling the invocations either via RMI

or LMI (after the creation of a local replica), is auto-

matically generated with a tool similar to rmic. We

illustrate this process with an example.

2.1.1 Classes and Interfaces

Suppose we want to build a distributed application with

an object that can be either locally replicated or invoked

via RMI. All the interfaces and classes involved in this

interface obi 
extends Serializable

class obiImpl
 implements obi

interface dataShippable

interface obiRemote 
extends java.rmi.Remote, obi, dataShippable

class obiRemoteImpl 
extends java.rmi.server.UnicastRemoteObject
implements obiRemote

interface java.rmi.Remote class java.rmi.server.UnicastRemoteObject

Figure 2: Interfaces and classes of OBIWAN. Inheritance is

represented with a solid line; implementation is represented

with a dashed line.

import java.io.*;
import java.util.*;
import java.rmi.*;
public interface obiInterface extends Serializable f
public void setVal(int val) throws RemoteException;
public int getVal( ) throws RemoteException;

g

Figure 3: Interface obi written by the programmer.

example are illustrated in Figure 2. The \rectangular"

interfaces and classes are those that can be found in any

typical RMI-based client-server; the \ellipse" interfaces

and classes are speci�c to OBIWAN.

For simplicity, let's say that this object supports the

service of a counter; thus, it provides two obvious meth-

ods: setVal(int) and getVal(). This functionality is

speci�ed by the interface obi and implemented by the

class obiImpl (see Figures 3 and 4, respectively).

The client program, i.e. the code that invokes

the above mentioned object (an instance of the class

obiImpl) is shown in Figure 5. The code of the server

process is shown is Figure 6.

The interface dataShippable is constant, thus it does

not have to be generated each time an application is

programmed. The interface obiRemote and the class

obiRemoteImpl are generated automatically; a part of

the generated Java code is the same for any application

(for example, the methods getData and putData) and

another part results directly from the interface obi.

To summarize, when a new application is developed

the programmer does the following steps: i) write the

interface obi, ii) write the class obiImpl, and iii) run

the obicomp tool to automatically generate the other

3



import java.rmi.*;
import java.io.*;
public class obiImpl implements obi f
private int count;
public obiImpl() fcount = 0;g
public void setVal(int x) throws RemoteException fcount = x;g
public int getVal() throws RemoteException freturn count;g

g

Figure 4: Classe obiImpl written by the programmer.

public static void main(String [] args) f
String host;
if (args.length > 0) host = args[0] else host="localhost";
System.setSecurityManager(new RMISecurityManager());
obiRemote refRMI =
(obiRemote)Naming.lookup("//"+host+"/obi");

if (refRMI==null) throw new Exception("RMI failed!!!");
obi refLMI = (obi) refRMI.getData();
if (refLMI == null) throw new Exception("LMI failed!!!");
System.out.println("Remote value" + refRMI.getVal());
System.out.println("Local value" + refLMI.getVal());
refLMI.setVal(333);
refRMI.setVal(444);
System.out.println("Remote value " + refRMI.getVal());
System.out.println("Local value " + refLMI.getVal());
refRMI.putData(refLMI);
System.out.println("Remote value " + refRMI.getVal());
System.out.println("Local value " + refLMI.getVal());

g

Figure 5: The client code written by the programmer.

public static void main(String args[]) f
System.setSecurityManager(new RMISecurityManager());
try f
obiRemoteImpl server = new obiRemoteImpl();
Naming.rebind("obi", server);

g catch (java.io.IOException e) f
System.out.println("// Problem registering server");
System.out.println(e.toString());
g

g

Figure 6: The server code written by the programmer.

import java.util.*;
import java.rmi.*;
public interface dataShippable f
public Object getData() throws RemoteException;
public void putData (Object replica) throws RemoteException;g

g

Figure 7: Interface dataShippable generated automatically.

import java.rmi.*;
public interface obiRemote
extends java.rmi.Remote, obi, dataShippablefg
g

Figure 8: Interface obiRemote generated automatically.

import java.rmi.*;
import java.util.*;
public class obiRemoteImpl
extends java.rmi.server.UnicastRemoteObject
implements obiRemote f
obiImpl data;
public obiRemoteImpl() throws RemoteException f
data = new obiImpl();

g
public void setVal(int x) throws RemoteException f
data.setVal(x);

g
public int getVal() throws RemoteException f
return data.getVal();

g
public Object getData() throws RemoteException f
return data;

g
public void putData (Object replica) throws RemoteException f
this.data = (obiImpl) replica;

g
g

Figure 9: Class obiRemoteImpl generated automatically.

interfaces and classes needed.1

2.2 Porting Existing Applications

For a distributed application that was developed with

the typical RMI-based application, the modi�cations re-

quired to make it run on top of OBIWAN are rather

easy. Taking into account Figure 2, it is necessary to

perform the following source code modi�cations.

1. Generate the interface obi; this is similar to the

interface obiRemote that has been written by the

programmer.

2. Generate the class obiImpl that is similar to the

class obiRemoteImpl that has been written by the

programmer.

3. Modify the interface obiRemote so that it extends

the interfaces obi (generated automatically in the

�rst step) and dataShippable, and contains no

methods.

4. Modify the class obiRemoteImpl: instance variable

of type obiImpl, methods getData and putData,

and all the methods of the interface obiRemote that

simply invoke the instance variable previously men-

tioned. Thus, the class obiRemoteImpl behaves as

a wrapper of class obiImpl.

We are currently developing a tool that performs all

these operations automatically. However, there is some-

thing that is not easy to automate: the kind of invoca-

tions done by the client, i.e. RMI or LMI on a replica.

This decision is application speci�c and the application

programmer is most probably the best person to do it.

1The obicomp tool makes use of rmic ands uses re
ection to

generate code automatically.
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3 Performance

In this section we present some preliminary performance

results comparing RMI to LMI on a replica. The val-

ues were obtained in a 100 Mb/sec local area network,

connecting two Pentium II PCs with 64 Mb of main

memory each.

The time it takes to make a local method invocation is

20 microseconds. A remote method invocation takes 2,8

milliseconds and, obviously, is independent of the object

size. The cost of loading the object (code and data)

when a local replica is created (method getData), and to

update the master replica once all the local invocations

have been performed (method putData) is presented in

Figure 10; as expected is depends on the object size.

In Table 1 we present the number of invocations

above which the creation of a replica and its local in-

vocation performs better than RMI. In Figure 11 we

present the cost of performing several invocations via

RMI and LMI. From Table 1 Figure 11 we can conclude

that:

� the LMI on a replica performs better than RMI for

object size number of invocations

256 bytes 1,9

1024 bytes 1,9

4096 bytes 2,2

16 Kbytes 5,3

64 Kbytes 10,3

Table 1: Number of invocations above which the creation of

a replica and its local invocation performs better than RMI.

larger number of invocations and for smaller ob-

jects;

� with RMI, the object size has no in
uence on the

invocations time; however, this time grows very

sharply with the number of invocations;

� for small objects and few invocations, the perfor-

mance of RMI and LMI are similar; thus, even in

this case, the cost of creating a replica and updating

the master replica is comparable.

4 Related Work

Javanaise [2] aims at providing support for cooperative

distributed applications on the internet. This system is

more complex than ours in the sense that it addresses

more issues, such as consistency, object clustering, etc.

The application programmer develops his application as

if it were for a centralized environment, i.e. with no con-

cern about distribution. Then, the programmer con�g-

ures the application to a distributed setting; this may

imply minor source code modi�cations; a proxy gener-

ator is then used to generate indirection objects and a

few system classes supporting a consistency protocol.

There has been some e�ort in the context of CORBA

to provide support for replicated objects [4]. The same

applies to the web [3]. However, most of this work ad-

dresses other speci�c issues such as group communica-

tion, replication for fault-tolerance, protocols evolution,

etc. None seems to address the issue of distributed ap-

plication development for networks of info-appliances.

OBIWAN is a system simpler than those previously

mentioned. The basic di�erence is that it does not try to

provide transparency, i.e. the application programmer

does not develop his application as if it was centralized;

he does know that his application is distributed. With

OBIWAN, the programmer has the means to make his

application to decide, in run-time, if an object should be

invoked via RMI or if a local replica should be created.

We believe that this is a very important aspect when

developing distributed applications for info-appliances

given the signi�cant and rapid changes in the quality of

service of the underlying network.
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5 Conclusion and Future Work

In wide area networks, distributed applications must

be capable of dealing with variable quality of service

and disconnections. The mechanism of object replica-

tion supported in OBIWAN allows the programmer to

deal with such situations; applications may decide, at

run-time, what is that best way to invoke an object: via

remote method invocation (RMI), or locally via local

method invocation (LMI) based on a replication mecha-

nism that brings objects to the info-appliance where an

application is running.

The 
exibility of the invocation mechanism allows the

application programmer to develop his application so

that it resists to network failures, and allows the user to

work disconnected from the network (either voluntary or

not). As long as the objects needed by an application

are locally accessible, there is no need to be connected to

the network. In addition, by replicating objects in the

info-appliance where an application using them is run-

ning, the overall performance can be improved w.r.t. an

approach in which objects are always invoked via RMI.

A �rst prototype was built in Java and the performance

results obtained are encouraging.

We plan to test our prototype on several info-

appliances under di�erent network conditions (wide-

area and wireless). We will study how the performance

numbers presented in Section 3 depend on the relative

speed of the processors involved, for example, between

a hand-held PC such as HP Jornada 820, and a desktop

PC.

We are also working on improving the functional-

ity attached to the methods getData and putData

in order to provide transactional support. Basically,

these methods will implement begin-transaction and

end-transaction, respectively. The challenge is to pro-

vide relaxed concurrency policies well adapted to the

environment under consideration (see Section 1.1) [9].

In this area, we intend to take advantage of our previ-

ous work in the PerDiS project [7, 8].

We also intend to study the impact of the OBIWAN

approach on garbage collection. As a matter of fact, the

distributed collector in Java associates leases to inter-

process references; thus, if the lease associated to the

reference for a master replica expires (e.g. from O1 to

O2 in Figure 1) this may lead to the reclamation of

the master replica; however, a replica still exists. This

situation arises because the Java distributed collector is

not aware of replicas; for the collector, these are simply

di�erent objects. Once again, we plan to extend our

previous work in this area [5, 6].
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