
The PerDiS FS: A Transactional File System for a Distributed Persistent Store

João Garcia, Paulo Ferreira, Paulo Guedes

{joao.c.garcia, paulo.ferreira, paulo.guedes}@inesc.pt

INESC / IST, Lisboa, Portugal

February 1998

Abstract

Companies cooperating in the framework
of a virtual enterprise have increasing
demands for systems on which to base
applications for their particular environment:
groups of workers on distant independent
LANs. In this paper, we present a
transactional file system for a distributed
persistent store designed to support
cooperative engineering applications. The
system integrates techniques, such as
optimistic consistency protocols and
versioning, tailored to provide efficient
sharing of data, between users (at LAN
scale) and between companies (at WAN
scale).

1 Introduction

Current engineering projects are often
developed by a virtual enterprise (VE), a
temporary cooperation of independent
companies. A VE comprises several
geographically distant teams that work on
separate local networks and on mostly
distinct parts of a project. Each team
consists of a group of workers that use
workstations running engineering
applications, e.g. CAD tools, which
manipulate the VE’s project data.

Traditionally, cooperative distributed
applications are designed using remote
invocation methodologies (function-
shipping), such as CORBA [Sie96] or RMI
[Wol96]. The performance of these client
server applications degrades as objects
become smaller and more numerous and as
the number of clients increases.
Furthermore, the wide-area invocation of
remote servers raises latency and
availability problems that are not addressed
by function-shipping systems. Data-shipping
designs copy data to the client machines
allowing complex and lengthy manipulation
of the data. This approach also allows an

optimisation of memory usage by allowing
the creation of a shared address space
among client machines.

We have designed a transactional file
system, PerDiS File System (PFS), for a
distributed persistent store [Sha97] that
supports engineering applications in a VE
environment. This work is being done in the
context of the ESPRIT Persistent Distributed
Store (PerDiS) project. The PerDiS design
comprises interactions among computing
nodes both at the local and wide area
scales. This paper focuses on the local area
architecture of the PerDiS transactional file
system (PFS).

At a LAN scale, manipulation of the data
is made on a set of client workstations
running on a fast network with few reliable
servers within a single protection domain.
Advanced applications, e.g. design and
development, resort frequently to long-lived
access to data. To enable coherent and
efficient sharing of data among such
applications, optimistic transaction models
are currently used [Fra97]. These protocols
allow high degrees of concurrency and low
abort rates in environments with low write
contention such as the ones we are
targeting.

Nevertheless, for the majority of the
applications we are addressing, even a
small abort rate is not acceptable for long-
lived transactions. We use a versioning
mechanism to reduce transaction aborts due
to write contention. In addition, users want to
perform tentative modifications and only
later decide which one to submit to the
servers. Thus, one of the characteristics of
VE applications is that different users may
work on different copies, i.e. versions, of the
same data. This involves the added
complexity of managing a multi-version data
set. Yet, in cooperative applications, due to
the parallelism it allows, this is perceived to
be a good work methodology.

Committing divergent versions leads to
the need of version reconciliation. Versions
that do not satisfy traditional serialisation
criteria, and cannot be merged
automatically, have to be reconciled using
user-driven application specific reconciliation
tools. In our particular environment,
companies participating in the VE usually
conclude a specific task by electing a final
version chosen (or composed) out of the
version graph generated by their local
processing, and disseminate it to other VE
members.

The innovative aspect of our design is
the integration of optimistic transactions with
versioning mechanisms in order to satisfy
the requirements of applications in a
cooperative engineering environment. In the
rest of this paper, we address relevant
related work, give an overview of the PerDiS
architecture and then focus on the PFS.

2 Related Work

Several data-shipping DBMS have
extended standard pessimistic two-phase
locking (2PL) protocols to allow a greater
degree of concurrency and to improve
memory utilisation [Lam91, Obj93, ONT94].
In particular, optimistic locking protocols
[Car94b, Ady95] allow intense concurrency
under low write contention.

A client/server DBMS with inter-
transactional caching at the clients requires
a remote update mechanism to maintain
cache coherence by updating the clients’
caches when other clients commit
transactions using the same data. This can
be achieved by using invalidation of stale
cache data, propagation of the new
committed data or by a dynamic choice
between these techniques [Fra97]. It has
been shown that, in cooperative
environments with low write contention,
protocols that use invalidation perform best
because they are less sensitive to workload
patterns. It is worth noting that, in our case,
notifications never imply an abort given the
support for versioning. Invalidation
messages may be used to notify
applications of other conflicting users.

Regarding versioning for DBMS, a variety
of schemes have been implemented
[Lam91, Obj93, ONT93]. Most versioning
schemes are based on the concept of a

configuration, i.e. a graph of objects that
constitutes a versioning unit. Managing a
graph of versions involves extending
(creating versions), labelling and pruning the
graph. Pruning and labelling operators are
straightforward to implement and vary
mostly depending on the cooperation model
implemented [Kat90].

The simplest version creation mechanism
is linear versioning that designates the
general approach of tagging successively
committed versions of a set of data, with
version numbers or timestamps, so that
applications can identify the older versions
they wish to rollback to.

More complex mechanisms include
branching versioning [Lam91, Obj93] and
Objectivity’s move-copy-drop techniques
[Obj93]. Branching mechanisms allow users
to create divergent versions of data. This
may derive from the need of committing
transactions that conflict according to
standard serialisation criteria or merely from
the wish of maintaining different copies of
the data. More specific mechanisms to
modify configurations are used in Objectivity
[Obj93]. This system has a particular set of
operations, move-copy-drop, to commit
objects to the database. The copy operation
triggers a full copy of the graph containing
the newly versioned object; move replaces
the old version of the object in the
configuration while maintaining the previous
version; and drop erases the previous
version of the committed object.

Figure 1 PerDiS System Architecture

3 PerDiS Architecture

PerDiS is an infrastructure for programming
distributed, type-safe applications that

PerDiS
Daemon

disk

PerDiS
Daemon

disk

PerDiS
Daemon

disk log

Application

User Level

Library

Application

User Level

Library

Application

User Level

Library

Application

User Level

Library

Application

User Level

Library

Application

User Level

Library

Client B Client A Server

transactionally access persistent data
(Fig.1). PerDiS is designed for a virtual
enterprise environment where machines on
several LANs cooperate temporarily over a
wide-area network.

It allows applications to manipulate files
containing graphs of objects which we call
clusters. Clusters are stored persistently at
servers’ stable storage according to the
model of persistence by reachability [Atk83].
This persistence model guarantees that all
objects that are reachable, directly or
indirectly, from a named root object will be
made persistent. PerDiS applications are
linked to a user level library (ULL). This ULL
communicates with a PerDiS Daemon that
manages locking and handles all persistent
and fault tolerant data.

Figure 2 Modules in PerDiS

The PerDiS File System (PFS) provides
the transactional, caching and storage
support for PerDiS (Fig.2). Other modules in
PerDiS handle object clusters (swizzling,
reference management, clustering) and
handle type and memory management.

Besides the local area activity described
in section 4, PerDiS also operates on a
wide-area scale. At this dimension, company
servers interact to provide coarse granularity
data, i.e. files, to other cooperating LANs
and to return newly generated versions of
the data to the original sites. Typically, each
member of the VE is responsible for the data

it creates. For example, in a building VE, the
architecture company owns the master copy
of the architecture project: it may selectively
distribute sub-sets of its data to other VE
members and it is the ultimate responsible
for accepting changes to the architecture
project. These wide-area exchanges over
untrusted networks are encrypted and file
access is authenticated.

4 PerDiS File System

The PerDiS File System is a distributed
transactional file system. The PFS stores
clusters of object in binary format into files
on the servers’ disks. These clusters are
referenced using URLs. Servers manage
transactions and stable storage. Client
machines run applications that access the
persistent store and manage a page-based
cache of persistent data. Clients request file
blocks and memory map them and servers
keep track of the pages issued to each
client. At the clients, pages are cached and
may be shared for reading. Write accesses
to memory pages are performed on copies
exclusive to each application.

Cache coherency among clients is
maintained using the entry consistency
protocol. Entry consistency takes advantage
of the low contention among clients and, by
keeping locks where they were requested,
facilitates the probable sequential access by
the same client [Fra97]. Besides invalidating
other client caches, entry consistency
invalidation messages may also be used as
notifications to applications that others are
using the same data.

The use of entry consistency raises some
fault tolerance issues. Introducing recovery
mechanisms for the protocol’s data, such as
“probable owner” pointers and locks possibly
lost at the failed node, without significant
performance overheads is not a trivial
problem, which we will address in the near
future.

4.1 Transaction Management

Each PerDiS application runs a single
transaction at a time. As already mentioned,
pessimistic transactions have a limited
usability in cooperative engineering
applications. Thus, optimistic transactions
are needed in order to allow users to
combine data sharing and long lived

PerDiS Site

PerDiS Daemon

 PerDiS FS

Cluster Cluster Cluster

Storage

Cache

Transaction
Manager

ULL

Transaction
Manager

Application

Memory
Management

Cluster Cluster

transactions. Hence, we introduced an
optimistic protocol with notifications and
versioning support. In the PFS, to avoid
aborting long transactions, upon receiving
notifications, PerDiS daemons only
invalidate pages that are currently not
involved in any transactions. Invalidation
notifications for data being accessed are
forwarded to the application level for user
information.

Distributed transactions are committed
using a non-blocking two-phase-commit
protocol. When a client commits a
transaction it is written onto the local disk.
We rely on the local disk to stably maintain
the transaction’s updates for the duration of
the commit protocol. Once the updates are
written on the local disk, the client
application may continue executing.

During the commit protocol, since we
already guaranteed that consistent data was
provided to the committing transaction,
servers that provided data, that was not
modified, need not be contacted. Our
versioning support guarantees that
applications will not lose work done within
transactions. This may be a traditional
database commit where, after transactions
are committed, there is a single image of the
database. As a last resort, in the cases
where optimistic transactions have conflicts
and their serialisation is not possible, we
extend the semantics of the commit
operation by committing both transactions to
the servers’ disk as alternative versions of
the same data. In the following section, we
discuss the management of versions.

Guaranteeing that long lived optimistic
transactions don’t abort due to data
contention, requires always providing a
consistent view of the data to all active
transactions. A transaction that begins at a
given point in time will have to consistently
receive the data that was store in the
servers’ disks at the time it begun, until it
ends. Stretched to the limit, this requirement
would force us to maintain all the versions
that have ever existed of all cluster files,
because there might be somewhere in the
system a node with a long-lived transaction
that might need data from a long time ago.
However, due to disk space restrictions, we
must differentiate between old data that
might still be requested and old data that

does not belong in any consistent view of
the cluster files being provided to active
transactions. To this effect, we are going to
develop a client register service, that will
ensure, to clients that register themselves,
that clusters that were valid when their
active transaction began, will be maintained
until they commit the transaction or
unregister themselves as active clients.

4.2 Versioning and Checkpoints

Versioning in the PFS is a means to
avoid that data updates made by optimistic
transactions aren’t lost due to write
contention. Conflicting transactions are
committed using a branching versioning
mechanism. Versioning mechanisms also
permit the creation of versions with other
motivations. Users can maintain tentative
sequential versions of data. In addition, if an
application wants to checkpoint its persistent
data without submitting it to the whole
system, it can save it onto the local disk.
This checkpoint, invisible to other users, can
later be recovered and work resumed at that
stage.

Transactions performed by a local group
of users may result, due to contention or
divergence of concepts, in a graph of
versions. In the virtual enterprise example, it
is the responsibility of the company that
initially created the cluster to elect one of the
committed versions of the store as the final
version to be publicised to other participating
networks. The low write contention among
concurrent design application helps keep the
amount of branching in a cluster’s version
graph to a minimum.

Many versions, especially those
generated due to write contention, cannot be
merged automatically. This leads to the
need of programmer/user aided tools based
on semi-automatic reconciliation algorithms,
e.g. anti-entropy [Gol92, Pet97, Ter95], to
reconcile versions of the store. Our design
provides support for this functionality
through APIs for editing (create, remove,
merge operations), labelling and navigating
graphs of versions.

4.3 Global Memory Management

Another interesting possibility when
operating on a local network with a single
protection domain is the optimisation of data
access speed and occupation of the

network’s aggregate memory by including
cooperative caching techniques.

The usual techniques involved are
moving pages to other machines’ memory
(“dropping the page”) instead of writing them
to disk and the consequent forwarding of
any messages regarding those pages
[Dah94, Dan92, Fra92]. However, in our
system, we have to consider some new
aspects such as transactional consistency
and versioning when making use of other
machines’ memory.

We have chosen to use memory pages
as the unit of cache coherence because this
allows efficient integration with the virtual
memory system and consequently write
access detection using the page fault
mechanism. Pages are cached between
transactions until they are invalidated when
they become stale, forwarded (“dropped”) to
other clients’ memory, or, as a last resort,
evicted to disk.

A consequence of this approach is that
some clients, instead of getting data from a
server, will have their request forwarded to
some other site which has the data needed.
Furthermore, the use of versioning may lead
to the existence of alternative copies of the
same memory page in the clients’ caches.
We are exploring criteria for choosing which
versions of data should be kept in the
client’s caches.

5 Conclusions & Future Work

This paper described the motivation for
the PerDiS transactional file system and
some of the most relevant aspects. The
contribution of this work is the integration of
transactions, versioning and global memory
management for VE applications.

Cooperative applications have special
requirements such as the support for long-
lived transactions that should never abort.
Alternatively, new, possibly divergent,
versions of data are created thus requiring
reconciliation. Hence, the graph of these
versions has to be managed (edited,
labelled and pruned). We discussed how
these mechanisms can be introduced in a
client/server distributed store with a shared
address space cache among clients.

Even though this is still work in progress,
there is already a preliminary working
prototype available on the Internet
(http://www.perdis.esprit.ec.org) that runs all
several platforms (Sun Solaris, Linux,
Windows NT) and with which the end-user
partners of the PerDiS project are currently
experimenting.

There are several developments that are
essential to help mature PerDiS and the
PFS.

Fault tolerant locking is fundamental in
order to have a serious platform, since it is
unacceptable that a node failure may disrupt
the whole system.

Furthermore, versioning as a means to
resolve transaction conflict is a simple but
powerful mechanism that enables many
models and policies for cooperative work
that need to be explored.

Acknowledgements

The authors wish to thank all the partners
in the PerDiS project (INRIA SOR, INRIA
SIRAC, IEZ, CSTB, QMW) for their valuable
participation in designing and implementing
PerDiS and for their input in various
discussions that have been influencing the
design of PFS.

Bibliography
[Ady95] Atul Adya, Robert Gruber, Barbara Liskov,

Umesh Maheshwari. Efficient Optimistic Concurrency
Control Using Loosely Synchronised Clocks. In
Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, San Jose, CA,
May 1995.

[And95] Thomas E. Anderson, Michael D. Dahlin,
Jeanna M. Neefe, David A. Patterson, Drew S.
Roselli, Randolph Y. Wang. Serverless Network File
System. In SIGOPS’95. Colorado, USA. December
1995.

[Ale97] Albert D. Alexandrov, Maximilian Ibel, Klaus E.
Schauser, and Chris J. Scheiman. Extending the
Operating System at the User Level: the UFO Global
File System. In USENIX Winter, Anaheim, California
(USA), January 1997.

[ATK83] M. P. Atkinson, P. J. Bailey, K. Chisolm, W.
Cockshott, R. Morrison. An approach to persistent
programming. The Computer Journal, 26(4):360-365,
1983.

[Bar91] Naser S. Barghouti and Gail E. Kaiser.
Concurrency control in advanced database
applications. Computing Surveys, 23(3):269-317,
September 1991.

[Car94a] Michael J. Carey, David J. DeWitt, Michael J.
Franklin, Nancy E. Hall, Mark L. Auliffe, Jeffrey F.
Naughton, Daniel T. Schuh, Marvin H. Solomon, C.

K. Tan, Odysseas G. Tsatalos, Seth J. White,
Michael J. Zwilling. Shoring up persistent
applications. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pp. 383-394, Minneapolis MN, USA, May 1994.

[Car94b] Michael J. Carey, Michael J. Franklin, M.
Zaharioudakis. Fine-Grained Sharing in a Page
Server OODBMS. In Proceedings of the 1994 ACM
SIGMOD, Minneapolis, MN, May 1994.

[Dah94] Michael D. Dahlin, Randolph Y. Wang, Thomas
E. Anderson, and David A. Patterson. Cooperative
caching: Using remote client memory to improve file
system performance. In Proc. Symp. on Operating
Systems Design and Implementation, pages 267-280,
Monterey CA (USA), November 1994.

[Dan92] A. Dan, P. Yu. Performance Analysis of
Coherency Control Policies through Lock Retention.
Proc. ACM SIGMOD Int. Conf. On Management of
Data, San Diego, CA. June 1992.

[Deu91] O. Deux et al. The 02 system. Communications
of the ACM, 34(10), October 1991.

[Fra92] Michael J. Franklin, Michael J,. Carey, Miron
Livny. Global Memory Management in Client-Server
DBMS Architectures. Proc. Of the 18th

 Int. Conf. On
VLDB, Vancouver, Canada. August 1992.

[Fra97] Michael J. Franklin, Michael J. Carey, Miron
Livny. Transactional Client-Server Cache
Consistency: Alternatives and Performance. ACM
Transactions on Database Systems, Vol.22, No.3,
pp.315-363. September 1997.

[Gol92] R. A. Golding. A weak-consistency architecture
for distributed information services. Computing
Systems 5(4):379-405, Fall 1992.

[Kat90] Randy Katz. Toward a Unified Framework for
Version Modeling in Engineering Databases. ACM
Computing Surveys, 22(4). December 1990.

[Lam91] Charles Lamb, Gordon Landis, Jack Orenstein,
Dan Weinreb. The ObjectStore Database System.
Comm ACM 34(10), pp. 50-63. October 1991.

[Lis92] Barbara Liskov, Mark Day, and Liuba Shrira.
Distributed object management in Thor. In Proc. Int.

Workshop on Distributed Object Management, pages
1-15, Edmonton (Canada), August 1992.

 [Obj93] Objectivity, Inc.. Objectivity Tech. Overview.
1993.

[ONT94] ONTOS Inc.. Introduction to ONTOS DB 3.0,
ONT-30-SUN-IODB-1.0. April 1994.

[Pet97] Karin Petersen, Mike J. Spreitzer, Douglas B.
Terry, Marvin M. Theimer, Alan J. Demers. Flexible
Update Propagation for Weakly Consistent
Replication. In Proceedings of the 16th

 ACM
Symposium on Operating Systems Principles.
October 1997.

[Sat89] M. Satyanarayanan. A survey of distributed file
systems. Technical Report CMU-CS-89-116,
Department of Computer Science, Carnegie-Mellon
University, Pittsburgh PA (USA), February 1989.

[Sha97] Marc Shapiro. PPF Architecture - general
description. PerDiS technical report
(http://www.perdis.esprit.ec.org/deliverables/docs/arc
hitecture/ppf-archi.html). INRIA. June 1997.

[Sie96] Jon Siegel. CORBA Fundamentals and
Programming. John Wiley & Sons, Inc., 1996.

[Sun89] Sun Microsystems, Inc. NFS: Network file
system protocol specification. RFC 1094, Network
Information Center, SRI International, March 1989.

[Ter95] Douglas B. Terry, Marvin M. Theimer, Karin
Petersen, Alan J. Demers, Mike J. Spreitzer, Carl H.
Hauser. Managing Update Conflicts in Bayou, a
Weakly Connected Replicated Storage System. In

SIGOPS’95. Colorado, USA. December 1995.
[Vah96] Amin M. Vahdat, Paul C. Eastham, and

Thomas E. Andersom. WebFS: A global cache
coherent file system. Technical report, University of
California - Berkeley (Computer Science Division),
Berkeley, CA 94720, December 1996.
http://now.cs.berkeley.edu/WebOS/publications.

[Wol96] Ann Wollrath, Roger Riggs, Jim Waldo. A
distributed object model for the java system. In

Conference on Object-Oriented Technologies.
Toronto Ontario (Canada). Usenix. 1996.

