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Abstract 

Companies cooperating in the framework 
of a virtual enterprise have increasing 
demands for systems on which to base 
applications for their particular environment: 
groups of workers on distant independent 
LANs. In this paper, we present a 
transactional file system for a distributed 
persistent store designed to support 
cooperative engineering applications. The 
system integrates techniques, such as 
optimistic consistency protocols and 
versioning, tailored to provide efficient 
sharing of data, between users (at LAN 
scale) and between companies (at WAN 
scale). 

1 Introduction  

Current engineering projects are often 
developed by a virtual enterprise (VE), a 
temporary cooperation of independent 
companies. A VE comprises several 
geographically distant teams that work on 
separate local networks and on mostly 
distinct parts of a project. Each team 
consists of a group of workers that use 
workstations running engineering 
applications, e.g. CAD tools, which 
manipulate the VE’s project data.  

Traditionally, cooperative distributed 
applications are designed using remote 
invocation methodologies (function-
shipping), such as CORBA [Sie96] or RMI 
[Wol96]. The performance of these client 
server applications degrades as objects 
become smaller and more numerous and as 
the number of clients increases. 
Furthermore, the wide-area invocation of 
remote servers raises latency and 
availability problems that are not addressed 
by function-shipping systems. Data-shipping 
designs copy data to the client machines 
allowing complex and lengthy manipulation 
of the data. This approach also allows an 

optimisation of memory usage by allowing 
the creation of a shared address space 
among client machines. 

We have designed a transactional file 
system, PerDiS File System (PFS), for a 
distributed persistent store [Sha97] that 
supports engineering applications in a VE 
environment. This work is being done in the 
context of the ESPRIT Persistent Distributed 
Store (PerDiS) project. The PerDiS design 
comprises interactions among computing 
nodes both at the local and wide area 
scales. This paper focuses on the local area 
architecture of the PerDiS transactional file 
system (PFS). 

At a LAN scale, manipulation of the data 
is made on a set of client workstations 
running on a fast network with few reliable 
servers within a single protection domain. 
Advanced applications, e.g. design and 
development, resort frequently to long-lived 
access to data. To enable coherent and 
efficient sharing of data among such 
applications, optimistic transaction models 
are currently used [Fra97]. These protocols 
allow high degrees of concurrency and low 
abort rates in environments with low write 
contention such as the ones we are 
targeting. 

Nevertheless, for the majority of the 
applications we are addressing, even a 
small abort rate is not acceptable for long-
lived transactions. We use a versioning 
mechanism to reduce transaction aborts due 
to write contention. In addition, users want to 
perform tentative modifications and only 
later decide which one to submit to the 
servers. Thus, one of the characteristics of 
VE applications is that different users may 
work on different copies, i.e. versions, of the 
same data. This involves the added 
complexity of managing a multi-version data 
set. Yet, in cooperative applications, due to 
the parallelism it allows, this is perceived to 
be a good work methodology.  



Committing divergent versions leads to 
the need of version reconciliation. Versions 
that do not satisfy traditional serialisation 
criteria, and cannot be merged 
automatically, have to be reconciled using 
user-driven application specific reconciliation 
tools. In our particular environment, 
companies participating in the VE usually 
conclude a specific task by electing a final 
version chosen (or composed) out of the 
version graph generated by their local 
processing, and disseminate it to other VE 
members. 

The innovative aspect of our design is 
the integration of optimistic transactions with 
versioning mechanisms in order to satisfy 
the requirements of applications in a 
cooperative engineering environment. In the 
rest of this paper, we address relevant 
related work, give an overview of the PerDiS 
architecture and then focus on the PFS. 

2 Related Work 

Several data-shipping DBMS have 
extended standard pessimistic two-phase 
locking (2PL) protocols to allow a greater 
degree of concurrency and to improve 
memory utilisation [Lam91, Obj93, ONT94]. 
In particular, optimistic locking protocols 
[Car94b, Ady95] allow intense concurrency 
under low write contention.  

A client/server DBMS with inter-
transactional caching at the clients requires 
a remote update mechanism to maintain 
cache coherence by updating the clients’ 
caches when other clients commit 
transactions using the same data. This can 
be achieved by using invalidation of stale 
cache data, propagation of the new 
committed data or by a dynamic choice 
between these techniques [Fra97]. It has 
been shown that, in cooperative 
environments with low write contention, 
protocols that use invalidation perform best 
because they are less sensitive to workload 
patterns. It is worth noting that, in our case, 
notifications never imply an abort given the 
support for versioning. Invalidation 
messages may be used to notify 
applications of other conflicting users. 

Regarding versioning for DBMS, a variety 
of schemes have been implemented 
[Lam91, Obj93, ONT93]. Most versioning 
schemes are based on the concept of a 

configuration, i.e. a graph of objects that 
constitutes a versioning unit. Managing a 
graph of versions involves extending 
(creating versions), labelling and pruning the 
graph. Pruning and labelling operators are 
straightforward to implement and vary 
mostly depending on the cooperation model 
implemented [Kat90]. 

The simplest version creation mechanism 
is linear versioning that designates the 
general approach of tagging successively 
committed versions of a set of data, with 
version numbers or timestamps, so that 
applications can identify the older versions 
they wish to rollback to.  

More complex mechanisms include 
branching versioning  [Lam91, Obj93] and 
Objectivity’s move-copy-drop techniques 
[Obj93]. Branching mechanisms allow users 
to create divergent versions of data. This 
may derive from the need of committing 
transactions that conflict according to 
standard serialisation criteria or merely from 
the wish of maintaining different copies of 
the data. More specific mechanisms to 
modify configurations are used in Objectivity 
[Obj93]. This system has a particular set of 
operations, move-copy-drop, to commit 
objects to the database. The copy operation 
triggers a full copy of the graph containing 
the newly versioned object; move replaces 
the old version of the object in the 
configuration while maintaining the previous 
version; and drop erases the previous 
version of the committed object.  

 

 

 

 

 

 

 

 

 

Figure 1 PerDiS System Architecture 

3 PerDiS Architecture 

PerDiS is an infrastructure for programming 
distributed, type-safe applications that 
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transactionally access persistent data 
(Fig.1). PerDiS is designed for a virtual 
enterprise environment where machines on 
several LANs cooperate temporarily over a 
wide-area network.  

It allows applications to manipulate files 
containing graphs of objects which we call 
clusters. Clusters are stored persistently at 
servers’ stable storage according to the 
model of persistence by reachability [Atk83]. 
This persistence model guarantees that all 
objects that are reachable, directly or 
indirectly, from a named root object will be 
made persistent. PerDiS applications are 
linked to a user level library (ULL). This ULL 
communicates with a PerDiS Daemon that 
manages locking and handles all persistent 
and fault tolerant data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Modules in PerDiS 

The PerDiS File System (PFS) provides 
the transactional, caching and storage 
support for PerDiS (Fig.2). Other modules in 
PerDiS handle object clusters (swizzling, 
reference management, clustering) and 
handle type and memory management. 

Besides the local area activity described 
in section 4, PerDiS also operates on a 
wide-area scale. At this dimension, company 
servers interact to provide coarse granularity 
data, i.e. files, to other cooperating LANs 
and to return newly generated versions of 
the data to the original sites. Typically, each 
member of the VE is responsible for the data 

it creates. For example, in a building VE, the 
architecture company owns the master copy 
of the architecture project: it may selectively 
distribute sub-sets of its data to other VE 
members and it is the ultimate responsible 
for accepting changes to the architecture 
project. These wide-area exchanges over 
untrusted networks are encrypted and file 
access is authenticated. 

4 PerDiS File System 

The PerDiS File System is a distributed 
transactional file system. The PFS stores 
clusters of object in binary format into files 
on the servers’ disks. These clusters are 
referenced using URLs. Servers manage 
transactions and stable storage. Client 
machines run applications that access the 
persistent store and manage a page-based 
cache of persistent data. Clients request file 
blocks and memory map them and servers 
keep track of the pages issued to each 
client. At the clients, pages are cached and 
may be shared for reading. Write accesses 
to memory pages are performed on copies 
exclusive to each application.  

Cache coherency among clients is 
maintained using the entry consistency 
protocol. Entry consistency takes advantage 
of the low contention among clients and, by 
keeping locks where they were requested, 
facilitates the probable sequential access by 
the same client [Fra97]. Besides invalidating 
other client caches, entry consistency 
invalidation messages may also be used as 
notifications to applications that others are 
using the same data. 

The use of entry consistency raises some 
fault tolerance issues. Introducing recovery 
mechanisms for the protocol’s data, such as  
“probable owner” pointers and locks possibly 
lost at the failed node, without significant 
performance overheads is not a trivial 
problem, which we will address in the near 
future. 

4.1 Transaction Management 

Each PerDiS application runs a single 
transaction at a time.  As already mentioned, 
pessimistic transactions have a limited 
usability in cooperative engineering 
applications. Thus, optimistic transactions 
are needed in order to allow users to 
combine data sharing and long lived 
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transactions. Hence, we introduced an 
optimistic protocol with notifications and 
versioning support. In the PFS, to avoid 
aborting long transactions, upon receiving 
notifications, PerDiS daemons only 
invalidate pages that are currently not 
involved in any transactions. Invalidation 
notifications for data being accessed are 
forwarded to the application level for user 
information. 

Distributed transactions are committed 
using a non-blocking two-phase-commit 
protocol. When a client commits a 
transaction it is written onto the local disk. 
We rely on the local disk to stably maintain 
the transaction’s updates for the duration of 
the commit protocol. Once the updates are 
written on the local disk, the client 
application may continue executing. 

During the commit protocol, since we 
already guaranteed that consistent data was 
provided to the committing transaction, 
servers that provided data, that was not 
modified, need not be contacted. Our 
versioning support guarantees that 
applications will not lose work done within 
transactions. This may be a traditional 
database commit where, after transactions 
are committed, there is a single image of the 
database. As a last resort, in the cases 
where optimistic transactions have conflicts 
and their serialisation is not possible, we 
extend the semantics of the commit 
operation by committing both transactions to 
the servers’ disk as alternative versions of 
the same data. In the following section, we 
discuss the management of versions.  

Guaranteeing that long lived optimistic 
transactions don’t abort due to data 
contention, requires always providing a 
consistent view of the data to all active 
transactions. A transaction that begins at a 
given point in time will have to consistently 
receive the data that was store in the 
servers’ disks at the time it begun, until it 
ends. Stretched to the limit, this requirement 
would force us to maintain all the versions 
that have ever existed of all cluster files, 
because there might be somewhere in the 
system a node with a long-lived transaction 
that might need data from a long time ago. 
However, due to disk space restrictions, we 
must differentiate between old data that 
might still be requested and old data that 

does not belong in any consistent view of 
the cluster files being provided to active 
transactions. To this effect, we are going to 
develop a client register service, that will 
ensure, to clients that register themselves, 
that clusters that were valid when their 
active transaction began, will be maintained 
until they commit the transaction or 
unregister themselves as active clients. 

4.2 Versioning and Checkpoints 

Versioning in the PFS is a means to 
avoid that data updates made by optimistic 
transactions aren’t lost due to write 
contention. Conflicting transactions are 
committed using a branching versioning 
mechanism. Versioning mechanisms also 
permit the creation of versions with other 
motivations. Users can maintain tentative 
sequential versions of data. In addition, if an 
application wants to checkpoint its persistent 
data without submitting it to the whole 
system, it can save it onto the local disk. 
This checkpoint, invisible to other users, can 
later be recovered and work resumed at that 
stage. 

Transactions performed by a local group 
of users may result, due to contention or 
divergence of concepts, in a graph of 
versions. In the virtual enterprise example, it 
is the responsibility of the company that 
initially created the cluster to elect one of the 
committed versions of the store as the final 
version to be publicised to other participating 
networks. The low write contention among 
concurrent design application helps keep the 
amount of branching in a cluster’s version 
graph to a minimum. 

Many versions, especially those 
generated due to write contention, cannot be 
merged automatically. This leads to the 
need of programmer/user aided tools based 
on semi-automatic reconciliation algorithms, 
e.g. anti-entropy [Gol92, Pet97, Ter95], to 
reconcile versions of the store. Our design 
provides support for this functionality 
through APIs for editing (create, remove, 
merge operations), labelling and navigating 
graphs of versions. 

4.3 Global Memory Management 

Another interesting possibility when 
operating on a local network with a single 
protection domain is the optimisation of data 
access speed and occupation of the 



network’s aggregate memory by including 
cooperative caching techniques. 

The usual techniques involved are 
moving pages to other machines’ memory 
(“dropping the page”) instead of writing them 
to disk and the consequent forwarding of 
any messages regarding those pages 
[Dah94, Dan92, Fra92]. However, in our 
system, we have to consider some new 
aspects such as transactional consistency 
and versioning when making use of other 
machines’ memory. 

We have chosen to use memory pages 
as the unit of cache coherence because this 
allows efficient integration with the virtual 
memory system and consequently write 
access detection using the page fault 
mechanism. Pages are cached between 
transactions until they are invalidated when 
they become stale, forwarded (“dropped”) to 
other clients’ memory, or, as a last resort, 
evicted to disk.   

A consequence of this approach is that 
some clients, instead of getting data from a 
server, will have their request forwarded to 
some other site which has the data needed. 
Furthermore, the use of versioning may lead 
to the existence of alternative copies of the 
same memory page in the clients’ caches. 
We are exploring criteria for choosing which 
versions of data should be kept in the 
client’s caches. 

5 Conclusions & Future Work 

This paper described the motivation for 
the PerDiS transactional file system and 
some of the most relevant aspects. The 
contribution of this work is the integration of 
transactions, versioning and global memory 
management for VE applications. 

Cooperative applications have special 
requirements such as the support for long-
lived transactions that should never abort. 
Alternatively, new, possibly divergent, 
versions of data are created thus requiring 
reconciliation. Hence, the graph of these 
versions has to be managed (edited, 
labelled and pruned). We discussed how 
these mechanisms can be introduced in a 
client/server distributed store with a shared 
address space cache among clients. 

Even though this is still work in progress, 
there is already a preliminary working 
prototype available on the Internet 
(http://www.perdis.esprit.ec.org) that runs all 
several platforms (Sun Solaris, Linux, 
Windows NT) and with which the end-user 
partners of the PerDiS project  are currently 
experimenting. 

There are several developments that are 
essential to help mature PerDiS and the 
PFS. 

Fault tolerant locking is fundamental in 
order to have a serious platform, since it is 
unacceptable that a node failure may disrupt 
the whole system. 

Furthermore, versioning as a means to 
resolve transaction conflict is a simple but 
powerful mechanism that enables many 
models and policies for cooperative work 
that need to be explored. 
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