
Scalable Computing: Practice and Experience

Volume 13, Number 1, pp. 5–20. http://www.scpe.org
ISSN 1895-1767
c© 2012 SCPE

FASTFIX: A CONTROL THEORETIC VIEW OF SELF-HEALING FOR AUTOMATIC
CORRECTIVE SOFTWARE MAINTENANCE

B. GAUDIN∗, M.H. HINCHEY∗, E. VASSEV∗, P. NIXON †, J. COELHO GARCIA ‡, AND W. MAALEJ §

Abstract. One of the main objectives of self-adaptive systems is to reduce maintenance costs through automatic adaptation.
Self-healing is a self-adapting property that helps systems return to a normal state after a fault or vulnerability exploit has been
detected. The problem is intuitively appealing as a way to automate the different type of maintenance processes (corrective,
adaptive and perfective) and forms an interesting area of research that has inspired many initiatives. As a result, several surveys on
self-healing have been published to describe the state of the art in this field. According to those surveys, the major trend towards
finding a solution of the self-healing problem relies on redundancy that may concern both architecture and code resources. These
approaches are therefore better suited to address adaptive and perfective maintenance. As part of the EU FP7 FastFix project [1],
we focus on self-healing for corrective maintenance. We propose a framework for automating corrective maintenance that is based
on software control principles. Our approach automates the engineering of self-healing systems as it does not require the system
to be designed in a specific way. Instead it can be applied to legacy systems and automatically equip them with observation and
control points. Moreover, the proposed approach relies on a sound control theory developed for Discrete Event Systems. Finally,
this paper contributes to the field by introducing challenges to the effective application of this approach to relevant industrial
systems. Some of these challenges are currently being tackled within FastFix.

Key words: software maintenance, self-healing, software control, context-aware software engineering

1. Introduction. Software maintenance aims to modify software systems after they are deployed in pro-
duction ([39, 14]). In [47], the authors divide maintenance activities in three different types: adaptive, perfective,
and corrective. Adaptive maintenance is performed to make the computer program usable in a changed environ-
ment. Perfective maintenance mainly tackles performance and maintainability issues. Corrective maintenance
is performed to correct faults. Within the last 20 years the complexity of both software and communication
infrastructures has increased at an unparalleled rate. This level of complexity means that software systems are
more prone to unexplained faults, require more support and maintenance, and cost more to deploy and manage.
A fundamental challenge faced by the software industry is how to ensure that these complex systems require
less maintenance and human intervention. Concepts such as self-healing, autonomic and self-adaptive systems
provide an answer by reducing human intervention and reducing the apparent complexity of systems.

Several surveys on self-healing have been published to describe the state of the art of this field. According
to these surveys, the major trend towards finding a solution of the self-healing problem rely on redundancy
that may concern both architecture and code resources. These approaches assume that systems are designed
with adaptive capabilities and are therefore better suited to address adaptive and perfective maintenance. In
this article, we focus on self-healing for corrective maintenance. Section 2 recalls existing works on self-healing,
automatic diagnosis, and automatic repair of software systems.

We also propose a control theoretic approach to self-healing in order to deal with corrective maintenance.
Control makes it possible to drive the system in a range of desired behaviours. It represents an interest-
ing approach to avoid behaviours leading to failures. This is achieved by dynamically disabling some of the
implemented features, depending on the current execution of the system. Moreover, the proposed approach
automatically synthesizes supervisors in charge of controlling the software. This hence automates the compu-
tation of a new suitable range of software behaviours whenever corrective maintenance needs to be performed,
e.g. a failure has been reported and behaviours leading to this failure need to be removed or avoided. Our
approach consists of a pre-deployment and runtime phase. Each phase is described in Sect. 3. Sect 4 illustrates
our approach through one of the case studies considered in FastFix: the Moskitt application.

Finally, challenges to be tackled in order to implement effective and efficient control theoretic self-healing
features are discussed in Sect. 5. Most of these challenges relate to the supervisory control theory and its
applicability to software system. However we also show that some challenges are common to the research in
automatic diagnosis and automatic repair.

∗Lero - The Irish Software Engineering Research Center, Limerick, Ireland ({benoit.gaudin, emil.vassev@lero.ie,

mike.hinchey@lero.ie}@lero.ie).
†University of Tasmania, Hobart, Australia (Paddy.Nixon@utas.edu.au)
‡Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa, Lisbon, Portugal

(jog@gsd.inesc-id.pt)
§Technische Universität München, Munich, Germany (maalejw@cs.tum.edu)

5

6 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

2. Overview of Automated Software Maintenance Approaches.

2.1. Self-Healing. Self-healing is a concept which aims to tackle or prevent maintenance tasks in presence
of system failures. This concept came with the notion of Autonomic Computing initiated by IBM in [32]. The
main goal of Autonomic Computing is to reduce human intervention in component management.

There are different visions of self-healing in the literature. In [52], Rodosek et al. consider self-healing as
equivalent to self-repairing and self-immunity, i.e. the ability to resist to infections. A self-healing system must
be able to recover and go back to a proper state following some disturbance. This view is shared in [26], where
recovery oriented computing is presented as a key aspect of self-healing. The authors consider that healing
systems are more concerned with post-fault or post-attack states and more specifically with bringing the system
back to a normative state. In [34], the author has a broader view of self-healing. In that work, self-healing tries
to identify and eliminate or mitigate the root cause of the fault. In [37], the authors have a similar view of self-
healing and recall that the system requires knowledge about its expected behaviours in order to automatically
discover system malfunctions or possible futures failures. In [53] the authors describe self-healing as consisting
of self-diagnosis and self-repair. The consequence of this observation is that work related to automatic diagnosis
and automatic repair or recovery are relevant to the field of self-healing. Finally although self-healing aims
for automation, as discussed in works such as [26, 50], even non fully automated healing approaches may also
represent self-healing techniques. In [26] for instance, Ghosh et al. introduce the notion of assisted-healing for
systems that require some human intervention during their healing process.

Historically, self-healing techniques were inspired by fault-tolerance and these two fields are tightly connected
as explained in [15]. This entails that, as for fault-tolerance approaches, self-healing solutions often rely on some
system redundancy, such as components, hardware, network nodes, code variants, etc. This observation was also
made recently in [45] which also provides a survey on self-healing approaches. The authors classify self-healing
techniques and faults tackled. Self-healing techniques can be classified according to the type of systems under
consideration and span over service relaunch, checkpointing, architecture based, model based, multi-agent based,
reflection based, aspect oriented programming, service discovery and load balancing. From [45] again, the faults
tackled by self-healing approaches are classified into crash failure, fail-stop (execution is deliberately inhibited
on a failure and detected by other processes), omission (message loss or transmission error), transient (error
related to presence of various self recovering faults disturbing other parts of the system), timing and performance
(constrained distributed synchronous execution of tasks by a specific amount of time), security and arbitrary
(a process confuses the neighbors by providing constantly individual consistent but contradicting information).
As pointed out in [55], self-healing is still a relatively immature field and the class of faults tackled by this field
remains quite narrow. Moreover, the techniques employed in this field mainly use architecture adaptation in
order for the system to provide expected features even without the faulty component. To this respect, these
approaches achieve adaptive maintenance in presence of failures.

Recently, other self-healing approaches modifying the behaviours in order to correct them have been consid-
ered, e.g. [56, 7, 8, 6]. Therefore these approaches propose self-healing features that are suitable for corrective
maintenance.

In [56], the authors present ASSURE, a self-healing approach based on rollback and error handling facilities.
When an error occurs at runtime and the system is brought back to a rescue point, pre-defined error handling
strategies are executed in a virtualized environment and tested. If it is satisfactory, then the error handling
code is applied to production code, modifying the initial system behaviour in order to correct it. This approach
makes it possible to self-heal from unknown issues by applying recovery approaches for known issues, that also
seem to apply to the unknown ones.

Carzaniga et al. [7, 8, 6] consider a self-healing approach that modifies the behaviour of the component
to be healed. The proposed approach, called workaround, consists of replacing a faulty sequence of operations
with another that produces the same outputs or effects. Workaround is a model based approach which provides
alternative program executions to the failing ones. This approach relies on the observation that libraries often
contain feature redundancies. A typical example, provided in [6] is the one of changing an item in a shopping
basket. The change item feature can be achieved by composing the remove item and the add item features, i.e.
an item change can be seen as the removal of an item followed by the addition of another one.

As explained in [53] self-healing can be seen as a combination of self-diagnosis and self-repair approaches.
A broader view of these concepts are automatic diagnosis and automatic repair which are strongly related to
the corrective maintenance process.

FastFix: A Control Theoretic View of Self-Healing for Automatic Corrective Software Maintenance 7

2.2. Automatic Diagnosis. Diagnosis is a proactive software-maintenance technique driven by detection
and isolation of faults to prevent failures [47]. Automatic diagnosis targets the automation of the diagnosis
process, where faults are detected and isolated by the system itself, often by applying techniques working on
the system architecture or by implementing special alarms. The architecture-based techniques usually rely on
resource redundancy. For example, in [54] is considered the feasibility for a multi-processor system to perform
self-diagnosis on some of its processors by some others. Another class of automatic diagnosis techniques is the
so-called correlation-based diagnosis that considers diagnosis that may provide several types of alarms where an
issue is detected by the raise of one or more alarms. In [16] correlation-based diagnosis is applied to Discrete
Event Systems and considers the detection of alarms whenever they are not directly observable. In another
approach metrics related to system states or performance are correlated as a means for diagnosis [31]. Normal
system behaviour is determined by specific metric correlations and faults might be detected whenever there is
a deviation from these metrics correlations. Finally, model based techniques form another class of automatic
diagnosis. System models take as input some observations of the current system state or behaviour and produce
diagnosis. In general, the model based diagnosis is about comparing a system behaviour with actual observed
executions [51]. When the observed execution deviates from the expected behaviour provided by the model,
this is an indication of a fault occurrence. [29] consider probabilistic models in order to apply this principle.

2.3. Automatic Software Repair and Bug Fixing. Several approaches have been proposed to au-
tomate the bug fixing process. Rollback techniques maintain a record of “healthy” system states to allow a
rollback to the last such state when a fault occurs. Once successfully rolled back to a healthy state, the system
re-executes after applying certain changes to its input data or execution environment (see e.g. [46, 56, 60, 35, 5]).
Mutation techniques rely on Genetic Programming concepts and are closely related to data structure linking
and modification. The data structure repair approach [42, 17, 18, 21] uses structural integrity constraints for
key data structures to monitor their correctness during the execution of a program. If a constraint violation
is detected, then mutations are performed on the system data structures in order to transform them so that
they satisfy the desired constraints. Event Filtering techniques are usually related to software security and
vulnerability. They consist of automatically creating and detecting signatures or patterns for malicious attacks
such as control hijacking and code injection. Then these signatures are used for a filtering check, so that such
attacks cannot break through in the system anymore. Systems following this principles are PASAN ([59]),
FLIPS ([41]) and ShieldGen ([13]). Learning and probabilistic approaches to automatic repair and bug fixing
learn from past executions where bugs have been fixed. Applied fixes are stored and can be retrieved and
applied again or used in order to infer other possible fixes. Systems such as Exterminator ([43]), BugFix ([30])
and ClearView ([44]) implement such a principle. Finally, in [61] the authors present AutoFix-E, an automatic
code fixing approach based Model Checking. This approach considers contract violations as failures and calls
existing functions whose postcondition fulfills the violated contract. Fix candidates are created from a set of fix
templates and the behaviour models.

2.4. Conclusion. Self-healing approaches mainly rely on system redundancy which adapt their architec-
ture in order to bypass faulty components but still provide their expected features. Therefore these approaches
are related to adaptive maintenance, where the system adapts to changes due to failures.

The authors of [53] suggest a definition of self-healing consisting of self-diagnosis and self-repair. As diagnosis
and repair techniques are very relevant to corrective maintenance, such a vision of self-healing is well suited
to this maintenance task. However, automatic diagnosis and repair techniques found in the literature focus
on analyses and lack of a unified and systematic approach for equipping the system with self-healing facilities
implementing the autonomic feedback loop (see Figure 3.1(a)).

In Sect. 3 we propose an approach for software self-healing that automatically introduces autonomic facilities
into an existing system, e.g. sensors and actuators. This approach is based on The Supervisory Control Theory
(SCT) for Discrete Event Systems where the corrective maintenance task corresponds to the automatic synthesis
of a supervisor. Section 5 introduces the main research challenges associated to the proposed approach.

3. A Control Theoretic Approach to Software Self-Healing. Regarding computing systems, control
theory has traditionally been applied to data networks, operating systems, middleware, multimedia and power
management ([28]). This section introduces a control-based approach for software self-healing.

Self-Healing is a property of Autonomic Systems [33]. Our approach proposes to automatically equip
software systems with autonomic features before deployment so that they can follow the different phases of

8 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

(a) The autonomic feedback loop.

Supervisor

System

Prevention

Observation

(b) The Control Feedback
Loop.

Fig. 3.1: The runtime autonomic and control feedback loops.

the autonomic feedback loop presented in Figure 3.1(a). In particular, sensors and actuators are automatically
added to the software system in order to realize the Data Collection and Action phases of Figure 3.1(a). Within
FastFix, the Analysis phase corresponds to automatic supervisor synthesis. As explained in [20] control theory
principles are suitable to implement the autonomic feedback loop. More specifically, this work considers the
Supervisory Control Theory (SCT) on Discrete Event Systems. This theory was initiated in [48] and is a model
based approach aiming to automate the synthesis of correct models.

Our self-healing approach consists of two different parts: a pre-deployment part which is performed before
the system is deployed and where self-healing features are added to the software; and a post-deployment part
corresponding to the automatic or semi-automatic execution of the maintenance process where the system self-
healing features are employed. The latter part itself consists of supervisor synthesis and runtime supervision.
Synthesis is applied using SCT, whenever new runtime system specifications need to be ensured, e.g. when a
fault has occurred and behaviours leading to it must be removed. Runtime supervision corresponds to applying
the synthesized supervisor to the application at runtime. Overall the presented approach can be seen as a three
phase approach: pre-deployment, supervisor synthesis and runtime supervision. These phases are presented in
more details in Sect. 3.1.

3.1. Overall Approach. The overall proposed approach is depicted in Figure 3.2. The left-hand side
of this diagram represents the pre-deployment phase during which code is instrumented in order to introduce
observation and control points (i.e. sensors and actuators) as well as data structures that make it possible for
the application to embed and use supervisor models. A binary (or bytecode) application with these facilities
can then be obtained through compilation. During the pre-deployment phase, a model of the behaviours is also
automatically extracted from source code through control flows and method calls analysis.

During the runtime and maintenance phase, the software artefacts (source code or bytecode) are no further
modified. Only models of a supervisor representing their possible runtime behaviours are manipulated in order
to maintain the application behaviours within a desired set. These models are embedded in the application at
runtime and are modified and replaced whenever an error occurs so that behaviours leading to this error cannot
occur in future system executions.

Some unknown possible failures of the system may occur at runtime, requiring the application to be cor-
rected. The observation of such a failure indeed indicates that the system behaviour is not satisfactory and
needs to be modified. Self-healing capabilities aim to correct the system behaviour so that the observed failure
can no longer occur. Such corrections are performed by modifying the supervisor that interacts with the appli-
cation at runtime. Considering the Supervisory Control Theory introduced in [48], this can be automatically
achieved when a control objective is provided. In some situations, this control objective can be automatically
derived from observations of failures during the system execution [25]. In general, control objectives can also

FastFix: A Control Theoretic View of Self-Healing for Automatic Corrective Software Maintenance 9

Supervisor
Model

Application
Model

Application
Bytecode/Binary

Control
Objective

Prevention

Synthesis

Failure
Observation

Expected
Observation

Application
Source Code

Model
Extraction

Runtime and Maintenance PhasePre-Deployment

Instrumentation

A
p
p

lic
a

ti
o
n

A
rt

if
a

c
ts

M
o

d
e

ls

Fig. 3.2: A Software Control Approach to Self-Healing.

be provided by expertise. The accuracy and relevance of the expertise involved in designing a control objective
will impact on the accuracy and relevance of the corrective solution applied to the system. For instance, diag-
nosis can help design a more accurate control objective. However, in cases where deep analyses and diagnostics
cannot be conducted (e.g. when the amount of time that is necessary to perform this task is too long), a simple
control objective excluding the undesired previously observed sequences of method calls can be submitted to
the supervisor synthesis algorithm. However in this case, the resulting supervisor may act more coarsely and
unnecessarily remove some of the system behaviours. This depends on how representative of an undesired
behaviour the observed sequence is.

3.2. Pre-Deployment Phase. The pre-deployment phase aims to prepare the software application so
that control and synthesis can be performed at runtime. This preparation consists of 2 subtasks: code instru-
mentation and model extraction. Each of these tasks is performed in an automated fashion.

Code instrumentation is performed in order to introduce observation and control points as well as to
embed a supervisor in the application, as illustrated in Figure 3.6. Intuitively, automatically instrumenting the
application code consists of automatically embedding a supervisor into the system as well as adding conditional
statements in each method body so that method invocations can be observed and executions of method bodies
can be prevented at runtime 1.

Moreover the approach introduced in this section relies on the automatic design of a model of the application
behaviours. In its basic form, this model can be a Finite State Machine whose transitions represent method
calls. An over-approximation of the behaviours of the application can be obtained from the source code by
considering methods, branching and loops as illustrated in Figure 3.3.

Some tools have been implemented in order to extract and analyze models represented as Extended Finite
State Machines (EFSM), i.e. FSM associated with variables. PROMELA is an FSM-based modeling language.
PROMELA models can be used as input to the SPIN tool, which can then model-check this model against
some properties. Bandera ([11]) extracts FSM from Java code. Bandera offers the possibility of exporting the
extracted models into the PROMELA format. More recently in [27], the authors proposed an efficient approach
for model extraction from programs. The approach makes it possible to deal with different but syntactically
similar programming languages such as C++ and Java.

In all these approaches however, only some particular parts of the programming language are considered.
When the extracted models are meant to be used for model-checking, the choice of the program parts to be

1More details on the runtime aspect is provided in Sect. 3.4.

10 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

(a) An example of
method declara-
tion.

method2

method2()
method3()

method4()

method5()

method3()

(b) An FSM modeling the system be-
haviours of method1.

Fig. 3.3: Illustration of FSM extraction.

extracted can be driven by the property to be model-checked (e.g. [11]). In case of software maintenance, one
usually does not know which part of the application is faulty before an error occurs. Therefore monitoring
relevant information about the occurrence of an error requires to cover a large part of the application. Moreover
as the relevance of approach for self-healing relies on the observation made at runtime, it requires that the
application models encode these possible runtime observations. In our approach, the extracted models actually
encode all the possible occurrences of method invocations, for methods declared in the application, i.e. invoca-
tions of methods declared in external components are not considered. This characteristic is related to the fact
that the extracted model is used for on-line monitoring and capture relevant information when an error occurs.
Therefore an important challenge for model extraction consists of obtaining a complete application model. This
requires that the model complies with the specification of the language compiler or virtual machine so that
features such as threads and graphical components are treated appropriately.

In order to extract models on large applications, we use a modular approach. A typical output of the
model extraction mechanism is depicted in Figure 3.4. It consists of a set of Finite State Machines, each of
them possessing one initial state (represented as an hexagon in the figure) and possibly several final states
(represented as double-circle states). From each of these initial state, only one event can be triggered, i.e. event
mi for each FSMi and for 1 ≤ i ≤ 3. Moreover these events, called triggering events, do not appear in any other
transition or in any other FSM. Therefore, when observed at runtime, these events uniquely characterize which
FSM is running and initiates any of the behaviours of this FSM.

Considering software applications, triggering events represent methods that are not called from within the
application. In our approach, this also takes into account the fact that methods within the application may call
an external method that is overridden by a method that is declared in the application itself. This means that
triggering events may only be called through external events such as a call from an external component, from
user interactions, from occurrences of system events, etc.

Triggering events make it possible to capture concepts such as the behaviours associated to button clicks of
a graphical interface (e.g. method actionPerformed in Java SWING), the start of a new thread (e.g. method
run in Java), etc.

Run methods represent concurrency in the application at runtime. This concurrency is also present in the
model as triggering events are declared in different FSM that can run concurrently. However more modularity
is also introduced in the model whenever this is possible. For instance, a method may be a triggering event
although its behaviour does not run concurrently. For instance all actionPerformed methods run on the same
thread, the EventDispatch thread. In this case, apparent concurrency in the model does not represent actual
concurrency at runtime. This approximation is however an interesting means to lower the complexity of the

FastFix: A Control Theoretic View of Self-Healing for Automatic Corrective Software Maintenance 11

m1 m2 m3

m4

m5

m6

m4
m8 m5

FSM1 FSM2 FSM3

Fig. 3.4: Structure of the extracted FSMs.

extracted models. A modular model extraction approach indeed avoids the computation of a single Finite State
Machine, which would become intractable for large applications. This approach allows to extract models of all
the possible application behaviours and makes it scalable by splitting the problem into the one of extracting an
FSM for each of its entry point.

The runtime dynamic of this model is described in more details in Sect. 3.4.

3.3. Synthesis Phase. The design of such a supervisor corresponds to determining how the application
behaviours must be modified in order to avoid undesired behaviours. However designing such a supervisor is a
challenging and prone to error task. Moreover the high complexity of software applications makes it difficult to
take manually into account all the possible failures that can occur and need to be prevented. For this reason,
supervisors may need to adapt at runtime so that they take into account newly observed undesired behaviours,
hence performing corrective maintenance. Such an approach is described in Figure 3.5(a).

Our approach considers the automatic synthesis of such supervisors. More specifically we consider techniques
that automatically compute the model of a supervisor given a model of the application behaviour and a model
representing a set of desired behaviours2. The Supervisory Control Theory (SCT) on Discrete Event Systems
introduced by Ramadge and Wonham [49], offers such a framework and techniques for the automatic synthesis
of supervisors.

SCT is a formal theory that aims to automatically design a model for a supervisor ensuring some safety
property. The Supervisory Control Theory defines notions and techniques that allow for existence and automatic
computation of a model of the supervisor, given a model of the system as well as the property to be ensured. In
this theory, models of a system G are represented by languages over alphabets of events, denoted L(G). These
languages correspond to sets of sequences of events, each representing a possible behaviour/execution of the
system.

Although not as general as languages, Finite State Machine (FSM) are used to model the possible behaviours
of the system as well as the supervisor and the properties to be ensured by control. Regarding the modeling of
supervisors, Figure 3.1(b) shows that they can be seen as a function that takes a given sequence s and returns
to the system a set of allowed events after s. The function S representing the supervisor can be encoded by
a FSM GS such that for all s ∈ L(S), S(s) represents the set of events that can be triggered from the state
reached in GS after sequence s.

Supervisors ensure a given property, called control objective. Such a property is modeled as a FSM as well,
generating a set of “safe” behaviours and meaning that the behaviours that are not encoded by this FSM are
undesired. For instance, Figure 3.5(b) represents a very simple control objective which models that method1
must never be executed.

2Behaviours that do not belong to this set are undesired.

12 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

Supervisor

System

Adaptation
Mechanism

PreventionObservation

Synthesis

(a) A Software Control Adaptation View.

Any event but method1

(b) A simple control
objective.

Fig. 3.5: Software control Adaptation view and a simple control objective.

The main goal of the Supervisory Control theory is to automatically synthesize a model of a supervisor
that ensures that the system behaviours are all included in the ones described by the control objective. The
theory also considers that not every event can or should be disabled by a supervisor. Such events are said to be
uncontrollable. In order to take such events into account, the alphabet of the system is assumed to be composed
of a set of controllable events (Ac ⊆ A) and uncontrollable events (Au ⊆ A). Each event of the system is either
controllable or uncontrollable. Controlling a system consists of restricting its possible behaviours taking into
account the controllable nature of the system events. In order to achieve this, Ramadge and Wonham (see
e.g. [63]) introduce a property called Controllability. A system G′ whose behaviours correspond to a subset of
the ones of G is controllable w.r.t Au and G if L(G′).Au ∩ L(G) ⊆ L(G′). A controllable set of behaviours G′

ensures that no sequence of uncontrollable events can complete a sequence of G′ into a sequence of G that is no
longer in G′. In other words, the controllability condition ensures the synthesized supervisor can be effectively
implemented with respect to the available controllable events. We now define the basic supervisory control
problem, which can be stated as the following:

Basic Supervisory Control Problem (BSCP): Given a system G and a control objective K, compute the
maximal controllable set of behaviours included in the ones of both G and K.

Ramadge and Wonham (see e.g. [63]) have shown that a solution to the BSCP exists if and only if the
maximal controllable set of behaviours included in the ones of both G and K is not empty. They also provided
an algorithm computing this FSM which encodes a most permissive supervisor ensuring the control objective
(see e.g. [63]). This algorithm can be seen as a function that takes as inputs a set of uncontrollable events Au,
a FSM representing the control objective K and a FSM representing the behaviours of the system G. In our
proposed approach, corrective maintenance is applied by modifying the application behaviours. Determining
the set of behaviours to be ensured by control is performed solving the BSCP. The obtained model is then use
to control the application. Part of the mechanism involved to achieve this is described in Sect. 3.4 and part of
it is performed during the pre-deployment phase and is described in Sect. 3.2.

The control objective of Figure 3.5(b) illustrates the case where it is desired to prevent occurrences of
method1. Although in some situations such an objective represents the most relevant property to ensure on the
system, it may also represent an approximation due to lack of knowledge. The root cause of the failure that
leads to the design of this control objective may not indeed come from method1 but from other methods calling
method1. If the developers can only observe that the failure occurs when method1 is executed, then preventing
the occurrence of method1 appears to be the most straightforward way to avoid the failure.

The algorithm solving the BSCP provides a new model of a supervisor which will be used by the application
in order to prevent the future occurrence of undesired behaviours. In general, a restart of the application is
necessary in order to take into account the newly computed supervisor model.

FastFix: A Control Theoretic View of Self-Healing for Automatic Corrective Software Maintenance 13

Finally the extracted models are represented as a composition of FSMs. Classical supervisory control
techniques require that a single FSM represents the system behaviours. Such a FSM can be obtained by
computing the composition of the FSM representing each component. However, this computation leads to a
state explosion problem and represents an important challenge of the supervisory control theory. Some works
on control on concurrent systems have been conducted (e.g. [62, 19, 24]) and can be applied to the extracted
model. In particular, conditions stated in [24] for efficient modular supervisor synthesis are fulfilled by the
model extracted as in Sect. 3.2. For instance one such requirement is that shared event between FSMs are
controllable. This requirement always hold with our model at runtime as there is actually no shared event
between the modelled concurrent FSMs. This is due to the fact that each FSM is being executed on a different
thread at a given time and that the knowledge of the thread on which a method is invoked indicates which FSM
this event is belonging to.

3.4. Runtime Supervision. When an error occurs at runtime, the observed behaviour is used in order
to modify the extracted model as described in Sect. 3.3. The resulting model encodes a supervisor to be applied
to the application at runtime. This section describes this mechanism.

We first consider the control phase which follows the principle illustrated in Figure 3.1(b). In this diagram,
the supervisor observes and controls the current behaviours of the system. These behaviours are represented as
sequences of events.

As illustrated in Figure 3.6, the model of the supervisor is embedded in the application. More specifically,
the model of the supervisor can be considered as an object whose current state can be updated whenever a
method of the application to be controlled is invoked. Each time a method is called, then method accept is
called. First, this method makes the supervisor aware of the method being invoked and updates its knowledge
of the current behaviour of the application. Second, this method returns a boolean value indicating whether
the supervisor allows the body of the method to be executed. Such an approach allows for dynamic restriction
of the system executions, e.g. a method execution may be prevented after a given sequence and allowed after
another one.

void m()

 {

 ...

 method body

 ...

 }

static class Supervisor

 {

 Object supervisor;

 State currentState;

 boolean accepts(String m){...}

 }

if (supervisor.accepts(m)) {...}

Initially

implemented

classes

Supervisor class

Fig. 3.6: A possible code instrumentation offering observation and control points.

The models obtained from model extraction and presented in Figure 3.4 represent concurrent Finite State
Machines. However the concurrency between these FSMs may not correspond to the one of the threads created
during the execution of the application. Considering Figure 3.4 again, although FSM1 and FSM2 are modelled
as concurrent FSMs, it may be the case that m1 and m2 are always executed on the same thread. This may
happen for instance when the application to be controlled is an API and m1 and m2 are always called from
methods of an external component that run on the same thread.

The dynamic of the concurrent FSMs of the model we consider is unlike the standard parallel composition
of FSMs (see e.g. [9]). Instead the dynamic of the model considers that only a subset of the concurrent FSMs
may run simultaneously. This mechanism is embedded in the implementation of the supervisor and consists of

• mapping at runtime the observed current thread and method call to the appropriate running FSM in
order for it to update its current state,

• mapping at runtime the observation of a triggering event, i.e. the first event that can be triggered from
a FSM to the corresponding FSM.

14 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

Figure 3.7 illustrates the runtime mechanism of concurrent FSM model. We assume here that the model
consists of a pool of n concurrent FSMs {G0, . . . , Gn}. In this example, the first method invocation observed is
the triggering event associated to G3 and is executed on thread Thread1. Then some of G3’s behaviours may
be executed on this thread as well as the triggering event of FSM G6 on thread Thread2. Then G3 and G6 run
in parallel on their respective threads when the method corresponding to the triggering event of G2 is invoked
on thread Thread3. Then the current behaviours of G3 completes and the method associated to the triggering
event of G7 is invoked on thread Thread1. Finally, FSMs G7, G6 and G2 run in parallel on their respective
thread until the behaviour of G6 completes.

This runtime dynamic is sound as triggering events only occur from the initial state of an FSM and do not
appear in any other ones. Therefore when a method corresponding to a triggering event is invoked on a thread,
there is no ambiguity as to whether it initiates the behaviour of an FSM on this thread or extends the behaviour
of the FSM currently associated to this thread: the first case indeed applies. Moreover when a method that
does not correspond to a triggering event is invoked on a given thread, it corresponds to the a transition of
the FSM currently associated to this thread. The information about the thread on which the method is called
removes any ambiguity on the FSM for which the corresponding event belongs to.

G0

G1

G6

G7

G3

G3 G6

G3 G2G6

G7 G2

G7 G2G6

Thread1 Thread2 Thread3

t0

t1

t2

t3

t4

Pool of FSM

G2

Fig. 3.7: The Runtime Dynamic of the Model Concurrent FSMs

Finally, the supervisor embedded in the FastFix target application is a declared as a synchronized object
and it is therefore safe to call it form different threads. Such an approach makes it possible for the supervisor to
control behaviours that spread over several threads. However, this approach introduces some extra concurrency
between threads, i.e. threads have to share an extra resource: the supervisor.

3.5. Summary. The control theoretic approach for self-healing proposed in this section raises several
challenges. Some of these challenges correspond for instance to automating the introduction of autonomic
features into legacy applications; automatically extracting relevant and accurate models from source code;
applying supervisory control theory on large systems; designing accurate control objective, etc. They also
relate to different fields of computer science such as software engineering (e.g. software modeling, logging,
maintenance), formal methods and control theory. Sect. 4 illustrates this approach on an industrially relevant

FastFix: A Control Theoretic View of Self-Healing for Automatic Corrective Software Maintenance 15

application: Mokistt while Sect. 5 presents challenges related to our approach.

4. Example. This section applies the approach described in Sect. 3. More specifically, it illustrates the
pre-deployment phase on a industrially relevant application: Moskitt [2]. Moskitt is an open source software
initially developed for the Conselleria de Infraestructuras, Territorio y Medio Ambiente, built on top of Eclipse
and which supports modeling tasks. This application is used as a case study within the FastFix project. It
consists of numerous modules implemented as OSGI bundles [3]. The applicability of our automated model
extraction and supervision deployment mechanisms is illustrated on Moskitt.

Our model extraction and supervision deployment mechanisms have been implemented as an Eclipse plugin,
illustrated in Figure 4.1. Table 4.1 presents results regarding the scalability and efficiency of the approach and
Figure 4.2 illustrates the outcome of the instrumentation embedding supervisors within the application.

As shown in Figure 4.1, our plugin implements the pre-deployment phase of our self-healing approach, and
contains two features: model extraction and supervision deployment. Model extraction is performed through
static analysis of the application source code. The different Moskitt bundles appear on the left-hand side of
Figure 4.1. For this example, we used a MacBook Pro with a 2.6Ghz dual core i7 processor and 4GB of RAM.

Fig. 4.1: Screenshot of the FastFix Self-Healing Component applied to Moskitt.

Table 4.1 presents results about the model extraction and supervision deployment mechanisms on the
Moskitt bundles. First, 54 of the Moskitt bundles were considered, representing more than 20000 method
declarations. About 2500 FSMs were extracted from these bundles (one per triggering event) in around 6
minutes and 10 seconds. The size of the extracted FSMs vary from 2 states up to 1381 states. However, 3 FSMs
were discarded as their non deterministic version has more than 50000 states3.

Finally, Figure 4.2 represents the result of the supervision deployment mechanism in the log method of the
EMFComparePlugin. Line 122 and 123 show the call to the accepts method from the supervisor. If this method
returns true, then the method intent to execute the contents of the try statement in Line 124. The contents

3In this work, a special version of the determinisation algorithm is used which does not ensure an equivalent behaviour to the
initial one. However, this algorithm complexity is linear rather than exponential in the classical case.

16 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

Nb Bundle 54
Nb Fsm 2492

Nb Methods 21525
Extraction Time 370749 ms

Avg Min FSM Size 2
Avg Max FSM Size 85

Table 4.1: Application of the model extraction and supervision deployment mechanisms to Moskitt. Time is in
millisecond and FSM sizes represent numbers of states.

of this try clause represent the initial body of the log method. If an un-handled exception occurs during the
execution of the try clause, then it is caught and the behaviour recorded by the supervisor at runtime and
leading to this exception is flushed into a log file for further analysis and patch generation. Moreover, the
exception is thrown again in case other deployed supervisors need to be aware of its existence.

Fig. 4.2: A Moskitt method automatically instrumented in order to enable Supervisory Control.

This example shows the feasibility of applying the pre-deployment phase of our proposed approach on an
industrially relevant application. Work such as [24] ensures the feasibility of the supervisory control algorithm
on concurrent FSMs such as the ones extracted from Moskitt.

5. Challenges. The control theoretic self-healing approach poses several challenges. Some of them are
discussed in this section and related to current research efforts. Most of the challenges under consideration are
due to system complexity. Complexity relates to the system size, the system model size, the efficiency of the
analyses and supervisor synthesis as well as the need for a low overhead during runtime execution.

The approach in Sect. 3 is flexible enough to allow for complexity reduction by considering only sub-
parts of the system to be observed, controlled and modeled and also by approximating the system and control
objective models through abstractions. However, reducing the amount of information available to the framework
described in Figure 3.2 alters the quality of the supervisors, that can be automatically synthesized and therefore
the relevance of the self-healing solution to be applied. Therefore trade-offs between scalability and relevance
of the approach have to be determined, posing several challenges. For this purpose challenges related to
system observability and controllability, to system modeling, to designing control objective (related to automatic
diagnosis), to concurrency and to corrections to be applied (related to automatic repair) are discussed in the
rest of this section.

FastFix: A Control Theoretic View of Self-Healing for Automatic Corrective Software Maintenance 17

5.1. Finite State Machines and Variables. In Sect. 3 we represent application models as Finite State
Machines, where the transitions represent method calls. Although this view of the system behaviours takes into
account past executions in order to decide on the control actions to be performed, it does not explicitly take into
account system variables. This approach has an interesting upside: the state space of the model is in general
smaller than the state space of the application. Without considering system variables, the states of the model
do not encode a possible tuple of values of the application variables. Instead states only encode control-flow
information (branchings and loops) of the program (as illustrated in Figure 3.3), reducing the model state space.

The downside of this approach is that information on the system behaviours is not as accurate as if variable
values were taken into account. For instance, disabling the occurrence of a method call may be dependent on
the values of the parameters with which the method is called (if any). Therefore, taking into account some
of the application variables into the approach while preserving its scalability is an important but challenging
tasks.

Several works have considered supervisory control on FSM with variables: [58, 57, 38, 36, 23]. Although
Extended Finite State Machines offer a compact way of representing potentially large, or even infinite system
state spaces, the supervisor synthesis takes into consideration the system state space itself. In order to tackle
this issue, abstractions of the variable values rather than the possible values themselves should be considered
for analysis. This can be done in the same spirit as for Abstract Interpretation ([12]) or data obfuscation
techniques (e.g. [4]). Obfuscation techniques aim to abstract the actual variable values into restricted domains.
Using an FSM makes it easier to calculate the restricted domain of each variable at each point. As transitions
that correspond to tests and branches on application variables are performed in the application model, the
conjunction of the conditions applied to each variable can be calculated, resulting in the conditions needed to
reach the particular point, i.e. the path condition. Naturally, the path condition is a result of the particular
values of the program’s variables: if the path condition includes the clause x > 0 this means that x was tested
for being positive somewhere along the execution path and indeed it was positive. Implicitly, the path condition
obfuscates the specific variable values for the execution.

5.2. Automatic Recovery. In its basic form, the approach described in Sect. 3 generally requires that
the application is restarted in order to take new supervisors into account. This ensures a proper monitoring
of the system by the new supervisor. Restarting the application sets the system behaviour model to its initial
state. This ensures that the new supervisor can be applied to the system: when it exists a supervisor can always
be applied from the system’s initial state. One challenge for our approach consists of providing an automated
means for avoiding the application relaunch whenever a new supervisor is to be applied. This challenge can be
tackled by considering checkpointing techniques such as described in Sect. 2.3.

Checkpointing an entire application is time consuming. In order to lower the rate (and cost) of checkpointing,
full checkpoints of the whole application may be complemented with intermediate incremental checkpoints [22]
of the memory pages or objects that have changed since the latest full checkpoint. However, the main challenge
for checkpointing in a supervised application is to synchronize the application states with model states. Code
instrumentation can be used in order to annotate the checkpointing data with the corresponding application
model state. In this way both application and model can easily be restarted at the same point. When rollbacks
are performed together with a modification of the supervisor (e.g. so that the system does not run towards the
previously occurred error), it may not be possible to restart a supervised application at the latest checkpoint.
The supervisor model may indeed have been modified so that the model states associated with the latest
checkpoint no longer exist. This problem can be sidestepped by rolling the application back to a point where
the application execution does not include any state of the supervisor model that has been modified. This can
be verified by storing, with each checkpoint, the current supervisor model state as well as all the states that
have been visited before. If, when the supervisor model is changed the list of modified states is also stored, then
it becomes possible to choose a checkpoint that does not include any modified states.

5.3. Designing Control Objectives. Our proposed approach relies on the synthesis of supervisors from
a model of the system behaviours and a control objective. This control objective is represented by a FSM
and encodes safety properties over the system behaviours. It is possible for instance to describe what methods
must not be executed after some given executions. If the control objective also provides information on the
variables of the system, then it allows to describe complex conditions under which some method calls must not
be executed.

As mentioned in Sect. 3.1 and illustrated in Figure 3.2, the control objective may be obtained manually

18 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

and automating its design is a difficult challenge.

Some result in this direction have been obtained in [25] in the specific case of un-handled exceptions. As a
general matter, tackling the automatic design of control objective is very much related to automatic fault and
anomaly detection (e.g. [10]) as well as automatic diagnosis. Specification mining techniques ([40]) can also be
employed in order to extract from the observed undesired trace the pattern that characterize the occurrence of
an error.

6. Conclusion. This document deals with software self-healing as investigated in the FastFix FP7 EU
project, and focuses on corrective maintenance. A brief state-of-the-art on self-healing is presented and concludes
that the research achieved so far is better suited for adaptive and perfective maintenance rather than corrective
maintenance.

This work introduces a control theoretic approach which offers a solution to self-healing for corrective main-
tenance. We describe its different phases: model extraction, supervision deployment and runtime supervision.
Results about the feasibility of applying this approach on an industrially relevant system are presented. Finally
this paper points out the challenges related to the proposed approach, such as the automatic design of control
objective and improving on the application models.

REFERENCES

[1] Fastfix project consortium: Fastfix project homepage, www.fastfixproject.eu/.
[2] The moskitt project: Homepage, http://www.moskitt.org/eng/moskitt0/.
[3] Osgi eclipse: Homepage, http://www.eclipse.org/osgi/.
[4] D. Bakken, R. Rarameswaran, D. Blough, A. Franz, and T. Palmer, Data obfuscation: anonymity and desensitization

of usable data sets, Security & Privacy, IEEE, 2 (2004), pp. 34–41.
[5] G. Candea and A. Fox, Crash-only software, in Proceedings of the 9th Workshop on Hot Topics in Operating Systems

(HotOS IX), 2003, pp. 12–20.
[6] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè, Automatic workarounds for web applications, in FSE, 2011.
[7] A. Carzaniga, A. Gorla, and M. Pezzè, Healing Web applications through automatic workarounds, International Journal

on Software Tools for Technology Transfer (STTT), 10 (2008), pp. 493–502.
[8] , Self-healing by means of automatic workarounds, in Proceedings of the 2008 international workshop on Software

engineering for adaptive and self-managing systems, ACM, 2008, pp. 17–24.
[9] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, Kluwer Academic Publishers, 1999.

[10] V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: A survey, ACM Computing Surveys (CSUR), 41 (2009),
pp. 1–58.

[11] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, and H. Zheng, Bandera: Extracting finite-state models
from Java source code, in Software Engineering, 2000. Proceedings of the 2000 International Conference on, IEEE, 2002,
pp. 439–448.

[12] P. Cousot and R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction
or approximation of fixpoints, in Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Los Angeles, California, 1977, ACM Press, New York, NY, pp. 238–252.

[13] W. Cui, M. Peinado, H. Wang, and M. Locasto, Shieldgen: Automatic data patch generation for unknown vulnerabilities
with informed probing, in Security and Privacy, 2007. SP ’07. IEEE Symposium on, May 2007, pp. 252 –266.

[14] M. Davidsen and J. Krogstie, Information systems evolution over the last 15 years, in Advanced Information Systems
Engineering, Springer, 2010, pp. 296–301.

[15] R. de Lemos, ICSE 2003 WADS Panel: Fault Tolerance and Self-Healing, (2003).
[16] R. Debouk, S. Lafortune, and D. Teneketzis, Coordinated decentralized protocols for failure diagnosis of discrete event

systems, Discrete Event Dynamic Systems, 10 (2000), pp. 33–86.
[17] B. Demsky and M. Rinard, Automatic detection and repair of errors in data structures, in Proceedings of the 18th annual

ACM SIGPLAN conference on Object-oriented programing, systems, languages, and applications, ACM, 2003, pp. 78–95.
[18] , Data structure repair using goal-directed reasoning, in Proceedings of the 27th international conference on Software

engineering, ACM, 2005, pp. 176–185.
[19] M. deQueiroz and J. Cury, Modular supervisory control of large scale discrete-event systems, in Discrete Event Systems:

Analysis and Control. Proc. WODES’00, Kluwer Academic, 2000, pp. 103–110.
[20] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey, Fulfilling the vision of autonomic computing, Computer, 43 (2010),

pp. 35–41.
[21] B. Elkarablieh and S. Khurshid, Juzi, in Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International Conference

on, IEEE, 2009, pp. 855–858.
[22] E. Elnozahy, D. Johnson, and W. Zwaenepoel, The performance of consistent checkpointing, in Reliable Distributed

Systems, 1992. Proceedings., 11th Symposium on, IEEE, pp. 39–47.
[23] B. Gaudin and P. Deussen, Supervisory control on concurrent discrete event systems with variables, American Control

Conference, 2007. ACC’07, (2007), pp. 4274–4279.
[24] B. Gaudin and H. Merchand, An efficient modular method for the control of concurrent discrete event systems: A language-

based approach, Discrete Event Dyn Syst, 17 (2007), pp. 179–209.

FastFix: A Control Theoretic View of Self-Healing for Automatic Corrective Software Maintenance 19

[25] B. Gaudin, E. Vassev, M. Hinchey, and P. Nixon, A control theory based approach for self-healing of un-handled runtime
exceptions, in 8th International Conference on Autonomic Computing (ICAC 2011), Karlsruhe, Germany, 06/2011 2011.

[26] D. Ghosh, R. Sharman, H. Raghav Rao, and S. Upadhyaya, Self-healing systems - survey and synthesis, Decis. Support
Syst., 42 (2007), pp. 2164–2185.

[27] N. Gruska, A. Wasylkowski, and A. Zeller, Learning from 6,000 projects: lightweight cross-project anomaly detection,
in ISSTA ’10: Proceedings of the 19th international symposium on Software testing and analysis, New York, NY, USA,
2010, ACM, pp. 119–130.

[28] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback control of computing systems, Wiley-IEEE Press, 2004.
[29] C. Hood and C. Ji, Proactive network-fault detection [telecommunications], Reliability, IEEE Transactions on, 46 (2002),

pp. 333–341.
[30] D. Jeffrey, M. Feng, N. Gupta, and R. Gupta, Bugfix: A learning-based tool to assist developers in fixing bugs, in Program

Comprehension, 2009. ICPC’09. IEEE 17th International Conference on, IEEE, 2009, pp. 70–79.
[31] M. Jiang, M. Munawar, T. Reidemeister, and P. Ward, Automatic fault detection and diagnosis in complex software sys-

tems by information-theoretic monitoring, in Dependable Systems & Networks, 2009. DSN’09. IEEE/IFIP International
Conference on, IEEE, 2009, pp. 285–294.

[32] J. O. Kephart and D. M. Chess, The vision of autonomic computing, Computer, 36 (2003), pp. 41–50.
[33] J. O. Kephart and D. M. Chess, The vision of autonomic computing, IEEE Computer, 36 (2003), pp. 41–50.
[34] A. D. Keromytis, Characterizing self-healing software systems, in In Proceedings of the 4th International Conference on

Mathematical Methods, Models and Architectures for Computer Networks Security (MMM-ACNS, 2007.
[35] N. Kolettis and N. D. Fulton, Software rejuvenation: Analysis, module and applications, in Proceedings of the 25th

International Symposium on Fault-Tolerant Computing (FTCS-25), 1995, pp. 381–395.
[36] R. Kumar and V. Garg, On computation of state avoidance control for infinite state systems in assignment program

framework, Automation Science and Engineering, IEEE Transactions on, 2 (2005), pp. 87–91.
[37] S. Laster and A. Olatunji, Autonomic Computing: Towards a Self-Healing System, (2007).
[38] T. Le Gall, B. Jeannet, and H. Marchand, Supervisory control of infinite symbolic systems using abstract interpretation,

in 44nd IEEE Conference on Decision and Control (CDC’05) and Control and European Control Conference ECC 2005,
Seville (Spain), December 2005, pp. 31–35.

[39] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, Characteristics of application software maintenance, Commun. ACM,
21 (1978), pp. 466–471.

[40] D. Lo, S. Khoo, and C. Liu, Mining temporal rules for software maintenance, Journal of Software Maintenance and
Evolution: Research and Practice, 20 (2008), pp. 227–247.

[41] M. Locasto, K. Wang, A. Keromytis, and S. Stolfo, Flips: Hybrid adaptive intrusion prevention, in Proceedings of the
8th International Symposium on Recent Advances in Intrusion Detection (RAID 2005), 2005, pp. 82–101.

[42] M. Malik, K. Ghori, B. Elkarablieh, and S. Khurshid, A case for automated debugging using data structure repair,
in Proceedings of the 2009 IEEE/ACM International Conference on Automated Software Engineering, IEEE Computer
Society, 2009, pp. 620–624.

[43] G. Novark, E. Berger, and B. Zorn, Exterminator: Automatically correcting memory errors with high probability, in
Proceedings of the 2007 ACM SIGPLAN conference on Programming language design and implementation, ACM, 2007,
pp. 1–11.

[44] J. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou,

G. Sullivan, et al., Automatically patching errors in deployed software, in Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, ACM, 2009, pp. 87–102.

[45] H. Psaier and S. Dustdar, A survey on self-healing systems: approaches and systems, Computing, 91 (2011), pp. 43–73.
10.1007/s00607-010-0107-y.

[46] F. Qin, J. Tucek, Y. Zhou, and J. Sundaresan, Rx: Treating bugs as allergies—a safe method to survive software failures,
ACM Transactions on Computer Systems (TOCS), 25 (2007), p. 7.

[47] J. Radatz, IEEE standard glossary of software engineering terminology, IEEE Std 610121990, 121990 (1990).
[48] P. J. Ramadge and W. Wonham, Supervision of discrete event processes, in Proc. of 21st IEEE Conf. Decision and Control,

Orlando, FL, Dec. 1982, pp. 1228–1229.
[49] , Supervisory control of discrete event processes, in Feedback Control of Linear and Nonlinear Systems, vol. 39 of

LNCIS, Springer-Verlag , Berlin, Germany, 1982, pp. 202–214.
[50] O. Raz, P. Koopman, and M. Shaw, Enabling automatic adaptation in systems with under-specified elements, in WOSS

’02: Proceedings of the first workshop on Self-healing systems, New York, NY, USA, 2002, ACM, pp. 55–60.
[51] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence, 32 (1987), pp. 57–95.
[52] G. D. Rodosek, K. Geihs, H. Schmeck, and B. Stiller, Self-healing systems: Foundations and challenges.
[53] M. Salehie and L. Tahvildari, Self-adaptive software: Landscape and research challenges, Transactions on Autonomous

and Adaptive Systems (TAAS, 4 (2009).
[54] A. Sengupta and A. Dahbura, On self-diagnosable multiprocessor systems: diagnosis by the comparison approach, Com-

puters, IEEE Transactions on, 41 (2002), pp. 1386–1396.
[55] O. Shehory, A self-healing approach to designing and deploying complex, distributed and concurrent software systems, in

ProMAS’06: Proceedings of the 4th international conference on Programming multi-agent systems, Berlin, Heidelberg,
2007, Springer-Verlag, pp. 3–13.

[56] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D. Keromytis, Assure: automatic software self-
healing using rescue points, in ASPLOS ’09: Proceeding of the 14th international conference on Architectural support
for programming languages and operating systems, New York, NY, USA, 2009, ACM, pp. 37–48.

[57] M. Skoldstam, K. Akesson, and M. Fabian, Modeling of discrete event systems using finite automata with variables, in
Decision and Control, 2007 46th IEEE Conference on, IEEE, 2007, pp. 3387–3392.

[58] , Supervisory control applied to automata extended with variables-revised, Relatório técnico, Goteborg: Chalmers Uni-

20 B. Gaudin, M. H. Hinchey, E. Vassev, P. Nixon, J. Coelho Garcia and W. Maalej

versity of Technology, (2008).
[59] A. Smirnov and T.-c. Chiueh, Automatic patch generation for buffer overflow attacks, in IAS ’07: Proceedings of the Third

International Symposium on Information Assurance and Security, Washington, DC, USA, 2007, IEEE Computer Society,
pp. 165–170.

[60] M. Sullivan and R. Chillarege, Software defects and their impact on system availability-a study of field failures in operating
systems, in Proceedings of the 21st International Symposium on Fault-Tolerant Computing (FTCS-21), 1991, pp. 2–9.

[61] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller, Automated fixing of programs with
contracts, in ISSTA ’10: Proceedings of the 19th international symposium on Software testing and analysis, New York,
NY, USA, 2010, ACM, pp. 61–72.

[62] Y. Willner and M. Heymann, Supervisory control of concurrent discrete-event systems, International Journal of Control,
54 (1991), pp. 1143–1169.

[63] W. M. Wonham, Notes on control of discrete-event systems, Tech. Report ECE 1636F/1637S, Department of Electrical and
Computer EngineeringUnivertsity of Toronto, July 2003.

Edited by: Dana Petcu and Daniela Zaharie
Received: March 1, 2012
Accepted: April 15, 2012

