
NGen-VM: New Generation Execution Environments

João Lourenço1, Nuno Preguiça1, Ricardo Dias1, João Nuno Silva2, João Garcia2, Luı́s Veiga2

(1) FCT - New University of Lisbon (2) INESC-ID / Technical University of Lisbon, Portugal

{joao.lourenco,nuno.preguica,rjfd}@di.fct.unl.pt {joao.n.silva, joao.c.garcia, luis.veiga}@inesc-id.pt

ABSTRACT
This document describes a work-in-progress development of
NGen-VM, a distributed infrastructure that manages execu-
tion environments with run-time and programming language
support targeting applications developed in the Java pro-
gramming language, deployed over clusters of many-core com-
puters. For each running application or suite of related ap-
plications, a dedicated single-system image will be provided,
regardless of the concurrent threads running on a single ma-
chine (on several cores) or scattered on different computers.

Such system images rely on a single model for concurrency
management (Transactional Shared Memory Model), in order
fill the gap between the hardware infrastructure of clusters of
many-core nodes and the application runtime that is indepen-
dent from that hardware infrastructure.

Interactions between threads in the same tasks will be sup-
ported by a Transactional Memory framework that provides
the programming language with Atomic and Isolated code re-
gions. Interactions between thread on different machines will
also use the Transactional Memory model, but now resorting
to a Distributed Shared Memory abstraction.

1. INTRODUCTION
One can estimate that computers will soon include dozens

of processors [5] in the same chip (many-core processors) and
computing centers will soon provide clusters of such comput-
ers with a large number of processors as the standard ex-
ecution environments. Until recently programmers focused
mainly in single-threaded program development. With the
widespread infrastructural support already available and the
forthcoming new many-core based architectures, software de-
velopers must exploit multi-threading as a way to adequately
use the multiple cores at disposal. But multi-threading and
high processor usage comes at the expense of a dramatic in-
crease in the complexity of the applications, as parallelization
brings along a whole new set of problems, such as multiple
concurrent control flows, deadlocks, livelocks, priority inver-
sion, convoying, etc.

Software targeting clustering environments frequently rely
in the message-passing model (MP) and middlewares for data
exchange and control flow synchronization. MP can be used
on a wide range of problems since it exploits both task paral-
lelism and data parallelism although exhibiting some depen-
dency on algorithms targeting specifically distributed archi-
tectures. The MP model is adequate for data parallelization
relying in algorithms based in a Partitioned Global Address
Space (PGAS). Being very sound for cluster environments,
the MP model is also applicable to shared memory systems,
although for these systems a shared memory model (and not
MP), relying in algorithms based in a Shared Global Address
Space (SGAS), is the common option.

For clusters of many-core computers, none of these mod-
els, per si, completely fulfills the application development re-
quirements. Algorithms usually rely in a PGAS or a SGAS,
but not both simultaneously. Developing applications mix-
ing algorithms from both classes and using both models, SM
for exchanging data within the same node and MP between

different nodes, is cumbersome and error prone. A more con-
venient approach would be independent from the physical ar-
chitecture and use a single model.

Theoretically, MP could be used to support coordination
and data exchange between different components, indepen-
dently of their location in the same of different nodes. This
approach, although acceptable for medium- and coarse-grain
parallelism does not apply to fine-grain parallelism, thus nor
for may-core computing environments. On the other hand,
the shared memory model (SM), which benefits from algo-
rithms developed specifically for the SM model, adapts very
well to coarse, medium and fine-grain parallelism, but usually
does not support distributed environments efficiently.

A third approach, higher in the abstraction level, resorts to
the transactional model (which has been used in the databases
world for many years and provides well-known properties and
features to deal with concurrency) which is applied to the
management of central memory [3, 4] and leaves the con-
tention and management independent from the implementa-
tion. Besides being well know by a large number of pro-
grammers, the transactional model is independent from the
implementation, widening the scope of the runtime support
services and their optimizations [2].

All these aspects of the current scenario indicate that inter-
esting solutions can derive from choosing hybrid approaches.
This has been attempted before, yet with more limited goals,
in JVM-clustering middleware such as Terracotta, designed to
allow seamless execution of Java applications on clusters, by
offering a SM model where threads manipulate a SGAS, and
system-level approaches such as Mosix. Nonetheless, these
show a number of shortcomings such as: i) absence of global
scheduling and task migration and STM support in Terra-
cotta, and ii) absence of global addressing and need for ex-
plicit programmatic inter-process communication in Mosix,
and utility-computing infrastructures such as Amazon EC2.

We defend that the three aforementioned models can be
blended to achieve a two-fold goal: i) improve developer’s
productivity by providing an intuitive programming model
(combining SM and TM with a SGAS), ii) enhance perfor-
mance by transparently employing MP-related mechanisms
when appropriate and advantageous.

2. ARCHITECTURE
The base architecture of NGen-VM comprises an Infras-

tructure, a variable number of Single-System Images [1], and
Applications running on top of the latter.

Infrastructure. A dynamic aggregation of heterogenous com-
putational resources to create a virtual cluster with each node
executing the system-level NGen enabling middleware. Ba-
sic services offered by the infrastructure include heterogene-
ity support, energy-aware scheduling, entry/exit/enrollment
protocols, inter-system confinement, security/trust. Other
services include data compression, copy-on-write, lazy alloca-
tion, delayed zeroing, class and method GC, object swapping,
and exploiting byte-code redundancy.

Single-system Image. An allocated subset of the infrastruc-
ture based on required resources with unified interface that
can be mapped to any specific fraction of the infrastructure at
a given time. It offers direct support for large-scale comput-
ing providing a single address/reference space within a sys-
tem image, system-wide scheduling and resource management
policies, concurrency control using transactional memory, and
parallelization support.

Applications. These run on top of individual system-images
where code is deployed and data storaged. Tasks are sup-
ported as first-level entities within VMs, may be explicit (such
as threads, atomic and isolated blocks) or implicit via specu-
lative execution supported by lower layers.

3. TRANSACTION HANDLING
By relying on the transactional model, NGen-VM aims at

a large set of automatic (system and compiler) optimizations:
optimistic concurrency control for transactions, speculative
execution of fine and medium-grain tasks via futures (with
adequate support for side-effects), speculative execution upon
committing a transaction, partial data and code replication
for increased availability.

We propose to divide transactions according to: i) their
scope, local or distributed, and ii) their nature, read-only or
read-write. Local transactions will be managed according to
the nature of the TM framework to be selected. To reduce the
number of aborts, the transactional framework may resched-
ule the transactions in an order from the real one, as long as
the transactional properties are preserved.

Read-only may be rescheduled with more liberal policies,
and this may be considered to reduce the number of aborted
transactions. The impact of identifying the read-only dis-
tributed transactions will be even much higher. The iden-
tification of read-only transactions may be user-based, fully
automatic, or user-assisted.

We propose to go for the latter and aim to provide the
user with a notation for expressing transactions known to be
read-only, helping generating optimized code and better ex-
ploiting the runtime properties, essentially trusting the user
annotations (if they exist) to generate optimized code for the
transaction but still validating that the used did not misin-
form the system about the nature of the transaction. For
transactions without annotation, unless known otherwise, we
plan to assume the transaction will be read-only and start it
as such. On the first write operation we will try to promote
the transaction to a read-write transactions and, if we can’t,
restart the transaction as a read-write transaction.

4. LANGUAGE- AND VM-INTEGRATION
Integration with the Java programming language and the

architecture of the Java Virtual Machine is achieved through
three different approaches trading program transparency with
VM portability, described next.

Library-based. In this approach, creation of distributed mem-
ory transactions is done in two ways: created by the user
or, dynamically created in runtime by detecting an access to
a distributed shared-data. User-defined distributed memory
transactions are a simple approach but this puts the burden
of deciding the type of transaction to be used in each case,
on the user. Dynamic distributed memory transactions can
be generated by the runtime when, inside a local transaction,
is made an access to distributed shared-data, and then the
transaction is aborted and restarted as a distributed memory
transaction.

Source-to-source compiler. This approach adds program-
ming language support and allows to do rapid prototyping on

extending languages with new constructs (keywords or field
attributes) that are evaluated at compile time. Polyglot [6]
is an extensible compiler framework for Java which allows to
develop source-to-source compilers to extend the Java pro-
gramming language with new features. The code generated
by the Polyglot source-to-source compiler is pure Java code
which can be compiled by any Java compliant compiler. With
compiler support is possible to add transactions directly into
the programming language and the generated code will make
calls to the developed runtime library.

Native VM support. By supporting transactional memory
with distributed shared memory directly on a JVM, programs
could run on top of this modified JVM, and program data
could be shared transparently at different nodes and, use the
transactional model to safely modify private and shared-data
state. This can be achieved by extending Jikes RVM, a JVM
for researchers totally implemented in Java, by implement-
ing support of transactional memory with distributed shared
memory.

5. SUPPORT FOR LEGACY CODE
Legacy-code support in NGen-VM addresses three scenar-

ios:

I/O in transactional contexts. In most contexts I/O is not
revertible (e.g., output to the terminal) and, thus, cannot be
freely executed inside transactions. In some other context
I/O is theoretically revertible, such as I/O to the filesystem.
We intend to adapt already existing prototypes to the new
distributed TM framework.

Support for legacy source-code. Existing source-code, e.g.,
from scientific libraries, must be analyzed for its transactional
properties, adapted and transformed to fit into the newly de-
fined transactional model.

Support for legacy binary-code. Even in the cases where
the user does not have the source code available, it may be
necessary to consider integrating such code in the application.
For this, support for legacy binary-code must be introduced in
order to not violate the transactional model and assumptions
when executing this legacy-code.

6. CONCLUSION
This document presents a new approach to design scalable

and efficient distributed execution environments for high-level
languages such as Java. It combines system-level manage-
ment mechanisms (scheduling, migration, energy-awareness,
single-system image) for increased scalability and reliability,
with programming-level constructs (software transactional mem-
ory, speculative execution, byte-code enhancement) for pro-
gramming correctness and adequacy to emerging multi-core
architectures.

7. REFERENCES
[1] R. Buyya, T. Cortes, J. Toni, and H. Jin. Single system image.

Int. J. High Perform. Comput. Appl., 15(2):124–135, 2001.

[2] K. Fraser and T. Harris. Concurrent programming without locks.
ACM Trans. Comput. Syst., 25(2):5, 2007.

[3] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In ISCA ’93,
USA, 1993. ACM.

[4] M.and Luchangco V. Herlihy, M. Moir, and W. N. Scherer, III.
Software transactional memory for dynamic-sized data structures.
In PODC ’03, USA, 2003. ACM.

[5] T. G. Mattson, R. Van der Wijngaart, and M. Frumkin.
Programming the intel 80-core network-on-a-chip terascale
processor. In ACM/IEEE Supercomputing’08, USA, 2008. IEEE
Press.

[6] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An
extensible compiler framework for java. In Int’l Conf. on
Compiler Construction(ETAPS 2003), 2003.

João Lourenço Nuno Preguiça Ricardo Dias
{joao.lourenco, nuno.preguica, rjfd}@di.fct.unl.pt

CITI — Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa

João Nuno SIlva João Garcia Luís Veiga
{luis.veiga, joao.n.silva, joao.c.garcia}@inesc-id.pt
INESC-ID — Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa

NGen-VM: New Generation Execution Environments

Infrastructure
A variable number of Single-System Images
Each node is executing the NGen-VM middleware
Basic services include:

 heterogeneity support, energy-aware scheduling,

 enrollment protocols, security
Other services supported:

 data compression, copy-on-write, lazy allocation,

 delayed zeroing, object swapping,

 class and method garbage collection,

 exploiting byte-code redundancy

NGen-VM Single-System Image
Allocated subset of the infrastructure
Confines the application execution environment
Provides a Single Address Global Space for each SSI,

 system wide scheduling,

 system wide resource management,

 transactional memory based concurrency control,

Applications
Solving user problems

4NGen-VM – Architecture

Library based
For rapid prototyping

Source-to-source compiler
For performance optimization

Native VM support

 Support for I/O in transactional contexts

 Support for legacy source code

 Support for legacy binaries

5NGEN-VM – Language and VM Integration

Transactional Shared Global Address Space
Supported over native shared memory

 in tightly-coupled (many-core) nodes
Supported over distributed shared memory (DSM)

 in loosely-coupled (cluster) nodes
DSM is aware of the transactional model

3NGen-VM – Model

Trend for multi- and many-core processors
Technological limitations
Computing power per energy unit
High demand of parallel programming

New computing clusters architecture
Before: single or dual-processor nodes
Soon: many-core nodes with dozens of processors

The problem – Architectures 1

Parallel programming models
Support for either SGAS or PGAS
Support for either fine-grain or coarse-grain parallelism
Examples: Open-MP and MPI

Message passing
Is location independent
Support for control and data parallelism
Communication costs demand coarser grain
Low-level concurrency control

Shared memory
Adequate for fine-grain parallelism
Is location dependent
Low-level concurrency control

Transactional memory
Higher-level concurrency control abstractions
Implementation independent
Has place for many compiler optimizations

The problem – Programming models 2

