
Record and Replay GUI-based Applications with
Less Overhead

João Matos, Nuno Coração and João Garcia

INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Portugal

jmatos, ncoracao, jog@gsd.inesc-id.pt

Abstract— Debugging is, typically, a hard and time-consuming
task. Fault-replication mechanisms facilitate the debugging pro-
cess by providing software developers with an error’s “steps-
to-reproduce”. The main challenge of fault-replication is the
overhead imposed by recording all non-deterministic events of an
execution, such as thread interleaving and the user interaction
with the application. The overhead imposed by user input is
especially significant for graphical-based applications. This paper
proposes a new approach to record and replay user interactions
with the GUI, which significantly reduces the amount of recorded
information. We developed an open-source implementation of
an execution-recording framework and evaluated it using a test
bed that includes real bugs from well-known applications. We
achieved average reductions of 3567 times fewer events recorded.

Keywords-Software Bugs; Reliability; Performance; Error Re-
porting; Fault-Replication; Record and Replay; GUI

I. INTRODUCTION

A considerable amount of resources is spent in testing and

fixing of software errors, which represent several billion dollars

per year worth of maintenance costs [1]. This is because

debugging is a hard and time-consuming task.

Reproducing failures that occur on client devices is one of

the most important steps to locate bugs in a timely manner.

Fault replication systems (e.g. [2], [3], [4]) allow developers

to do so, by replaying errors in a step-by-step fashion. In

order to deterministically reproduce clients’ faulty executions,

these systems monitor a user execution and log its non-

deterministic events, such as the interaction between the user

and the application. The main challenge for fault-replication

mechanisms is the overhead imposed by the recording of

sources of non-determinism during execution, which often

requires a prohibitive resource usage.

Many strategies and techniques to address the overhead

problem of fault-replication, have been proposed. These so-

lutions are dedicated at reducing the amount of information

monitored and logged, respective to one or more sources of

non-determinism, namely thread interleaving (e.g. [2], [3], [4],

[5], [6]). One additional source of non-determinism, which

also causes recording overhead, is user input. Considering that

most application nowadays have graphical user interfaces [7],

the interaction between the user and the GUI is a very relevant

source of non-determinism. Graphical events such as mouse

actions are numerous in a typical execution and therefore

This work was supported by national funds through FCT – Fundação para
a Ciência e a Tecnologia, under project PEst-OE/EEI/LA0021/2013.

overhead concerns exist also for this matter and the existing

solutions for record/replay of graphical events (e.g. [7], [8],

[9], [10]), do not attend to these concerns.

This paper presents a new approach for recording graphical

applications with less overhead called REGALO. REGALO

is an open-source fault-replication framework with which

developers can choose what they consider to be relevant events

for recording. We present an experimental analysis based on 6

publicly available applications, which includes popular, large-

scale software projects.

This paper is organized as follows. In Sec. III we describe

REGALO. We also present in that section a set of properties

that we defined, to better characterize graphical components

and help developers to decide on the relevance of events and

widgets. Additionally we provide five sets of policies that

balance the recording cost and certainty of failure reproduc-

tion, which we evaluate in Sec. IV, before presenting some

concluding bookmarks in Sec. V.

II. STATE OF THE ART AND MOTIVATION

A. Testing Tools

Record and replay techniques are most popular for testing

purposes. During the testing stages of an application, this type

of techniques is useful to discover bugs before an application

is released. Many testing tools have been proposed, for both

graphical [7], [8], [9], [10] and non-graphical [11], [12], [13]

applications. However, software testing is typically unable

to detect all program flaws. Software errors often manifest

themselves after the software is released and persist long after

that [14]. In fact, it is common for more than half of the

resources, in a typical development cycle, being invested in

testing and bug fixing, which represent several billion dollars

per year worth of maintenance costs [1]. Currently, the most

popular way to provide developers with information about a

program failure is through traditional error reporting tools.

B. Traditional Error Reporting Tools

Initial error reporting mechanisms, such as Windows Error

Reporting [15] and Mozilla Crash Report [16] involve mainly

information collected at the end of a failed program execution.

When an application crashes, the error reporting system gathers

information with little or no criteria from the state of the process

at the moment of the crash and submits it as an error report,

if authorized by the user.

2014 IEEE International Symposium on Software Reliability Engineering Workshops

978-1-4799-7377-4/14 $31.00 © 2014 IEEE

DOI 10.1109/ISSREW.2014.31

353

������

���	
���

���
������

�������
�����

������ �������	���
��	������� �������	���
��	��
����
�����

���������

��

������������ �����

����������
����

���
���������
	����

����� ������

�������
� ������

���
�������	
���

(No accounts created)

… …

…

Fig. 1: Motivational example: an email client.

C. Fault Replication tools

Error reporting tools are not necessarily meant to provide

the developers with the steps to reproduce the failure. On the

other hand, fault-replication tools give historical information

on how the error was reached, guiding the programmer (step

by step) to the failure that occurred in the client device. Plenty

of fault-replication techniques were published ([2], [3], [4] to

name a few). In order to replicate the original execution, these

systems need to log all its’ non-deterministic events, such as

user input, network packets and thread interleaving (amongst

others). The two main challenges of fault replication are:

• Recording all sources of non-determinism (in order to

achieve deterministic replay), often imposes prohibitive

time and memory overheads on the user execution.

• Addressing the privacy concerns raised by recording

sensitive sources of non-determinism such as user input.

The most expensive source of non-determinism to record

is thread interleaving. Nevertheless, other sources of non-

determinism may impose a high cost and although their cost

is not as high as the cost of thread interleaving, it is often

significant. This work is focused on the overhead caused by the
interaction between the user and the graphical user interface
of the application. To record and replay thread interleaving,

dedicated solutions should be employed (e.g. [2], [3], [4],

[5], [6], [17]). Furthermore, to enhance privacy within fault-

replication, the following solutions should be considered [18],

[19], [20], [21], [22], [23].

Recording overhead by user input. Even during a short

program execution, solutions that capture all graphical events

(e.g. [8]) will record hundreds of thousands of events cor-

responding to mouse movements alone [11]. Furthermore, it

has been estimated in [24] that, in a typical execution, there

are thousands of clicks and keystrokes per hour. Therefore,

reducing the amount of recorded graphical events is important

as it may impose a considerable cost. This work proposes an

approach to reduce the overhead imposed by the user interaction

with GUI.

Figure 1 exemplifies an interaction between the user and an

email client. The simplicity of the example depicted in Fig. 1

allows us to explain, more clearly, the intuition behind our

proposed framework. Our objective is to reduce the amount

of information recorded and still be able to replay the failure.

We can observe in Fig. 1 that, i) some events/actions such

as mouse movement, resize/maximize the window or clicking

the window border would have no relevance, ii) not all button

clicks trigger the execution of application-specific code and iii)
if the user acted on the Create Account window, then all (prior)

actions from the click on the Menu button until the click on the

“Add Account” button, could be deduced deterministically (e.g.

to open the Create Account one has to click the Add Account
button). Our proposed framework REGALO helps developers

adjust the execution’s recording overhead, by allowing them

to specify which type of events they consider to be relevant

and necessary for reproducing the failure.

III. REGALO

This section presents an overview of our framework. Our

objective is to provide the means for developers to achieve

a good balance between recording overhead and certainty

of failure reproduction, in graphical-based applications, as

depicted in Fig. 2. In order to guarantee failure reproduction

while imposing the least possible overhead, one has to record

all relevant events and dismiss all irrelevant events, achieving

what we call as the lower overhead bound. The challenge is to

determine what is relevant and what is not, which is far from

being trivial. It is a fair assumption that, typically, it is not

possible to predict what is strictly necessary to record, in order

to later reproduce a previously unknown error and therefore

the lower overhead bound can only be achieved in practice

for very simple scenarios. Our REGALO framework allows

the developer to specify what she considers to be relevant for

recording, in order to achieve a good balance between cost

and certainty of reproduction.

A. Overview

REGALO allows developers to choose what kind of graphical

events are relevant for recording. Each input in a graphical in-

terface is a (e, w) pair, corresponding to an event that occurred

on a widget. The configuration phase of REGALO collects pol-

icy specifications of the type (Event<type>,Widget<type>),

which the recorder enforces. The recorder filters every (e, w)
pair that fits the policies devised by the developer. The

developer is responsible for the specification of the policies

354

R
e

c
o

rd
e

d
 e

v
e

n
ts

/c
o

s
t

Recording

policy

All

None
?

?

���������	
�

Can we achieve

anything in this

area?

No

Policy

Fig. 2: Cost VS Policy example.

�����

�����	
�� �
�����

���������

���������
���

�	
���
�����

����	�������

1

1/1

1/1/1 1/1/2

1/1/2/1

1/1/2/1/1 1/1/2/1/2

1/1/2/….

1/…

�	
���
�����

�����

�����	
�� �
�����

��������

���������
�� ����	������

Fig. 3: Widget Identification.

and therefore is also responsible for the balance exemplified in

Fig. 2. Considering that it is hard for the developer to anticipate

which pairs (e, w) are relevant, we evaluate in this paper some

policies that are capable of achieving a good balance.

1) Widget Identification: One important step in this work

is to uniquely identify each graphical component. A graphical

user interface is hierarchical [7]. Typically the main window

is the root of the hierarchy tree and parents the graphical

components visible in the window. We exemplify a hierarchy

in Fig. 3, as well as our method employed to identify graphical

components. Note that the hierarchy exemplified in Fig. 3 is

associated with the example of Fig. 1. In our implementation of

REGALO we decided to use the hierarchy to uniquely identify

each graphical component: the identification of a component is

a prefix of the identification of its children. If two components

c1 and c2 open the same window w that contains component

c3, c3 is identified differently for each situation as it inherits

(as its prefix) the id of the component that opened w (either

the id of c1 or of c2). In other words, our scheme treats c3
when w is opened by c1 as being a different component from

c3 when w is opened by c2.

B. Design and Prototype

The operational workflow of REGALO is illustrated in Fig. 4.

We implemented this framework in the Java programming

language1.

1) Pre-deployment: Ripping Handler: Before the application

is released, REGALO resorts to GUI ripping [25] to obtain the

hierarchy map of the application and to uniquely identify each

graphical component. The ripping component runs the appli-

cation and automatically extracts every graphical component

of the GUI. The ripping handler outputs the hierarchy map of

the application.

2) Pre-deployment: Policy Handler: In this phase, REGALO

enforces the recording policies. The policy handler works

in two levels, the event level and the component level. As

mentioned, the policies are specified in the form (Event<type>,

Widget<type>). If the developer intends to record every GUI

mouse click, she will employ a (event<MOUSE CLICKED>,-

) policy and the policy handler will update the recording event

1The prototype is open source at http://sourceforge.net/projects/fastfixrsm/

mask of the EventListener interface (of the Java API) to filter

MouseEvent.MOUSE CLICKED events. On the other hand,

if the developer wants to record at the component level, e.g.

she wants to record clicks on all JButtons labeled as cancel
(-,widget<class=JButton, label=“cancel”>), the policy handler

uses the SOOT bytecode instrumentation tool [26] to instrument

the actionPerformed method of every JButton labeled as cancel.
If the user intends to record at the component level, the

policy handler traverses the hierarchy map and creates a set

containing the ids (Fig. 3) of every component that matches the

policies specified, which we simply call target set. This target

set is provided to SOOT, indicating which listener methods

should be instrumented. We acknowledge that we could access

components at the event level too, but to verify, at the event

level, if the component is within the target set, would impose

additional overhead.
3) Deployment: Recorder: The recording of events is

implemented using the EventListener interface of the Java API.

The recording component is provided with the recording mask
generated by the policy handler, filtering the events specified

as relevant by the policies. Additionally, the methods that were

instrumented will perform logging operations, to record the

respective components.
4) Maintenance: Unfold Handler: The unfold handler

attempts to generate a complete sequence of events if, during

the recording stage, some relevant events were not recorded. It

consults the hierarchy map generated by the ripping handler, to

extract all unrecorded ancestors of each recorded component.

This is achieved by locating the recorded component in the

hierarchy tree and moving up, one ancestor at a time. Therefore,

the unfold handler allows to further reduce recording, because

we can choose not to record (some) potentially important

actions, knowing the unfold handler will recover them later.

For example, if the recorder logs the action at the Add account
button of Figs. 1 and 3, the unfold handler is able to (later)

deduce the preceding actions at the Account, Options, Menu
and Main Window components, simply by moving up in the

hierarchy structure obtained during the ripping phase.
5) Maintenance: Replay Handler: Our replayer takes the

event sequence provided by the unfold handler and replays the

sequence in a similar way as previous record/replay solutions

for GUI applications (e.g. [8]). The visualization of the replay

355

������ �� ���
�!	
�� ���"�� �
��
#�����

���!�����������

�!���$���������

��
� �����%�������
��������$�����
����%�$�&���� ��

��

������������

��� �#	�� � ����

�
����#
�� �� ���
���!������	����

�'��#%!���!������
!��$� ����"�� ��
 �� �� �!#��
!�������

�'��# ��(��!��

������ �����!��
��
!� �

��
!� �

App

���� �����
��$� !�
�!�� �������!���� �
 ����#��

���#��

 App +
Recorder

����#���

F

��
��$�

F

��
�!$�)��*�� �� �

Maintenance Team: pre-deployment User

Maintenance Team: debug

Fig. 4: Proposed work flow.

helps developers to locate the cause of failure. After the bug

is corrected, the cycle depicted in Fig. 4 starts again.

C. Widget Properties

In order to configure REGALO, one needs to know which

type of widgets to record and which to dismiss. We can

discriminate between widgets by their native properties, such as

type (button, combobox, window), border, color, label, amongst

many others. In this work we devised three additional properties

to characterize widgets, which facilitate the elaboration of

polices. We describe these properties as follows.

1) Parenting: Following the same example of Figures 1

and 3, a click on the item Options automatically implies a

click on the button Menu. Intuitively, the best strategy would

be to record only the actions on graphical components with

the highest depth and later use the unfold handler to determine

what was not recorded. However we cannot predict up to what

depth the user will keep on clicking. When a GUI window

is opened it is likely to be eventually closed, typically by

a click on an ok button, cancel button or the close window
button. A widget that closes a window does not parent any

component. We call a widget that is not a parent, a childless
widget. Targeting childless widgets seems to be a good strategy

for recording, because they are more likely to capture the last

actions on a subsequence of events. According to this category

a widget is either a parent widget (widget<p>) or a childless
widget (widget<c>).

2) Activity: Typically only some of the widgets of a GUI

invoke the application to execute. In this work we say that these

widgets are active widgets, widget<∗,a>. All other widgets

are static widgets, widget<∗,s>. The ∗ means that it does not

matter whether the widget is childless or parent. Activity is

an important property as well, because, in order to guarantee

reproducibility, we need to execute the sequence of instructions

of the original execution.

3) Value: Some widgets, such as text fields, text areas or a

radio buttons (amongst many others) are what we call as value
widgets, simply because they hold a value inserted by the user.

This type of widgets is frequently of the utmost relevance for

reproducing a failure, as it may be triggered by a value (a

wrong value?) inserted by the user. We consider to be a good

policy to log all value widgets, widget<∗,∗,v>, because we

cannot guarantee the reproduction of the failure otherwise. We

refer to all other widgets as hollow widgets, widget<∗,∗,h>.

D. Proposed policies

We implemented five policies with REGALO, which are

evaluated in Sec. IV. Each policy is specified as a set of

(e<type>,w<type>) pairs, which stands for event type and

widget type. If we define (e<. . .>,-) REGALO will record

solely at the event level and if we define (-,<. . .>) REGALO

will record solely at the instrumentation level.

1) Complete recording (Basic): This scheme consists on

running REGALO with a specified policy of (e<∗>,-). It is

equivalent to recording all interaction between the user and the

GUI and is used as a baseline comparison between techniques

that capture all graphical events (e.g. [8], [11]) and REGALO

with the policies described next.

2) Click recording (CLK): The intuition behind the elabora-

tion of this policy is to record exclusively the type of events that

most incite the application to execute and clicks are arguably

the events that most trigger execution. This policy consists

simply on recording clicks, and can be specified in REGALO

as (e<MouseEvent.MOUSE PRESSED>,-).
3) Click recording and value widgets (CLKV): The val-

ues inserted by the user in widgets such as text areas,

text fields, radio buttons, combo boxes, amongst many oth-

ers, may be failure inducing. Therefore this scheme con-

sists on: (e<MouseEvent.MOUSE PRESSED>,-) ∪ (-
,w<∗,∗,v>).

4) Active widgets and Value widgets (AV): This set is based

on the insight that the amount of clicks in a typical execution

can be high [24] and a significant subset of this amount does

not trigger any action of the application (e.g. a click on the

window border). This scheme consists on (-,w<∗,a,∗>) ∪
(-,w<∗,∗,v>).

5) Childless widgets and Value widgets (CV): This scheme

exploits the parenting property to reduce the amount of

information recorded. It aims to record clicks on childless
widgets and value widgets: (-,w<c,∗,∗>) ∪ (-,w<∗,∗,v>).

Note that both this scheme and the previous one (AV) do

not record anything at the event level. These two schemes

make the most use of the unfold handler.

356

IV. EVALUATION

In this section we evaluate REGALO using the sets of polices

described in Sec. III-D, in terms of reproducibility and amount

of information recorded. The experiments were conducted using

a machine running the MacOS X Lion operating system, with

a 2.5 GHz Intel Core i5 processor and 4GB of memory.

A. Subjects

This evaluation was performed using six publicly available

applications chosen according to their popularity and availabil-

ity of real bugs.

• jEdit [27] is a large and popular Java text editor (2366

classes, 115 kLOC). The bug considered in this evaluation was

reported in [28] and is triggered when the user clicks on a

button within the options menu.

• TV-Browser [29] is a large and popular TV guide (2491

classes, 110 kLOC), that allows the user to check what is

scheduled in over 1000 channels and radio stations. The bug

studied for this subject was reported in [30]. This bug manifests

itself when the user attempts to delete a filter while providing

no filter name.

• Columba [31] is an email client (3356 classes, 108 kLOC)

that contains a fault in its address book component. This test

case was used in the evaluation of the work in [20]. The

contacts are stored in a CSV file and if the content does not

meet the expected format, Columba crashes while loading it.

• Pooka [32] is also a Java mail client (854 classes, 48 kLOC).

It contains a bug that crashes the application when the user

attempts to create a new message without having created an

account. This was reported in [33].

• Lexi [34] is a simple Java word processor (156 classes, 6901

LOC). The bug used in this subject was reported in [35] and

consists simply of trying to access the popup options menu,

which immediately crashes with a NullPointerException.

• MyJPass is a benchmark password manager (3 classes, 1225

LOC) that manages simple user accounts. The bug is artificial

and consists of a NullPointerException thrown when the form

values do not meet the expected format.

B. Reproducibility

All the applications were executed for approximately 10

minutes, and their GUIs were fully explored. The same

execution is performed for all schemes. Once the error is

triggered, REGALO generates an error report with the recorded

log. We present the reproducibility results in two tables, i)
table I if the recorded event sequence is sent directly to the

replayer and ii) table II if the recorded event sequence is

processed by the unfold handler before being replayed.

The CLK scheme did not succeed in the experiment

with MyJPass, which suggests that recording clicks alone

is not enough to assure error reproduction. Furthermore, if

CLKV succeeded in the same experiment, it suggests that

the (a<TextEvent>,w<∗,∗,v>) policy is important to ensure

error reproduction. The AV and CV policies may not reproduce

the error (except AV in jEdit experiment), unless the unfold

handler is employed, which is an expected result considering

scheme
Test case Basic CLK CLKV AV CV
jEdit Yes Yes Yes Yes No

TVBrowser Yes Yes Yes No No

Columba Yes Yes Yes No No

Pooka Yes Yes Yes No No

Lexi Yes Yes Yes No No

MyJPass Yes No Yes No No

TABLE I: Was the error reproduced? No unfolding

scheme
Test case Basic CLK CLKV AV CV
jEdit Yes Yes Yes Yes Yes

TVBrowser Yes Yes Yes Yes Yes

Columba Yes Yes Yes Yes Yes

Pooka Yes Yes Yes Yes Yes

Lexi Yes Yes Yes Yes Yes

MyJPass Yes No Yes Yes Yes

TABLE II: Was the error reproduced? With unfolding

that these polices were devised to dismiss information that

can later be recreated by the unfold handler. The results in

Table II indicate that the AV and CV schemes were successful

in all experiments if the unfold handler were employed. The

unfolding operations took merely a few seconds to finish, which

is perfectly admissible considering that they are meant to be

executed by the maintenance teams.

C. Recording Overhead

We measured the amount of events recorded by each of

the proposed schemes. Figure 5 presents the results obtained

in this part of the evaluation. It presents the recorded event

count by each of the schemes in the y-axis, and, on top of

each box, the improvement comparing to the basic scheme. All

presented schemes achieved a massive reduction comparing to

solutions that capture everything, with an average improvement

of 1875 times less events recorded and up to 7552 times less.

The most filtered event in our tests was mouse movement. In

this evaluation, REGALO recorded hundreds of events (212

on average, and the best result was 19 events) from a total

of hundreds of thousands (298k events on average). These

results suggest that REGALO, with a proper set of policies that

sidesteps some event types, that we consider to be unnecessary

for error reproduction (e.g. mouse movement), is able to achieve

error reproduction of GUI-based applications with significantly

less overhead. Figure. 5 also suggests that REGALO has the

potential to achieve better improvements, compared to solutions

that log all events, for applications with more complex GUIs:

the improvement was significantly lower, (for all schemes) for

the Lexi and MyJPass subjects, which are by far the smallest

applications, with the simplest GUIs in our test bed.

Comparing the four proposed schemes, AV and especially

CV were significantly better than CLK and CLKV. The CV

scheme was the best policy in this evaluation, with an average

reduction of 3567 times less events, 4.84 times better than

CLKV and 1.49 times better than AV. This suggests that the

357

 0

 100

 200

 300

 400

 500

 600

CLK CLKV AV CV CLK CLKV AV CV CLK CLKV AV CV

jEdit TV-Browser Columba

1209x1209x1209x
1072x1072x1072x

2229x2229x2229x
2984x2984x2984x

899x899x899x 868x868x868x

4497x4497x4497x 7552x7552x7552x

1136x1136x1136x
1015x1015x1015x

2230x2230x2230x
3887x3887x3887x

 0

 100

 200

 300

 400

 500

 600

CLK CLKV AV CV CLK CLKV AV CV CLK CLKV AV CV

Pooka Lexi MyJPass

N
um

be
r

of
 e

ve
nt

s
re

co
rd

ed
 /

O
ve

rh
ea

d
im

pr
ov

em
en

t

1251x1251x1251x

992x992x992x

2587x2587x2587x
3463x3463x3463x

539x539x539x 505x505x505x

1664x1664x1664x 2550x2550x2550x
144x144x144x 138x138x138x

634x634x634x 968x968x968x

Fig. 5: Number of events recorded / Overhead improvement (×times less) comparing to basic sheme.

parenting property is useful to reduce recording overhead. It

also suggests that significantly better results can be achieved

by well-devised policy schemes.

V. CONCLUSIONS AND FUTURE WORK

This paper presented REGALO, a framework that tackles

recording overhead imposed by graphical events in fault repli-

cation record-and-replay tools. REGALO advances the state of

the art of record and replay graphical-based applications, by

reducing the amount of information recorded. The framework

presented allows the developer to specify what she considers

to be important events for recording. This paper also presented

four recording schemes, of which three were able to reproduce

the error in all of our tests. The proposed schemes achieved

very large reductions in recorded information: an average of

1875 times less events recorded in all experiments. The most

successful scheme (CV) achieved an average of 3567 times

less events recorded. As future work we intend to develop

an interactive approach that gradually reduces the number of

events that need to be saved, as information about the execution

becomes available.

REFERENCES

[1] Cambridge University: Cambridge University Study States Software
Bugs Cost Economy $312 Billion Per Year (2013)

[2] Altekar, G., Stoica, I.: Odr: output-deterministic replay for multicore
debugging. In: SOSP. (2009)

[3] Huang, J., Liu, P., Zhang, C.: LEAP: lightweight deterministic multi-
processor replay of concurrent java programs. In: FSE. (2010)

[4] Park, S., Zhou, Y., Xiong, W., Yin, Z., Kaushik, R., Lee, K.H., Lu, S.:
Pres: probabilistic replay with execution sketching on multiprocessors.
In: SOSP. (2009)

[5] VMware: The Amazing VM Record/Replay Feature in VMware Work-
station 6: http://blogs.vmware.com/vmtn/2007/04/recordreplay\ in.html
(2011)

[6] N. Machado, P.R., Rodrigues, L.: Lightweight cooperative logging for
fault replication in concurrent programs. In: DSN. (2012)

[7] Memon, A.: An event-flow model of gui-based applications for testing:
Research articles. Wiley. Software Testing Verification and Reliability
(2007)

[8] Steven, J., Chandra, P., Fleck, B., Podgurski, A.: jRapture: A Capture/Re-
play Tool for Observation-based Testing. In: ISSTA. (2000)

[9] Ganov, S.R., Killmar, C., Khurshid, S., Perry, D.E.: Test generation for
graphical user interfaces based on symbolic execution. In: AST. (2008)

[10] Miura, M., Tanaka, J.: A framework for event-driven demonstration
based on the java toolkit. In: APCHI. (1998)

[11] Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering (2002)

[12] Whalley, D.B.: Automatic isolation of compiler errors. ACM Transactions
on Programming Languages and Systems (1994)

[13] Agrawal, H., Horgan, J.R.: Dynamic program slicing. SIGPLAN (1990)
[14] Zamfir, C., Candea, G.: Execution synthesis: A technique for automated

software debugging. In: EuroSys. (2010)
[15] Microsoft Corporation: Windows error reporting: http://msdn.microsoft.

com/en-us/library/bb513641 (2007)
[16] Mozilla Foundation: GNOME bug tracking. http://bugzilla.gnome.org/

(1998)
[17] Fonseca, P., Li, C., Rodrigues, R.: Finding complex concurrency bugs

in large multi-threaded applications. In: EuroSys. (2011)
[18] Wang, R., Wang, X., Li, Z.: Panalyst: privacy-aware remote error analysis

on commodity software. In: Usenix SS. (2008)
[19] Castro, M., Costa, M., Martin, J.P.: Better bug reporting with better

privacy. ASPLOS (2008)
[20] Clause, J., Orso, A.: Camouflage: Automated Sanitization of Field Data.

In: ICSE. (2011)
[21] Louro, P., Garcia, J., Romano, P.: MultiPathPrivacy: Enhanced privacy

in fault replication. In: EDCC. (2012)
[22] Andrica, S., Candea, G.: Mitigating Anonymity Concerns in Self-testing

and Self-debugging Programs. In: ICAC. (2013)
[23] Matos, J., Garcia, J., Romano, P.: Reap: Reporting errors using alternative

paths. In: Programming Languages and Systems. Springer (2014)
[24] Wellnomics: An analysis of computer use across 95 organisations

in europe, north america and australasia: http://www.wellnomics.com/
(2007)

[25] Memon, A., Banerjee, I., Nagarajan, A.: GUI ripping: reverse engineering
of graphical user interfaces for testing. In: WCRE. (2003)

[26] Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.:
Soot - a java bytecode optimization framework. In: CASCON. (1999)

[27] jEdit: jEdit. http://www.jedit.org (1999)
[28] jEdit: jEdit bug report 3776. http://sourceforge.net/p/jedit/bugs/3776/jedit

(2013)
[29] TV-Browser: TV-Browser. http://www.tvbrowser.org/ (2002)
[30] TV-Browser: TV-Browser bug report TVB-48 . http://tvbrowser.org:

8080/jira/browse/TVB-48 (2007)
[31] Columba Team: Columba (2005) http://sourceforge.net/projects/columba/.
[32] Suberic: Pooka Mail Client. http://www.suberic.net/pooka/ (2005)
[33] Pooka: Pooka bug report 33. http://sourceforge.net/p/pooka/bugs/33/

(2003)
[34] Lexi: Lexi Java Word Processor. http://sourceforge.net/projects/lexi/

(2005)
[35] Lexi: Lexi bug report 13. http://sourceforge.net/p/lexi/bugs/13/ (2005)

358

