
Rollerchain: a DHT for Efficient Replication
IEEE NCA’13

João Paiva, João Leitão, Lúıs Rodrigues

Instituto Superior Técnico / Inesc-ID, Lisboa, Portugal

August 22, 2013



Outline

Introduction

Our approach

Evaluation

Conclusions



Motivation

I Distributed Hash Tables are structured overlays where
nodes organize into a predefined topology that supports
routing.

I DHTs allow for scalable key-value storage.



Motivation

I In dynamic environments, replication is paramount to
maintaining data.

I However, predefined topologies are expensive to maintain in
dynamic environments (churn).

I DHTs do not handle churn as well as unstructured networks.



Motivation

I In dynamic environments, replication is paramount to
maintaining data.

I However, predefined topologies are expensive to maintain in
dynamic environments (churn).

I DHTs do not handle churn as well as unstructured networks.



Main Approaches to DHT replication

1. Neighbour Replication

2. Multi-Publication



Neighbour Replication

Each node replicates its data on its R closest neighbours

I Good control on replication degree

I Simple to locate replicas

I Expensive replication: data is moved to respect topological
constraints

I Not resilient under churn: each node acts on its own

I Poor load balancing: no active mechanisms to balance load



Neighbour Replication

Each node replicates its data on its R closest neighbours

I Good control on replication degree

I Simple to locate replicas

I Expensive replication: data is moved to respect topological
constraints

I Not resilient under churn: each node acts on its own

I Poor load balancing: no active mechanisms to balance load



Neighbour Replication: operation



Neighbour Replication: operation



Neighbour Replication: operation



Neighbour Replication: operation



Neighbour Replication: operation



Multi-Publication

Each object is attributed R different identifiers to be stored by R
different nodes.

I Better load balancing

I Reduced correlated failures

I Expensive overlay maintenance: each object has a different set
of replicas

I Expensive replication: data is moved to respect topological
constraints

I Not resilient under churn: each node acts on its own



Multi-Publication

Each object is attributed R different identifiers to be stored by R
different nodes.

I Better load balancing

I Reduced correlated failures

I Expensive overlay maintenance: each object has a different set
of replicas

I Expensive replication: data is moved to respect topological
constraints

I Not resilient under churn: each node acts on its own



Current DHTs

Based on structured networks

Characterized by:

I Nodes with fixed positions in the overlay

I Static replication degree

I Poor performance under churn



Main challenges

Challenges:

1. Increase churn resilience

2. Minimize replication costs

3. Improve load balancing



Outline

Introduction

Our approach

Evaluation

Conclusions



Our approach: Architecture overview

I Ring-based overlay: Composed of virtual nodes



Our approach: Architecture overview

I Ring-based overlay: Composed of virtual nodes



Our approach: Dynamic topology overview



Our approach: Dynamic topology overview



Our approach: Dynamic topology overview



Our approach: Dynamic topology overview



Our approach: Dynamic topology overview



Our approach: Dynamic topology overview



Our approach: Dynamic topology overview



Our approach: beating the challenges

1. Increase churn resilience: unstructured networks

2. Minimize replication costs: variable replication degree

3. Improve load balancing: dynamic key distribution



Our approach: beating the challenges

1. Increase churn resilience: unstructured networks

2. Minimize replication costs: variable replication degree

3. Improve load balancing: dynamic key distribution



Increasing churn resilience

I Ring maintained through gossip mechanisms



Increasing churn resilience

I Gossip to keep virtual node membership up-to-date



Increasing churn resilience

I Gossip to trade connections between virtual nodes



Increasing churn resilience



Increasing churn resilience



Increasing churn resilience



Increasing churn resilience



Increasing churn resilience



Our approach: beating the challenges

1. Increase churn resilience: unstructured networks

2. Minimize replication costs: variable replication degree

3. Improve load balancing: dynamic key distribution



Minimizing replication costs: node failure

I Variable replication degree: No data movement on failure



Minimizing replication costs: node failure

I Variable replication degree: No data movement on failure



Minimizing replication costs: node failure

I Variable replication degree: No data movement on failure



Minimizing replication costs: node join

I Nodes can select where to join: may join recently-failed virtual
nodes



Minimizing replication costs: node join

I Nodes can select where to join: may join recently-failed virtual
nodes



Minimizing replication costs: node join

I Nodes can select where to join: may join recently-failed virtual
nodes



Minimizing replication costs: node join

I New nodes can replace failed nodes: Blue’s data was moved
only once and never discarded



Minimizing replication costs: node join

I New nodes can replace failed nodes: Blue’s data was moved
only once and never discarded



Minimizing replication costs: node join

I New nodes can replace failed nodes: Blue’s data was moved
only once and never discarded



Our approach: beating the challenges

1. Increase churn resilience: unstructured networks

2. Minimize replication costs: variable replication degree

3. Improve load balancing: dynamic key distribution



Improving replication costs: creating dynamic key
distribution

I Virtual nodes store a number of keys proportional to their
size: Blue’s data is split proportionally by its children



Improving replication costs: creating dynamic key
distribution

I Virtual nodes store a number of keys proportional to their
size: Blue’s data is split proportionally by its children



Improving replication costs: creating dynamic key
distribution

I Virtual nodes store a number of keys proportional to their
size: Blue’s data is split proportionally by its children



Outline

Introduction

Our approach

Evaluation

Conclusions



Experimental settings

I Overlay simulation in Peersim

I 100K Nodes

I 50K Keys

I Replication degree = 7

I 5M queries



Churn resilience

churn=1 churn=10 churn=100
Churn rate

0

20

40

60

80

100

O
b
je

ct
s 

re
a
ch

a
b
le

 (
%

)

Rollerchain
Neighbour
Multi-Pub



Replication costs

churn=1 churn=10 churn=100
Churn rate

0

20

40

60

80

100

O
b
je

ct
s 

m
o
v
e
d
 p

e
r 

n
o
d
e

Rollerchain
Neighbour
Multi-Pub



Load Balancing

0

50

100

150

200

250

S
T
D

E
V

 o
f 

n
u
m

b
e
r 

o
f 

q
u
e
ri

e
s 

p
ro

ce
ss

e
d

Rollerchain
Neighbour
Multi-Pub



Outline

Introduction

Our approach

Evaluation

Conclusions



Conclusions

I DHT based on Virtual Nodes

I Designed with replication in mind

I Unstructured Networks: Increase churn resilience

I Variable replication degree: Minimize replication costs

I Dynamic key distribution: Improve load balancing



Conclusions

I DHT based on Virtual Nodes

I Designed with replication in mind

I Unstructured Networks: Increase churn resilience

I Variable replication degree: Minimize replication costs

I Dynamic key distribution: Improve load balancing



Thank you


	Introduction
	Introduction

	Our approach
	Approach

	Evaluation
	Evaluation

	Conclusions
	Conclusions


