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Motivation

I Distributed Hash Tables are structured overlays where
nodes organize into a predefined topology that supports
routing.

I DHTs allow for scalable key-value storage.
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Main Approaches to DHT replication

1. Neighbour Replication

2. Multi-Publication
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I Not resilient under churn: each node acts on its own
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Each object is attributed R different identifiers to be stored by R
different nodes.

I Better load balancing

I Reduced correlated failures

I Expensive overlay maintenance: each object has a different set
of replicas

I Expensive replication: data is moved to respect topological
constraints
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Current DHTs

Based on structured networks

Characterized by:

I Nodes with fixed positions in the overlay

I Static replication degree

I Poor performance under churn



Main challenges

Challenges:

1. Increase churn resilience

2. Minimize replication costs

3. Improve load balancing
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Our approach: Architecture overview
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Increasing churn resilience

I Ring maintained through gossip mechanisms
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Experimental settings

I Overlay simulation in Peersim

I 100K Nodes

I 50K Keys

I Replication degree = 7

I 5M queries



Churn resilience
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Replication costs
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Load Balancing
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Conclusions

I DHT based on Virtual Nodes

I Designed with replication in mind

I Unstructured Networks: Increase churn resilience

I Variable replication degree: Minimize replication costs

I Dynamic key distribution: Improve load balancing
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Thank you
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