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What is Data Placement?

I Deciding how to assign data items to nodes in a distributed
system in such way that they can be later retrieved.



Data Placement Affects

Data Access Locality

Placing correlated data together can reduce latency of operations

Load Balancing

By knowing the workload, data can be placed in a way to even out
the load across all nodes

Availability

Data can be replicated depending on probability of node failure



Constraints to data placement practicality

I Lack of flexibility limits data placement improvements

I Scalability imposes limits on the flexibility of placement

Example

I Using a centralized directory is flexible, but not scalable

I Using consistent hashing is scalable, but not flexible
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Main Goal

Provide better options between

I Strong flexibility, limited scalability

I Limited flexibility, good scalability



Two Scenarios

Internet Scale

I Millions of nodes

I Short term connections

I Asymmetric, inconstant network

Datacenter Scale

I Thousands of nodes

I Stable connections

I Controlled network infrastructure



Two Scenarios: Previous state of the art

Internet Scale

I Scalable solutions with little flexibility, concerned with churn

Datacenter Scale

I Very flexible solutions, concerned with workload changes



Summary of Findings

Improvements for both scenarios:

I More flexible solution for Internet-Scale

I More scalable solution for Datacenter-Scale
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Internet Scale: Rollerchain

I Data assigned to node groups

I Variable replication degree

I Nodes have no fixed position
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Internet Scale: Implementation

Rollerchain

I Gossip-based and structured overlay

I Better churn resilience than state of the art

I Decreased replication costs

”Rollerchain: a DHT for Efficient Replication”, João Paiva, João Leitão and Lúıs

Rodrigues, Symposium on Network Computing and Applications (IEEE NCA), August

2013. (Best student paper award)



Internet Scale: Implementation

Data Placement Policies

I Avoid-Surplus: Reducing monitoring costs

I Resilient Load-Balancing : Improving load balancing

I Supersize-me: Reducing replication costs

Read the paper to know the best policies:

”Policies for Efficient Data Replication in P2P Systems”, João Paiva, and Lúıs

Rodrigues, International Conference on Parallel and Distributed Systems (IEEE

ICPADS), December 2013.
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Datacenter scale: AutoPlacer

System where data placement is defined by combining:

I Consistent hashing for most items

I Precise placement for selected items

Locality-improving round-based algorithm for in-memory data grids

”AutoPlacer: scalable self-tuning data placement in distributed key-value stores”,

J. Paiva, P. Ruivo, P. Romano and L. Rodrigues, International Conference on

Autonomic Computing (USENIX ICAC), June 2013. (Best paper finalist)

”AutoPlacer: scalable self-tuning data placement in distributed key-value stores”,

J. Paiva, P. Ruivo, P. Romano and L. Rodrigues, ACM Transactions on Autonomous

and Adaptive Systems (ACM TAAS)
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1. Statistics: Monitor data access to collect hotspots

2. Optimization: Decide placement for hotspots

3. Lookup: Encode / broadcast data placement

4. Move data
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Statistics: Data access monitoring

Key concept: Top-K stream analysis algorithm

I Lightweight

I Sub-linear space usage

I Inaccurate result... But with bounded error
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Optimization

Integer Linear Programming problem formulation:

min
∑
j∈N

∑
i∈O

X ij(cr
r rij + crwwij) + Xij(cl

r rij + clwwij) (1)

subject to:

∀i ∈ O :
∑
j∈N

Xij = d ∧ ∀j ∈ N :
∑
i∈O

Xij ≤ Sj

Inaccurate input:

I Does not provide optimal placement

I Upper-bound on error



Accelerating optimization

1. ILP Relaxed to Linear Programming problem

2. Distributed optimization

LP relaxation

I Allow data item ownership to be in [0− 1] interval

Distributed Optimization

I Partition by the N nodes

I Each node optimizes hotspots mapped to it by CH

I Strengthen capacity constraint



Algorithm overview

Online, round-based approach:

1. Statistics: Monitor data access to collect hotspots
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Lookup: Encoding placement

Probabilistic Associative Array (PAA)

I Associative array interface (keys→values)

I Probabilistic and space-efficient

I Trade-off space usage for accuracy



Probabilistic Associative Array: Usage

Building

1. Build PAA from hotspot mappings

2. Broadcast PAA

Looking up objects

I If item is hotspot, return PAA mapping

I Otherwise, default to Consistent Hashing
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I Bloom Filter
Space-efficient membership test (is item in PAA?)

I Decision tree classifier
Space-efficient mapping (where is hotspot mapped to?)
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PAA: Properties

Bloom Filter:

I No False Negatives: never return ⊥ for items in PAA.

I False Positives: match items that it was not supposed to.

Decision tree classifier:

I Inaccurate values (bounded error).

I Deterministic response: deterministic (item→node)
mapping.
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Evaluation: Throughput
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Evaluation: Optimization
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Conclusions

Internet Scale

I More flexible overlay for data placement

I Policies to improve metrics using added flexibility

Datacenter Scale

I Scalable mechanism for data placement

I Algorithm to improve locality through hotspot placement



Thank you

joao.paiva@tecnico.ulisboa.pt
web.tecnico.ulisboa.pt/joao.paiva


	Introduction
	Internet Scale
	Datacenter Scale
	Autoplacer
	Evaluation

	Conclusion
	Conclusion


