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Abstract—This paper addresses the problem of maintaining
replicated data in large scale P2P systems. Although this topic
has been extensively studied in the literature, to maintain repli-
cated data in this setting, in an efficient manner, still remains
a significant challenge. This paper proposes novel policies to
address this problem and evaluates their performance against
different criteria, such as monitoring costs, data transfer costs,
and load unbalance costs. We show that one of these new policies
significantly outperforms previous work. Interestingly, this policy
is based on a somehow counter-intuitive approach, that uses less
reliable nodes to store the most accessed data items. The insights
to derive this policy were obtained from an in depth analysis of
existing solutions, that is also captured in the paper.

Keywords—Fault-tolerance, Data replication, P2P, Bandwidth,
Load balancing, Group-based DHTs.

I. INTRODUCTION

Any large scale system is subject to failures of individual
nodes. In P2P systems, where nodes are typically COTS
(Components Of the Shelf), instead of highly reliable servers
operated under controlled conditions in datacenters, the oc-
currence of failures is far from negligible[1]. Furthermore,
some P2P systems may be subject to the churn effect that
results from end users connecting and disconnecting volunteer
resources at high pace[2]. All this phenomena may cause data
loss, unless some form of data replication strategy is used.

Given the relevance of implementing data replication in
P2P systems, this topic has been extensively studied in the
literature. Surprisingly, despite all the results achieved so far,
to maintain replicated data in this setting in an efficient manner
still remains a significant challenge. In fact, in a talk at
Middleware 2011, Drushel and Rowstron have identified data
replication as one of the problems for which no satisfactory
solution had been proposed yet.

What makes data replication particularly challenging is that
maintaining the replication degree incurs several costs, and the
goal of reducing the costs in one dimension of the problem
typically conflicts with the goal of reducing the costs in the
remaining dimensions. Namely, in this paper we concentrate
on the following 3 different relevant costs metrics of a data
replication scheme:

- Monitoring costs: the costs associated with monitoring ex-
isting replicas to assess if they are still live, such that new
replicas are spawned timely to replace failed replicas. This is
required to preserve the desired replication degree and ensure
that data is not lost.

- Data transfer costs: the costs associated with the creation
of new replicas in the system. Blake and Rodrigues [3] have

shown that data transfer costs account for a significant part of
the bandwidth consumption in the system supporting replica-
tion and that these costs effectively limit the amount of data
that can be stored.

- Load unbalance costs: some replication policies may result
in an unbalanced replica distribution among existing nodes.
Load unbalancing has a detrimental effect on the operation of
the system, since some nodes will be overloaded while the
capacity of other nodes will be underused.

As hinted above, to optimize all these costs simultaneously
may be impossible. For instance, some replication policies
favor the placement of replicas on nodes that are known to
be more reliable. This allows for saving in data transfer costs
(since the creation of new replicas becomes less frequent) at
the cost of introducing load unbalancing (the more reliable
replicas become overloaded). Furthermore, how these tradeoffs
are tackled by a specific algorithm is often hard to infer, as
proposers of a given replication scheme typically evaluate their
solution using only a subset, if not only one, of the metrics
above, neglecting the impact of the proposed policy on the
other dimensions of the problem. In face of these observations,
the current paper makes the following contributions:

i) It provides a comparative study of the most relevant data
replication policies that have been proposed in the literature,
highlighting the tradeoffs they implement when considering
the different costs involved.

ii) More importantly, it proposes a number of novel data repli-
cation policies, that have not been previously experimented in
the literature.

iii) It shows that some of the novel policies outperform
previous strategies. In particular, one of these policies when
compared with other competing solutions, achieves large band-
width savings, offers good load balancing, and has no negative
impact on the monitoring costs. The best policy is based on a
strategy that may appear counter-intuitive at first sight: it uses
the less reliable nodes to store the most accessed data items.
The rationale for the success of this strategy will be clear later
in the text.

The remaining of this paper is structured as follows. To
better motivate our work, in Section II, we start by highlighting
the tradeoffs implemented by previous data replication poli-
cies, by analyzing their performance in face of experimental
data. Then, in Section III we survey existing approaches and
also propose a number of novel policies. A performance model
that allows to assess the effectiveness of each approach is
proposed in Section IV. With the help of this model, the
different polices are experimentally evaluated and compared
in Section V. Finally, Section VI concludes the paper.



0 200 k 400 k 600 k 800 k 1 M
#Nodes

0.0

0.1

0.2

0.3

0.4

0.5

%
 o

f 
n
o
d
e
s 

st
o
ri

n
g
 5

0
%

 o
f 

d
a
ta

Neighbor Replication
Virtual Servers

0 200 k 400 k 600 k 800 k 1 M
#Nodes

0

100

200

300

400

500

600

#
M

o
n
it

o
re

d
 N

o
d
e
s

Neighbor Replication
Virtual Servers

Fig. 1: Load balancing vs monitoring costs tradeoff

II. TRADEOFFS IN DATA REPLICATION

The reader may find surprising that, given the huge body of
research in data replication in the context of P2P systems[4],
[5], [6], [7], this is still an open topic. However, to the best of
our knowledge, no studies have been published addressing the
costs of data replication on its multiple dimensions. The work
of [3] has focused on the data transfer costs and its impact on
the scalability of the system. The work [8] has addressed data
transfer costs and load unbalance, while the work [9] focused
mostly on monitoring costs. As a result, it remains particularly
difficult to understand the tradeoffs involved in the different
replication policies that have been proposed in the literature.

To motivate our work, we illustrate our point using 3 well-
known replication policies:

- Neighbor Replication[6], [4]: This is a widely used policy
that has been implemented on many P2P systems based on
DHTs, such as Chord [6] or Pastry [4]. A primary replica is
selected for each item (typically using consistent hashing) and
replicas are maintained in the neighbors of the primary replica
in the overlay.

- Neighbor replication with virtual servers[7], [10]: Similar to
the policy above except that each node joins the overlay with
multiple identities.

- Most-available node replication[11]: This policy consists in
placing replicas in the nodes that are less likely to fail or to
leave the overlay.

Figures 1 and 2 show the comparative performance of these
policies according to different metrics (we will postpone a
detailed description of the experimental setting to Section V,
where we do a more detailed analysis of these and other
replication policies). Figure 1 illustrates the tradeoff between
the load unbalancing costs and the monitoring costs of the
first two policies above. The introduction of virtual servers
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Fig. 2: Load balancing vs data transfer costs tradeoffs

augments the number of (virtual) nodes in the overlay and,
therefore, promotes a good load balancing among the replicas.
These advantages are well documented in the literature[7],
[10]. On the other hand, each node has to keep track of a
different set of neighbors for each of its identities. Therefore,
the improvements in load balancing come at the cost of a pro-
portional increase in the monitoring costs. Figure 2 illustrates
the tradeoff between load unbalacing costs and the data transfer
costs when comparing Neighbor Replication vs Most-available
node replication. By selecting the most reliable nodes to store
replicas, fewer items are affected by failures and fewer replicas
need to be respawned. This introduces significant savings in
the data transfer costs, as reported in [11], [8]. Unfortunately,
these gains come at the cost of unbalancing the load in the
system. In fact, we have observed that the unbalance can be
2000 times worse than other solution (see Sec V).

The examples presented before provide an insight on the
problems addressed in the current paper. Namely, the paper ad-
dresses the following questions: Do other previously proposed
policies implement similar tradeoffs? Are there replication
policies that can reduce the costs in a given metric without
significantly increasing the costs in another metric? Are there
unexplored policies that can implement more advantageous
tradeoffs? Is it possible to define a framework that helps in
comparing the performance of different policies?

To answer these questions, we will first classify the main
replication policies that have been proposed in the literature,
then propose some novel policies, and finally provide a detailed
comparative analysis of the different alternatives.

III. A CATALOG OF PREVIOUS AND NEW POLICIES

In this section we start by introducing a classification that
helps in comparing the policies for data replication according
to the their principles of operation. Subsequently, using this
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classification, we list the most relevant approaches that have
been proposed in the literature. Finally, we propose some novel
policies that, to the best of our knowledge, have not been
presented before.

A. Policy Classification

We first distinguish oblivious from informed policies.
Oblivious policies do not take into consideration the properties
or state of each peer and consider only topology properties
of the overlay. For instance, neighbor replication, introduced
before, fits in this category. On the contrary, informed policies
collect information about each individual node, such as the
expected availability, or the current load, to make decisions
about data placement. For instance, the Most-available policy,
fits in this category.

Another important dimension that can be used to classify
replications policies considers the machinery required to locate
replicas. Here we distinguish two opposing strategies: consis-
tent hashing and directory-based lookups. When consistent
hashing is used, replica location is derived by the hashing
function. As a result, the policy has little control on the data
placement but, on the other hand, replicas can be located
in a very efficient manner. Directory-based approaches can
place replicas in arbitrary locations but require a lookup to
the directory to find the replica location; this may involve one
or more round-trips in the network.

Finally, we can distinguish policies according to the re-
quirements they impose on the underlying overlays. In this
paper we considered exclusively replication policies for struc-
tured overlays that implement some form of DHT. However,
besides traditional DHTs such Chord [6] or Pastry [4], we also
consider overlays that use virtual servers[7] and logical groups.
Virtual servers were already introduced in Section III-B. Log-
ical groups are discussed next.

A number of recently proposed overlays take a different
approach to replication [5], [12], [13], [14]. These overlays
create self-contained replication groups of nodes which act as
single nodes in the DHT. Routing is performed at the group
level and not at the physical node level, allowing the system to
fine-tune the replication sets. So, even though they are based
on consistent hashing, these overlays allow to decouple the
management of replication from management of the overlay
topology. In group-based DHTs, each node is a logical entity,
materialized by a replica group of variable size. Contrary
to classical DHTs where each node has a pre-determined
location in the network (depending on its identifier), in these
approaches nodes can join any existing replica group. All
members of each group coordinate to act as a single node in
a higher layer, defining a DHT. Since replication is decoupled
from the DHT layer, the replication degree of individual groups
can vary (with a configurable interval) without affecting the
DHT’s structure. As a result, consistent hashing is used to
place data items into groups, and data is then replicated among
all group members.

In Table I we consolidate the different criteria together. In
the next paragraphs we discuss how they can be combined to
build different strategies:

- Strategies based on consistent hashing: Strategies based on
consistent hashing rely the node (or group) identifiers and on

randomization to place replicas. In this case, virtual servers
only offer better randomization, because the number of nodes
ids is larger. If the DHT is not-group based, there are little
opportunities to improve the operation of the network, other
than carefully selecting the node identifiers, to compensate for
load unbalancing. In the case of group-based DHTs it is also
possible to change the size of the groups, as nodes join and
leave, or even by migrating nodes from one group to the other.

- Directory-based strategies: Oblivious strategies that use di-
rectories place replicas randomly but can maintain the replicas
in the same nodes regardless of their position in the DHT,
to avoid moving replicas. Informed strategies can do better,
by placing replicas taking into consideration the properties
of nodes. However, directories bring no advantages when
group-based DHTs are used, because groups have no intrinsic
characteristics: the characteristics of each group can be tuned
as will by the policy as described before.

B. Previous Replication Policies

We now identify and describe the most relevant policies
that have been previously proposed in the literature.

1) Strategies based on consistent hashing:

a) Oblivious Strategies: We consider the following
three oblivious strategies that rely on consistent hashing: neigh-
bor replication, multi-publication, and neighbor replication
with virtual servers.

Neighbor Replication (NR): Neighbor replication[6], [4] (also
known as leaf set replication) keeps copies of each key-
value pair in the r neighbors of the node responsible for
the key (named the key owner). A significant advantage of
Neighbor Replication is that it allows to keep a tight control
on the replication degree: when the neighbors change, the key
owner may trigger the creation of new replicas to ensure that
the replication degree does not fall below a target threshold.
As demonstrated in [3], this has a high replica maintenance
cost, since replicas must be created and destroyed with every
change in the network. However, given the fact that each node
replicates on a fixed set of neighbors, which is independent of
how many data items are stored in the system, this solution
has low monitoring costs.

Multi-Publication (MP): Multi-Publication[15], [16] stores r
replicas of each data item in different and deterministically cor-
related positions of the DHT. Then, some mutual monitoring
scheme needs to be implemented to detect the departure/failure
of a replica and subsequently restore the replication degree.
The main advantage of Multi-Publication is that it offers very
good load balancing properties, as multiple queries may be
diverted to different regions of the DHT. On the other hand,
monitoring becomes extremely expensive, because it needs to
use DHT routing and a node may be forced to monitor a
different set of nodes for each object that it stores. In the worst
case, a node that is the owner of M objects, each replicated in
r other locations, has to periodically monitor M × r different
nodes.

Neighbor Replication with Virtual Servers (NR+VS):
Consistent-hashing solutions such as neighbor replication are
not immune to load balancing problems; nodes, keys, or
(more likely) the load imposed by different keys may not
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TABLE I: Design Space of Replication Policies for P2P Systems

consistent hashing directory based
plain virtual servers groups plain virtual servers groups

oblivious baseline achieve better randomization manage group size to avoid churn at the logical level avoid migrating replicas no advantageinformed change node ids to distribute keys change groups ids and place nodes in the right groups place replicas in better nodes

be uniformly distributed in the address space. As a result,
some nodes will be required to maintain (and answer queries
for) many items while others may be relatively offloaded. A
common technique to circumvent this problem is to use virtual
servers [7], [10]. In this technique, each physical node joins
the system using multiple identities; each identity represents a
virtual node maintained by that server. However, the efficiency
of this mechanism depends on how many virtual servers each
node can handle, as a larger number of such servers will
lead to an improved load distribution. On the other hand,
having a larger number of virtual servers involves each node
maintaining more routing information and monitoring more
overlay neighbors, which may impose an excessive overhead.
Also, this strategy amplifies the effect of churn (a phenomenon
characterized by the rapid changing in system membership [2]),
as the departure of a single node causes the simultaneous
failure of multiple virtual nodes.

b) Informed Strategies: To the best of our knowledge,
the only informed strategy that does not require the use of
a directory has been proposed in the context of group-based
DHTs in [5] (the name has been given by us, as the original
Scatter paper provides no names to the proposed policy).

Resilient Load-Balancing (R-LB): This policy uses the un-
derlying overlay mechanisms to address resiliency and load-
balancing. Resiliency is tackled by having nodes join groups
with fewest members and by merging a small group with
its successor. Furthermore, the Lazy Node Load-Balancing
attempts to balance the load of each individual node, by
making sure that when a group is split into two, each new
group will process a load proportional to its size. To implement
this policy, the overlay mechanisms are configured as follows:
new nodes join the group with the highest per-node load; group
identifiers (and therefore key assignment) remains unchanged
until a group needs to be split or merged; when the group
splits, keys are divided such that the per-node load of each
resulting group is balanced (i.e, the identifier of the new group
is chosen such that it owns a portion of the load proportional
to its number of members).

2) Directory-based strategies:

a) Oblivious Strategies: We consider the following
oblivious strategy that requires the use of a directory.

RelaxDHT: This policy, presented in [17], is a natural exten-
sion of neighbor replication. Initially, replicas are created in
the r closest neighbor of the item owner. However, unlike
neighbor replication, as new nodes join the neighbor set of
the item owner, the constraint that replicas should be the
closest nodes to the item owner is relaxed. Hence, replicas are
not moved as new nodes join, and may drift away from the
item owner. To lower the monitoring costs, the work in [17]
imposes a limit on how farther away from the item owner
replicas may drift. The main intuition behind this work is that

by relaxing the topological constraints, one can achieve lower
replica maintenance costs. However, the fact that nodes which
are “older” in the system tend to store more replicas, leads to
an imbalance in load.

b) Informed Strategies: We consider the following in-
formed strategies: Most-available and regularity-based.

Most-available: The work in [11] presents a policy which
places data in the nodes predicted to be most available in
the future. Similarly to the RelaxDHT policy, data is never
relocated from a node as long as it is available. Hence, even
though this technique can achieve particularly low replication
maintenance costs, it leads to high monitoring costs.

Regularity-based: This policy, introduced in [8], takes advan-
tage of the fact that nodes may exhibit connection regularity.
This means nodes connect to the system on regular patterns.
Hence, the system can form groups of nodes which with
a given probability will always be online to replicate the
data. Unlike other works, this policy assumes nodes can keep
persistent state between joining and leaving the system. The
regularity-based policy biases replication towards a set of
nodes (the most regular ones), which impacts negatively load
balancing in the system.

C. Novel Policies

As mentioned in the previous section, Group-based DHTs
open very interesting avenues to design novel policies for data
replication in P2P systems and the work of Scatter has only
explored the surface of these possibilities (in fact, in their
paper, the authors of [5] recognize the development of such
policies as an intriguing direction for future work). In this
paper we follow that path by proposing a number of viable
alternatives to the R-LB policy introduced in [5].

1) Oblivious Strategies: We consider the following three
oblivious strategies for group-based DHTs:

Random: This policy achieves load balancing through ran-
domization. It works by letting nodes generate a random
identifier and join the group responsible for that identifier.
Similarly, when a group becomes too large, it divides, creating
a new group with a random identifier which joins at a random
location. When a node becomes too small, it disbands and all
its members join in random locations. The goal of this policy
is to serve as a baseline that can be used to assess the relative
merit of other strategies for group-based topologies.

Supersize-me: This policy consists in tuning the overlay
management mechanisms to keep groups much larger than the
average replication degree which the policy is configured with.
In this way, the amount of redundancy is increased but the
likelihood that a group collapses due to the lack of replicas
becomes very small. This may avoid some unnecessary data
transfers in the system.
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TABLE II: Policy Map

primary performance target
none monitoring load balancing bandwidth

oblivious
Plain Neighbor Replication (NR) Multi-Publication RelaxDHT
VServers Neighbor Replication + Virtual Servers (NR+VS)
Groups Supersize-me

informed
Plain Most-available, Regularity-based

Groups Random Avoid-Surplus R-LB Preemptive replacement
Hotter-On-Ephemeral

Avoid Surplus: This policy consists of the opposite of the
“Supersize-me” policy above. The goal is to keep each group
as close as possible to minimum replication degree, by having
nodes join the largest groups such that those divide more
frequently. This reduces the amount of redundancy in the
system but creates the potential for better load balancing
(more groups will exist in the overlay) and for reducing the
monitoring costs (which is directly related to the group size).

2) Informed Strategies: We consider the following two
oblivious strategies for group-based DHTs:

Preemptive Replacement:. The rationale for this policy is to
adapt ideas that have been proposed for classical DHTs, such
as the “Most-available” policy introduced in Section III-B to
group-based DHTs. The key idea is to rely on estimates of
node-reliability to make new nodes join groups where existing
nodes are most likely to fail, as a preemptive measure to avoid
the group to become to small and forced to execute a merge.

Hotter-On-Ephemeral (HonE): This policy aims to place the
most used items (i.e. those which represent the highest load) on
less reliable nodes. The key observation behind this policy is
that the per-group distribution of keys of R-LB reduces load
unbalance but ignores which nodes compose which groups.
This insight, combined with the fact that the groups which
store the top most used keys will store less keys to achieve
a balanced load, drives the design of Hotter-On-Ephemeral.
So, Hotter-On-Ephemeral places the less reliable nodes in the
groups which in R-LB store less keys, i.e., the groups that store
the most accessed keys in order to maintain the good control
over Load-Unbalance and the good monitoring costs of R-LB,
while considerably reducing its bandwidth usage, since most
joins will be performed in groups with fewer keys. In order
to make sure that the groups remain stable, this policy also
allows groups composed of mostly unreliable nodes to grow
larger than the remaining ones, similarly to “Supersize-Me”.

D. Summary of All Policies

Table II provides a summary of all policies described in
this section. The lines represent different techniques and the
columns the main performance criteria that is aimed by the
policy. Note that the Hotter-On-Ephemeral aims at addressing
the three performance criteria in a holistic manner.

IV. A PERFORMANCE MODEL TO COMPARE POLICIES

We now introduce two metrics that can be used to compare
the performance of different policies: the message overhead
and the unbalance ratio. These two metrics are defined as a
ratio between the performance of an actual system using a
given policy against the performance of an abstract idealized
system (referred as the baseline system).

A. System Parameters

Our metrics rely on the following system parameters: Num-
ber of Nodes (N ), The average number of nodes in the system;
Number of Keys (K), The total number of keys stored in the
system; Replication Degree (R), The desired replication degree
(each key should have R replicas); Key Size (d), The amount of
stored data associated with each key; Churn Frequency (c), The
number of joins and leaves per unit of time; Monitoring Period
(m), The number of units of time between two consecutive
monitoring procedures; Unit Monitoring Cost (UCm), The cost
of checking if another node is alive (typically, at least one “I’m
alive” exchange); Unit Transfer Cost, (UCt(d)): The cost of
transferring one key from one node to another (depends on
the data size d); Load (L), The total number of requests the
system has to satisfy per unit of time.

B. Baseline System

Using the parameters above, we define the following per-
formance metric for an abstract idealized baseline system.
The idealized system is completely homogeneous: the load is
uniformly distributed among keys, such that if all nodes store
exactly the same number of keys, then all nodes are subject to
the same load. Furthermore, the probability of a node leaving
the system is the same for every node and, when a node
fails, its load and objects are scattered uniformly across all
other nodes, such that these values are preserved. Also, in this
system, nodes monitor the bare minimum number of neighbors
for maintaining the target replication degree (i.e. R).

Baseline Average Number of Keys per Node (BKavg): The
average number of keys per node is BKavg = K ·R/N .

Baseline Monitoring Cost (BCm): We consider that a node
should be responsible for at least one key, and therefore has to
monitor at least R other nodes. Therefore BCm = R · UCm.

Baseline Join/Leave Cost (BCjoin leave(d)): We denote the
baseline join/leave cost as the cost of transferring BKavg keys
to a node, i.e., BCjoin leave = BKavg · UCt(d).

Baseline Load Balancing (BLB): In the idealized system
all nodes have the same load. We define the baseline load
balancing as the fraction of system nodes that, together, satisfy
half of the system load in this setting, which, by definition, is
0.5 (i.e., half of the nodes are required to serve half of the
system load).

C. Actual System

The same metrics can be defined for a concrete system,
using a particular policy. Namely:
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Actual Average Number of Keys per Node: (AKavg) The
actual average number of keys per node that results from
applying a given policy.

Actual Monitoring Cost: (ACm) The actual (average) mon-
itoring cost that results from applying a given policy. This
depends on how many nodes each peer must keep monitoring.

Actual Join/Leave Cost (ACjoin leave(d)) : The actual (av-
erage) join/leave cost that results from applying a given policy.
This depends on how many data items need to be transferred
upon each join and upon each leave.

Actual Load Balancing (ALB): The fraction of system nodes
that, together, satisfy half of the system load. Let Li be the
number of request per unit of time served by node i. Let
H ⊂ N be the smallest subset of the system nodes such that∑

i∈H Li = L/2. Then ALB = |H|
N .

D. Policy Efficiency

Finally, using the metrics above, we define the two criteria
to measure the efficiency of a given policy. These metrics are
defined as ratios between the performance of the actual system
and the performance of the idealized system. Namely:

Message Overhead (Omessage(d)): We define the message
overhead of a given policy as the ratio between the actual and
baseline values for the sum of the monitoring and join costs
during a monitoring period:

Omessage(d) =
N ·ACm + c ·m ·ACjoin leave(d)

N ·BCm + c ·m ·BCjoin leave(d)

Unbalance Ratio (UR): We define the unbalance ratio of a
given policy as the ratio between the baseline load balancing
and the actual load balancing:

UR =
BLB

ALB

In the next section, we will evaluate the different policies
using the two metrics above. Note that, for both policy
efficiency metrics, the higher the value, the less efficient is
the policy with regard to the idealized baseline system.

V. EVALUATION

In this section we present experimental results that compare
the performance of the replication policies presented in the
previous section. To evaluate the policies, we have performed
extensive simulations using the Peersim simulator [18] cycle-
based engine, running the different policies against similar
workloads in large-scale settings, as described below.

A. Simulation Settings

In order to simulate real working conditions of a large-
scale deployment of a key-value store, we have used a real-
world trace of connections and disconnections in a peer-to-peer
network [1]. The trace represents the activity of over 14 million
unique users, of which we considered 1 million random users.
We used one second of the trace as unit of time.

TABLE III: Evaluation Parameters and Results for Evaluated
Policies.

System Parameter Values
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N 15434
K 100000
R 6
c 3.3838
m 60
UCm 84B
UCt(d) 84B +d
L 1931660

Neighbor (NR) 1.00 1.00 1.00 1774.1
NR+VS 46.73 1.27 1.18 114.5
Multi-Publication (MP) 17.09 1.21 1.18 1.5
RelaxDHT 0.11 0.21 0.21 2365.5
Most-available 0.07 0.13 0.13 2365.5

R-LB 0.71 0.52 0.52 1.1
Random 0.71 0.60 0.60 19.5
Avoid Surplus 0.76 0.41 0.41 308.5
Supersize-me 1.07 0.79 0.79 1.1
Preemptive 0.50 0.30 0.30 25.7
HonE 0.61 0.28 0.28 1.1

We populated the system with 100.000 key-value pairs
with a load following a Zipf distribution with α = 2.5.
For all group-based DHTs, we have configured the DHT
with min group size and max group size 4 and 8, re-
spectively. We experimentally determined this configuration to
yield an average virtual node size of 6 for policies (except,
for obvious reasons, for Supersize-me and Avoid Surplus),
which according to [5] and [14] is enough to prevent data
loss in most scenarios. For fairness, we also configured the
remaining policies with replication degree 6. For the policies
that allow the group size to surpass max group size, we used
max group size = 16. The virtual servers configuration used
100 virtual identities. Table III presents the remaining values
for all parameters of the evaluation.

B. Results

The results from our experiments, namely the values for
the message overhead (as a fuction of different item sizes)
and the unbalance ratio, as defined in the previous section, are
depicted in Table III. The table presents the values that have
been experimentally measured using the simulation for all the
policies. We remind the reader that, the higher the value, the
poorly the policy performs.

We start by discussing the results concerning the message
overhead of the different policies. These results are summa-
rized in the following list of observations:

- As expected, Neighbour Replication (NR) has 1.0 for the
bandwidth, since it has the exact same behaviour of the
idealized baseline system.

- Virtual Servers (VS) and Multi-Publication (MP) have a high
impact on bandwidth, especially when d is small, since the
monitoring messages represent a good part of the cost. When
using VS, each node monitors on average 587 neighbors, while
when using MP, each node monitors on average 209 neighbors.
In fact, however, should we consider a larger set of keys, MP
would achieve an even worse result, since for each key a node
owns, it potentially monitors R different neighbors.

- RelaxDHT and Most-available achieve the lowest bandwidth
usage of all. This is expected, given that these strategies make
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(b) Behaviour of HonE over time.
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(c) Behaviour of R-LB over time.
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(d) Behaviour of Supersize-me over time.

Fig. 3: Behaviour of policies over time

sure that the nodes that fail the most do now own many keys.
Interestingly, due to the fact that many nodes do not store any
keys, these nodes are not required to monitor other neighbours,
and for small values of d, these three strategies in fact achieve
better MessageOverhead results.

- Most of the group-based policies result in a bandwidth
improvement, especially when d is larger. For small values
of d, group-based policies have a similar degree of replication
as the baseline, and thus achieve a similar monitoring cost.
For large values of d, group-based policies benefit from the
fact that they support variable replication degree. Thus, while
the baseline solution (and NR) must move BCjoin leave(d)
objects for each join and leave, group-based policies can allow
the replication degree to lower after a node leaves, and hence
avoid moving BCjoin leave(d) objects for about half of c.
This fact is clearly observable for R-LB, which achieves 50%
less message overhead for the larger values of d.

- The group-based solution that obtains the best bandwidth
usage is HonE, which despite creating groups slightly larger
than preemptive (noticeable by the higher message overhead
for low d), can improve over the latter solution for larger key
sizes. This is due to HonE actively forcing nodes to fail on

groups with a smaller number of keys, while preemptive is
only making sure that groups remain stable and failed nodes
are most of the time replaced with new nodes.

- From the group-based policies, the Supersize-me policy
achieves the worse results. Even though it does lead to a
considerably smaller number of merges, in fact it forces nodes
to transfer more data with each node join, since the groups
being larger also causes each individual group to store more
keys on average. On the other end, HonE benefits from the best
bandwidth usage, due to avoiding group merges and directing
ephemeral nodes to groups with few keys. In fact, for larger
values of d, HonE can achieve a result comparable to that
of the best overall solution (Most-available), with a message
overhead little more than 2× worse.

We now analyze the results when considering the load
unbalance that is caused by each policy. Again, we summarize
our findings in a list of observations:

- All policies which are not designed to explicitly handle load,
present results considerably worse than those of the baseline.
The most flagrant cases are for the RelaxDHT and Most-
available policies, which are not only oblivious of the load
each key represents, but also allow a large percentage of nodes
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to store 0 keys (up to 10% for Most-available).

- Virtual servers (VS) and Multi-Publication (MP) can obtain
a low load unbalance ratio (despite the very negative effect on
bandwidth/monitoring). MP achieves the best results, since it
makes sure that the probability that two nodes store the same
keys is low, while when using VS, it is common that two
virtual servers own the same data. Hence, should one VS have
a load above or bellow average, this effect is amplified due to
R other VS replicating its data.

- The Avoid Surplus policy results in a poor load unbalance
ratio, as groups have no extra capacity to absorb failures,
forcing merges that difficult the task of balancing the load.

- The Supersize-me policy is able to achieve a low load
unbalance ratio. This is due to, in practice, its join and division
operations being similar to those of R-LB, except for the
fact that the size of the groups is allowed to fluctuate up to
larger values. As a result, only the message overhead costs are
negativelly impacted.

- As expected, Preemptive and Random achieve poor results
for load unbalance due to the lack of load balancing concerns.
On the other hand, R-LB and HonE achieve similar results,
both very close to the baseline, due to being designed with
load balancing in mind.

C. Detail

Figures 3a, 3b, 3c and 3d present detailed views of how
many keys are moved in the system as result of joins and
merges, as well as the network size, as time progresses in
the simulation. For clarity, we present only 0.1% randomly
sampled points for join operations. The remaining points (for
the network size and merges) are presented raw. For reasons of
space, we present detailed views only for the most interesting
policies, HonE, R-LB and Supersize-me. We highlight the
following aspects of these solutions:

- Globally, it is clear that all group-based approaches have
the common trend of creating merges when the network size
decreases. In fact, the size of the network follows a diurnal-
nocturnal pattern (there are more active nodes during the day),
and during the transition to the night, the network shrinks and
more merges are created. This is particularly clear around the
300.000 seconds mark, where a strong descent on the number
of nodes causes not only an increase in the number of merges
but also on the number of keys moved by each merge.

- In respect to the network joins, HonE shows consistently
lower values for the number of keys moved than R-LB and
Supersize-me, which means that more frequently, when nodes
join, they actually receive very few keys. Furthermore, since
HonE makes an active effort to maintain the network relatively
stable, it is also able to achieve fewer merges than R-LB (about
30% less on average), and most merges end up moving as many
keys as in R-LB.

- Supersize-me leads to considerably fewer merges. In fact,
except for situations when the network size drops abruptly,
Supersize-me is able to mostly avoid them. However, it is also
observable that the increased size of the groups has a negative
effect on the number of keys moved as a consequence of joins.

VI. CONCLUSIONS

Although a significant amount of literature exist on data
replication policies for large-scale distributed P2P systems,
to design algorithms that can provide both low monitoring
costs, low data transfer costs, and good load balancing remains
challenging. In this paper we have made a comprehensive
analysis of the literature, witch provides interesting insights on
the tradeoffs involved. Based on these insights we were able
to propose a novel policy, based on a principle that can be
counter-intuitive at first: to put the most accessed data items
on the less reliable nodes. We have shown that this policy,
named “Hotter-On-Ephemeral”, significantly outperforms pre-
vious work. This work opens an interesting research avenue,
that consists in designing new overlay topologies that can
maximize the principle unveiled by our research.
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