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Motivation

Collocating processing with storage can improve performance.

I Using random placement, nodes waste resources due to
node-intercommunication.

I Optimize data placement to improve locality and to reduce
remote requests.
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Approaches Using Offline Optimization

Algorithm:

1. Gather access trace for all items

2. Run offline optimization algorithms on traces

3. Store solution in directory

4. Locate data items by querying directory

I Fine-grained placement

I Costly to log all accesses

I Complex optimization

I Directory creates additional network usage
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Main challenges

Cause: Key-Value stores may handle large amounts of data

Challenges:

1. Collecting Statistics: Obtaining usage statistics in an
efficient manner.

2. Optimization: Deriving fine-grained placement for data
objects that exploits data locality.

3. Fast lookup: Preserving fast lookup for data items.



Approaches to Data Access Locality

1. Consistent Hashing (CH):
The “don’t care” approach

2. Distributed Directories:
The “care too much” approach



Consistent Hashing

Don’t care for locality: items placed deterministically according to
hash functions and full membership information.

I Simple to implement

I Solves lookup challenge by using local lookups

I No control on data placement → bad locality

I Does not address optimization challenge
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Distributed Directories

Care too much for locality: nodes report usage statistics to
centralized optimizer, placement defined in a distributed directory
(may be cached locally)

I Can solve statistics challenge using coarse statistics

I Solves optimization challenge with precise data placement
control

Hindered by lookup challenge:

I Additional network hop

I Hard to update
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Our approach: beating the challenges

Best of both worlds

I Statistics Challenge: Gather statistics only for hotspot items

I Optimization Challenge: Fine-grained optimization for
hotspots

I Lookup Challenge: Consistent Hashing for remaining items



Algorithm overview

Online, round-based approach:

1. Statistics: Monitor data access to collect hotspots

2. Optimization: Decide placement for hotspots

3. Lookup: Encode / broadcast data placement

4. Move data
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Statistics: Data access monitoring

Key concept: Top-K stream analysis algorithm

I Lightweight

I Sub-linear space usage

I Inaccurate result... But with bounded error
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Optimization

Integer Linear Programming problem formulation:

min
∑
j∈N

∑
i∈O

X ij(cr
r rij + crwwij) + Xij(cl

r rij + clwwij) (1)

subject to:

∀i ∈ O :
∑
j∈N

Xij = d ∧ ∀j ∈ N :
∑
i∈O

Xij ≤ Sj

Inaccurate input:

I Does not provide optimal placement

I Upper-bound on error



Accelerating optimization

1. ILP Relaxed to Linear Programming problem

2. Distributed optimization

LP relaxation

I Allow data item ownership to be in [0− 1] interval

Distributed Optimization

I Partition by the N nodes

I Each node optimizes hotspots mapped to it by CH

I Strengthen capacity constraint
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Lookup: Encoding placement

Probabilistic Associative Array (PAA)

I Associative array interface (keys→values)

I Probabilistic and space-efficient

I Trade-off space usage for accuracy



Probabilistic Associative Array: Usage

Building

1. Build PAA from hotspot mappings

2. Broadcast PAA

Looking up objects

I If item not in PAA, use Consistent Hashing

I If item is hotspot, return PAA mapping
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PAA: Building blocks

I Bloom Filter
Space-efficient membership test (is item in PAA?)

I Decision tree classifier
Space-efficient mapping (where is hotspot mapped to?)
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PAA: Properties

Bloom Filter:

I False Positives: match items that it was not supposed to.

I No False Negatives: never return ⊥ for items in PAA.

Decision tree classifier:

I Inaccurate values (bounded error).

I Deterministic response: deterministic (item→node)
mapping.
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Algorithm Review

Online, round-based approach:

1. Statistics: Monitor data access to collect hotspots
Top-k stream analysis

2. Optimization: Decide placement for hotspots
Lightweight distributed optimization

3. Lookup: Encode / broadcast data placement
Probabilistic Associative Array

4. Move data
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Experimental settings

I Integrated in Distributed Key-Value store (JBoss Infinispan)

I 40 Virtual Machines (10 physical machines)

I Gigabit network



Modified TPC-C benchmark

Induce controllable locality:

I Probability p: Nodes access data associated with a given
warehouse.

I Probability 1− p: Nodes access data associated a random
warehouse.



Remote operations
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Throughput
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Directory effects
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Conclusions

I Gather statistics only for hotspots

I Fine-grained hotspot placement

I Retain Local lookups using PAA

I Effective locality improvement

I Good network usage

I Considerable performance improvements
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Thank you
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