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ABSTRACT
In the era of global-scale services, big data analytical queries are
often required to process datasets that span multiple data centers
(DCs). In this setting, cross-DC bandwidth is often the scarcest,
most volatile, and/or most expensive resource. However, current
widely deployed big data analytics frameworks make no attempt to
minimize the traffic traversing these links.

In this paper, we present PIXIDA, a scheduler that aims to mini-
mize data movement across resource constrained links. To achieve
this, we introduce a new abstraction called SILO, which is key to
modeling PIXIDA’s scheduling goals as a graph partitioning prob-
lem. Furthermore, we show that existing graph partitioning prob-
lem formulations do not map to how big data jobs work, causing
their solutions to miss opportunities for avoiding data movement.
To address this, we formulate a new graph partitioning problem
and propose a novel algorithm to solve it. We integrated PIXIDA in
Spark and our experiments show that, when compared to existing
schedulers, PIXIDA achieves a significant traffic reduction of up to
∼ 9× on the aforementioned links.

1. INTRODUCTION
In the era of global-scale services and cloud computing, more

and more data sets are naturally geo-distributed, as the services
producing them run on multiple locations. This happens for vari-
ous reasons. First, many organizations operate multiple data cen-
ters (DCs) across the globe, to improve both reliability and user-
perceived latency; second, as cloud computing becomes more pop-
ular, organizations will split their data processing between in-house
and remote cloud nodes; third, some organizations might prefer
to use multiple cloud providers to increase reliability and/or de-
crease costs [20, 5]. This trend is illustrated by recent work in
geo-distributed databases [12, 7], which exemplifies some of the
challenges that arise in this setting.

Analyzing large data sets in a timely and resource efficient man-
ner is of crucial importance. To this end, over the last decade, a
series of frameworks, such as MapReduce [9] and Spark [22], have
contributed to “democratizing” big data analytics, by hiding most
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of the complexity related to machine coordination, communication,
scheduling, and fault tolerance. However, all these frameworks as-
sume single-DC deployments, where the bandwidth between differ-
ent pairs of nodes is uniformly distributed. This is not the case with
Wide-Area Data Analytics (WADA), where cross-DC bandwidth is
often the scarcest and most volatile resource.

To deal with such jobs, organizations today often copy remote
data to a central location, and analyze it locally using relational or
Hadoop-based stacks (as reported by other authors [18, 19]). This,
not only consumes cross-DC bandwidth proportional to the size of
the input data, but it may not even be applicable due to regulatory
constraints, such as existing EU regulations that impose data trans-
fer limitations. Very recent proposals have taken preliminary steps
to improve WADA execution. Google, reportedly, uses Photon, a
system tailored for a particular business-critical job that processes
geo-distributed data [4]. However, this is not a general solution,
and not all organizations have the resources to build a distributed
program for each WADA job. JetStream [16] optimizes WADA
execution through adaptive sampling and their data cube abstrac-
tion. Although more general, JetStream cannot support all oper-
ators, and assumes that applications can support some degree of
inaccuracy. Finally, the recent work of Geode [18, 19] provides
techniques that are complementary to the ones proposed in this pa-
per, while Iridium [15], although focusing on geo-distributed data
processing, has the main objective of minimizing latency instead of
bandwidth (Section 8 surveys related work).

In this paper, we make the case for a principled approach to the
general problem of conducting data analysis over geo-distributed
data sets, in order to make a more judicious use of the available
cross-DC bandwidth. To this end, we present PIXIDA, a scheduler
for data analytics jobs over geo-distributed data, which minimizes
traffic across inter-DC links. Our techniques target cross-DC band-
width reduction; we make no attempt to directly reduce execution
latency.

Our focus on inter-DC bandwidth stems from the fact that the
pace at which network capacity increases lags far behind that of
the increase of the volume of our digital world. In fact, it has been
reported that the 32% network capacity growth in 2013−2014 was
the smallest of the decade, and the main reason behind this is the
cost of adding more capacity [19]. In the same work, the authors
report that an analytics service backing one of their applications in-
gests more than 100TB/day into a centralized analytics stack. Fur-
thermore, and to illustrate the monetary costs incurred by inter-DC
transfers, Amazon charges extra for inter-regional transfers, which
pass through the open Internet [1]. In fact, for some instances, the
cost per GB of transferred data exceeds that of renting an instance
for an hour.
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Figure 1: The WordCount example for Spark with its correspond-
ing operator- and task-level job graph ((a) and (b) respectively) for
a three-partition input.

In reducing cross-DC transfers, PIXIDA makes three main con-
tributions:

1. First, PIXIDA introduces SILOs, its main topology abstraction.
SILOs are groups of nodes or, hierarchically, of other SILOs that
are considered equivalent for executing a given task. SILOs sim-
plify the formulation of the problem that the scheduler needs to
solve by considering all cross-SILO bandwidth to be equally ex-
pensive.

2. The second contribution is the formulation of a new optimiza-
tion problem that captures the specific aspects of our traffic min-
imization problem, and the design of a novel, flow-based ap-
proximation algorithm for solving it. More precisely, we show
that although the problem at hand is similar to the classical MIN
k-CUT problem, the definition of the latter does not map accu-
rately to the problem PIXIDA needs to solve. That is because
MIN k-CUT fails to capture the cases where the output of an op-
erator is consumed by more than one downstream operator. Our
algorithm is based on the Edmonds-Karp algorithm [8], and we
formally prove that it has small error bounds.

3. Third, and despite the fact that the design of PIXIDA is plat-
form agnostic, we integrated PIXIDA with Spark [22], allowing
existing Spark jobs to transparently benefit from the techniques
we propose. Our evaluation using both a geo-distributed de-
ployment based on EC2 and a local cluster shows that PIXIDA
significantly reduces cross-DC traffic when compared to alter-
native solutions. In addition, although none of our techniques
targets job latency, our results show that PIXIDA achieves im-
proved job completion times in most scenarios, with a small
penalty in resource-constrained environments (Section 6).

2. PIXIDA IN THE ANALYTICS STACK
When designing PIXIDA, we set two requirements: i) to make

it platform-agnostic, and ii) to avoid breaking the modularity of
current data-analytics stacks. To this end, the architecture of PIX-
IDA is aligned with the structure of modern data analytics stacks,
which separates the framework-specific programming model from
scheduling and managing resources, and only modifies the layers
that define the locations where computations are scheduled. This
is depicted in Figure 2, where a resource negotiation layer stands
between the cluster-wide storage system and various different pro-
cessing frameworks. In our case, we use Spark for our prototype
implementation, and we modify its scheduler in a way that is ag-
nostic to the specific API, and also makes no assumptions about the
underlying storage system or how data is partitioned or stored in it.

Cluster(File(System((e.g.$HDFS)(

Resource(Nego7a7on((e.g.$YARN)(

Data(Analy7cs(Stack(Example(

Figure 2: The typical data analytics stack with a cluster file system
at the bottom, a resource manager in the middle, and application
frameworks on top.

Given this architecture, PIXIDA receives as input the result of the
compilation of the data-parallel program, which is a graph whose
nodes represent data transformations and edges denote data depen-
dencies. For example, Figure 1 presents the WordCount example
written for Spark [22], and its corresponding graph (code written
for other platforms would generate an identical graph). Figure 1
shows that, depending on the level of abstraction, we can consider
two different graphs. Figure 1a presents the operator-level graph,
which includes the dependencies between the operators composing
the job. After adding the information concerning i) how the com-
putation of each operator is parallelized into a set of tasks, and ii)
the dependencies of each individual task with its parent tasks, we
obtain the task-level graph, depicted in Figure 1b.

3. OVERVIEW OF PIXIDA
PIXIDA is a scheduler for data analytics frameworks, designed to

minimize the traffic that has to traverse links that are more suscep-
tible to congestion, i.e., the ones between DCs. Jobs submitted to
PIXIDA have their input scattered across different DCs, and request
their output to be stored at a specific DC, possibly different from
the ones storing the input.

To achieve its goal, PIXIDA translates this traffic minimization
problem into a graph partitioning one, where the job’s task-level
graph (e.g., Figure 1b) is split into partitions. Each of these parti-
tions contains the tasks that are spawned in the same DC (as further
detailed in Section 3.2). To construct such graph, PIXIDA needs to
be provided with i) the job’s task-level graph, ii) the locations of
the input partitions and of the output, and iii) the size of the output
of each task in the graph.

The first two pieces of information are easy to determine: the
graph is known at compile time, i.e., as soon as the job is submitted
for execution, while the locations of the input partitions can be de-
termined from the underlying storage system, e.g., HDFS, and the
output location is provided by the user. For the third piece of infor-
mation, we rely on statistics collected by a Tracer phase, which we
describe next.

3.1 Tracer
The Tracer allows us to estimate the size of the output of each

task. During this phase, PIXIDA runs the job on a sample of the in-
put partitions (currently set to 20%). We select a subset of the input
partitions (e.g., HDFS splits) instead of sampling the input tuples.
This allows us to i) select the partitions that are more convenient
(e.g., partitions in the same DC, or, in the case of using a public
cloud service provider, a subset of the input stored in the in-house
infrastructure), and ii) be more resource efficient, as sampling at
the tuple level would imply preprocessing the whole input dataset
(during the sampling process), thus spawning more tasks.
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During its run, the Tracer tracks the size of the output of each
task. Tasks are then mapped to their respective operators, such as
map or flatMap in Figure 1, to extrapolate the weights of the out-
going edges of their corresponding nodes in the task-level graph;
these weights will then be used by the graph partitioning algorithm.
Despite the use of sampling, there is a time and computational over-
head to run the Tracer (shown in Section 6.5). However, there are
two factors that make this overhead more acceptable. First, the size
of the subset of the input is configurable, thus incurring predictable
costs. Second, prior work [2, 6, 11] reports that i) 40% of the jobs
seen in production clusters are recurring, and ii) the properties of
the interplay between code and data, such as operator selectivity
(the ratio of output to input size), remain stable across runs for re-
curring jobs. This implies that the Tracer does not have to be rerun
before each execution of the job. Instead, it can be run periodically,
or when the runtime statistics gathered during the actual run of the
job show that the current execution plan is suboptimal.

In practice, the overhead introduced by the Tracer (Section 6.5)
may make it less suitable for ad hoc queries than for recurring ones.
Therefore, in the case of ad hoc queries, another strategy for assign-
ing edge weights could be employed, e.g., operator modeling.

3.2 Silos
SILOs are PIXIDA’s main topology abstraction. They are groups

of nodes that belong to the same location, and therefore our sys-
tem considers that sending data to a node within the same silo is
preferable to sending it to nodes in remote silos. Although in the
current version of PIXIDA SILOs correspond to DCs, it is possi-
ble to extend our design to allow for nesting, where, for instance,
we can have SILOs corresponding to nodes in the same rack, and
then racks within the same DC form a higher level SILO. This al-
lows for reducing bandwidth usage both across racks within a DC,
and also across DCs. This extension to the design is discussed in
Section 7.1. Furthermore, we discuss how to support placement
policies and constraints in Section 7.2.

SILOs are of crucial importance for the performance of PIX-
IDA, as they constitute a sweet spot in the tradeoff between optimal
bandwidth minimization and the complexity of its graph partition-
ing problem. This is due to the following reasons.

First, SILOs simplify our partitioning problem. Cross-SILO trans-
fers in PIXIDA are considered of equal cost, irrespective of the
SILOs involved. Sending 1MB of data from a SILO in the West
Coast to one in the East Coast is equivalent to sending it to a SILO in
Asia. Accounting for more complex cost or latency models would
make our partitioning problem more complex, as the cost of each
graph edge would depend on the placement of its adjacent nodes.

Second, we reduce the problem statement from assigning tasks
to individual nodes, to assigning tasks to SILOs. Reasoning at the
granularity of SILOs instead of nodes allows us to transform the
task-level graph into a smaller one, as PIXIDA does not have to
account for the traffic generated by each node individually, and can
instead focus only on inter- versus intra-SILO transfers. This is
crucial for scalability, since the complexity of graph partitioning
increases fast with i) the size of the graph, and ii) the number of
partitions to compute [17]. Next, we explain how we transform a
task-level graph into its SILO-level form.

3.3 Silo-Level Graph
To reduce the size of the graph, PIXIDA leverages the fact that

nodes within the same SILO are equivalent in terms of task place-
ment preference. Therefore, instead of considering each of these
nodes individually, as in the task-level graph, for tasks of the same
operator, for which we know that they will end up in the same SILO,
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Figure 3: Construction of the SILO-level graph.

we merge their corresponding nodes into a single (super-)node. The
weight of the incoming and outgoing edges of the new node will
correspond to the aggregate bandwidth of the nodes being merged.

This merging is straightforward for the input: partitions of the
data stored on the same SILO are grouped into a single node in
the graph. For downstream tasks, this contraction is propagated
based on the dependencies between them and their (upstream) par-
ent tasks. In particular, these dependencies take three forms: one-
to-one, shuffle, and join-like, and the respective rules for transform-
ing the graph are as follows.
One-to-one. This is the case where, for each task of a given oper-
ator, all of its output is consumed by at most one task of the down-
stream operator, and conversely, each task of the downstream op-
erator receives input from a single task, e.g., map(), or filter().
In this case, the SILO-level graph is obtained by creating a single
node per parent node. This captures the one-to-one relationship
across SILOs that is obtained from aggregating the one-to-one rela-
tionships across tasks of the same SILO.
Shuffle. This is the case where each downstream task receives part
of its input from each parent task, i.e., we have an all-to-all commu-
nication pattern, e.g., reduce(). In this case, the SILO-level graph
contains a single node per downstream operator. This is because,
given that each task receives part of its input from each of the parent
tasks, traffic is minimized by placing all tasks of the downstream
operator in the SILO that holds most of its input1 (or the output
SILO when applicable).
Join. This case includes operators with more than one parent at the
operator level graph, e.g., join(). In this case, there might ex-
ist more than one type of dependency, since the join-like operator
may have either one-to-one or shuffle dependencies with each of
its parents. If it has shuffle dependencies with both parents, then
one node is enough for the same reasons stated in the previous
point. If there is one one-to-one and one shuffle dependency, then
the downstream operator will correspond to as many nodes as the
parent with the one-to-one dependency. Each of those nodes ag-
gregates, for the one-to-one parent, the same number of tasks as
its parent node, and, for the shuffle parent, all of its tasks. Finally,
if it has two one-to-one dependencies, then this implies that both
upstream operators are operating on data containing the same key
that is being merged, and therefore the data analytics framework
applies the same partitioning strategy to both operators, thus as-
signing them the same number of tasks. However, each upstream
operator may partition their tasks into SILOs differently, depend-
ing on the initial input locations. In this case, we must allow the
output of each task to either stay in the same location or move to
the location of the corresponding task of the other upstream oper-
ator. As a result, for each node of the first upstream operator in

1Note that we assume there is no partition skew, otherwise band-
width savings might be achieved by splitting the output according
to its contents.
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Figure 4: A job with Dataflow Forking, where e1,3 and e1,4 refer to
the same data. Not taking this into account results in the partition-
ing in b, which is not optimal, as shown by the “cheaper” solution
depicted in c.

the SILO-level graph, p1,i, we create one child node containing the
tasks in the intersection of p1,i with each of the nodes of the other
parent (the second upstream operator), p2,i. For example, if parent
P1 has two nodes, p1,1 with tasks {1,2,3} and p1,2 with task {4},
and P2 has two nodes, p2,1 with {1,2} and p2,2 with {3,4}, then
the child operator C will have three nodes c1, c2, and c3 with tasks
p1,1∩ p2,1 = {1,2}, p1,1∩ p2,2 = {3}, and p1,2∩ p2,2 = {4}.

Coming back to the WordCount example from Figure 1, we as-
sume that the input partitions of V1, V2 are in SILO S1, while that
of V3 is in S2, as shown in Figure 3a. Figure 3b shows how the
tasks that read the input are merged based on the location of their
input, while Figure 3c illustrates how this contraction is propagated
to subsequent tasks.

3.4 Task Placement: Strawman Approach
Having the job’s SILO-level graph, the locations of the input par-

titions, and the statistics that determine the weights of the graph,
PIXIDA is now ready to assign tasks to SILOs.

A strawman approach to this problem is to augment the SILO-
level graph with nodes representing the input and output SILOs,
assign weights to its edges based on the statistics from the Tracer
phase, and solve the resulting MIN k-CUT problem (Definition 1),
with each of the SILOs being one of the terminals to separate.

DEFINITION 1. MIN k-CUT: Given a weighted graph, G =
(V,E,w),w : E→ R, and a set of k terminals S = {s1, . . . ,sk} ⊆V ,
find a minimum weight set of edges E ′ ⊆ E such that removing E ′

from G separates all terminals.

Despite the fact that this problem is NP-hard for k > 2 [17], there
exist a number of approximate solutions. However, it turns out the
MIN k-CUT problem does not directly fit the one we are trying to
solve, and therefore the solution it finds may miss important op-
portunities for bandwidth savings. This mismatch happens due to
a form of data replication often present in data parallel jobs, which
we term Dataflow Forking.

Dataflow Forking describes the case where an operator, v, for-
wards its (entire) output to more than one downstream operator.
As an example, in Figure 4 the output of V1 is consumed by down-
stream operators V3 and V4. In this example, S1 and S2 are the input
SILOs, while S3 is where we want the output to be stored.

Simply solving the MIN k-CUT problem in Figure 4a, without
taking into account that e1,3, e1,4 refer to the same data, would
result in the partitioning of Figure 4b, with a cost of 14. However,
the fact that e1,3 and e1,4 refer to the same data implies that, if V3

and V4 were placed together on a different SILO than V1, then one
cross-SILO transfer (instead of 2), from the SILO of V1 to that of
V3−4, would be enough. In this case, the weight of the edge e1,3
should be counted only once. Taking this into account would allow
for the partitioning in Figure 4c, which has a cost of 11.

In the next section, we present a variant of the MIN k-CUT prob-
lem (and a corresponding solution), which matches our concrete
problem statement. Throughout that description, we will refer to
a node with more than one child, e.g., V1 in Figure 4, as a special
node.

4. GENERALIZED MIN K-CUT PROBLEM
This section formulates a new variant of the MIN k-CUT prob-

lem, and presents a novel flow-based approximation algorithm to
solve it. A more detailed description with proofs of the stated error
bounds can be found in a separate technical report [13].

4.1 Background: Solving Min k-Cut
Although the MIN k-CUT problem is NP-hard, an approximate

solution can be estimated by computing for every terminal si ∈ S, a
minimum isolating cut that separates si from all the rest [17]. The
latter is the MIN k-CUT problem for k = 2, or MIN-CUT problem,
and an exact solution can be computed in polynomial time using the
Edmonds-Karp algorithm (O(V E2)). The final solution is the union
of the k− 1 cheapest cuts. This algorithm has an approximation
ratio of 2− 2

k [17].

DEFINITION 2. MINIMUM ISOLATING CUT: A minimum iso-
lating cut for terminal si ∈ S is a minimum weight set of edges
Ei ⊆ E whose removal disconnects si from all terminals sj ∈ S\{si}.

To find a minimum isolating cut for a terminal si, all remaining
terminals s j ∈ S \ {si} are connected to a new node, ti, with edges
of infinite weight, and a MIN-CUT for {si, ti} is computed.

4.2 Generalized Min-Cut Problem
Using the Minimum Isolating Cuts heuristic allows us to focus

on the simpler MIN-CUT problem, but the formulation and solution
of the latter need to be adapted to account for Dataflow Forking.
In particular, we showed in Section 3.4 that to minimize the data
movement in a graph with a single special node x with N children,
the partitioning algorithm should account only once for the cost of
transferring x’s output (of size w). In contrast, existing algorithms
would account for a total cost of up to N×w.

If the set of children of x that do not end up in the same partition
set as x was known in advance, adding an extra node, ex, between
x and these children would allow us to use MIN-CUT algorithms
to optimally solve the problem, by cutting the edge between x and
ex, thus accounting for the corresponding transfer only once. The
extra node would be connected to x (upstream of the extra node)
and the children of x that are partitioned from x (downstream of the
extra node), with edges of the same weight, w, as the ones that it
intercepted.

Given that the information about the optimal partitioning of x
and its children is not known in advance, an instance of the MIN-
CUT problem has to be considered for every possible distribution
of the children of x between two sets, as now we are interested
in the MIN-CUT problem (where k = 2). The solution would then
be the one with the smallest cost. This is illustrated in Figure 5,
where the isolating cut for In1 from Figure 4 is computed. For each
possible distribution of V3, V4, an instance of MIN-CUT is solved
(Figure 5b), and the final solution is the cheapest one (Figure 5b(i)).

To formalize the above intuition, the definition of MIN-CUT
must be extended to capture the impact of Dataflow Forking. In
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Figure 5: Isolating cut computation for In1 from Figure 4. Due
to Dataflow Forking, the initial DAG (a) gives rise to a family
of graphs, with a member for each possible distribution of nodes
V3,V4. In b(i), V3,V4 are kept together in the same set. Edge (V1,Ve)
represents a single cross-SILO transfer of the same data. In b(ii),
V3,V4 are split into the two sets. An optimal solution is a mini-
mum cut over all members of the family (b(i)). In (b), the second
terminal, T1, is omitted for clarity.

more detail, it has to capture that in the presence of Dataflow Fork-
ing, the original DAG of a job, Go, generates a family of graphs,
with an instance for each possible partitioning of the children of
each special node. Let X denote the set of special nodes.

DEFINITION 3. INSTANCE: An instance of Go = (Vo,Eo,wo) is
a weighted undirected graph G = (V,E,w) obtained from Go with:
• All nodes of the original graph: Vo ⊆V .
• All edges whose tail is not a special node: {(v1,v2) | (v1,v2)∈

Eo∧ v1 6∈ X} ⊆ E, with the same weights.
• For every special node, x ∈ X, whose children in Go form

set Y , one or two extra nodes are added to V based on the
following:

– One extra node, ex, is added to V if all y ∈ Y are kept
together (in the same set). The new node is connected
to x and to all y ∈ Y .

– Two extra nodes, e1
x and e2

x , are added to V if the chil-
dren of x are split according to a partition {Y1,Y2} of
Y . Each extra node ek

x is connected to x and to all y∈Yk
(for k = 1,2).

In both cases, the weights of the new edges are equal to that
of the edges in Go connecting x to its children.

Given the above definition, our GENERALIZED MIN-CUT prob-
lem can be formulated as follows.

DEFINITION 4. GENERALIZED MIN-CUT: Given the original
graph Go and two terminals s and t, compute a cut of some instance
of Go that separates s from t and whose cost is minimum over all
cuts of all instances of Go.

Note that the classical MIN-CUT problem is a special case of the
GENERALIZED MIN-CUT, where the graph has no special nodes.

From the definitions above, we see that for the optimal solution
to the GENERALIZED MIN-CUT problem, the number of MIN-
CUT problems to consider increases exponentially with: i) the num-
ber of children per special node, as the n children of a special node
have 2n−1 possible ways to be split into two sets, and ii) the num-
ber of special nodes in the graph, since for a graph with m special
nodes, each with ni children (for i = 1, . . . ,m), every distribution of
the children of a special node has to be combined with all possible

Algorithm 1: Generalized Min-Cut Algorithm.

1 Ginit← getInitialInstance(Go);
2 fbase← computeBaseFlow(Ginit);
3 Gfinal← getFinalInstance(Ginit, fbase);
4 fmax← computeMaxFlow(Gfinal, fbase);
5 return getMinCut(Gfinal, fmax);

distributions of the children of any other special node. This results
in the following number of instances to be taken into account:

m

∏
i=1

2ni−1 = 2∑
m
i=1 (ni−1). (1)

Since this large number can lead to prohibitive latencies, we next
introduce an approximation algorithm that solves the GENERAL-
IZED MIN-CUT problem efficiently, without having to compute a
MIN-CUT for each instance.

4.2.1 Algorithm
To efficiently solve the GENERALIZED MIN-CUT problem, the

main challenge is to discover which instance of the family of graphs
leads to a minimum-weight cut across all instances. To this end,
we propose a novel flow-based approximation algorithm (Algo-
rithm 1), which starts by determining an instance of the family of
graphs that is approximately the one with the minimum-weight cut
(lines 1–3), and then computes a minimal cut for that particular
instance (lines 4–5) using the Edmonds-Karp algorithm.

The novelty of our algorithm lies in the way it selects the graph
instance to use for the final cut computation. The challenge is to
compute, in a single pass, the optimal partitioning of the children
of each special node in the graph, while ensuring that the weight
corresponding to the size of the output of that special node con-
tributes at most once to the final cut value. Our flow-based algo-
rithm, which is summarized in Algorithm 1, follows the structure
of the Edmonds-Karp algorithm with some additional restrictions
to guarantee the previous property. The main steps of this algo-
rithm are the following:

getInitialInstance: This function creates the initial instance,
Ginit, which is the instance of Go that has just one extra node per
special node, as shown in Figure 6, with Ve being added between
V1 and its children.

computeBaseFlow: This is the main step towards the selection
of the instance that gives the solution to GENERALIZED MIN-CUT.
Our algorithm builds on notions from flow networks and it closely
follows the Edmonds-Karp algorithm for computing a maximum
flow (a dual of the minimum cut problem [8]) between source s and
sink t. In particular, the graph is seen as a network of water pipes,
with specific edge capacities, c(i, j). In our case, edge capacities
are the weights computed by the Tracer phase. Pipes are considered
bidirectional, i.e., water can flow both ways, with one direction
canceling the other. This means that, if along an edge with capacity
c(i, j), u units of flow are sent in one direction, then sending u′ ≤
u units of flow in the opposite direction results in a total flow of
f (i, j) = u− u′. As in real water pipes, the total flow along an
edge cannot exceed its capacity, while the total flow entering a node
(except the source s and the sink t) has to be equal to the one exiting
it (flow conservation). As such, at each step of the algorithm, the
additional new flow that can be sent along an edge cannot exceed its
residual capacity, which is c f (i, j) = c(i, j)− f (i, j). More formal
definitions can be found in most algorithms textbooks [8].
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Algorithm 2: Base and Maximum Flow Algorithms.

1 f (i, j)← 0 for every edge e(i, j);
2 while (p← findPath(G f ,s, t)) 6= /0 do
3 for e(i, j) ∈ p do
4 f (i, j)← f (i, j)+ c f (p);
5 f ( j, i)← f ( j, i)− c f (p);

6 return f ;

With these basic notions in place, we can now present the gen-
eral structure of the algorithm that computes the Base Flow in Al-
gorithm 2. This follows the structure of the Edmonds-Karp algo-
rithm. At each iteration, the Base Flow algorithm finds a valid path,
p, from s to t (findPath). This path is then saturated by sending
the maximum flow allowed by the constraints on the edges of p,
c f (p), i.e., the minimum residual capacity across all edges in p.
Path discovery proceeds in a breadth-first manner, until no more
valid paths between s and t exist. Upon termination, a “cut” con-
sists of the partition {A,B} of V , where the A consists of the nodes
v ∈V for which there is still a valid path from s to v, and B =V \A.
This cut can be found with an additional graph traversal.

Although the Base Flow and Edmonds-Karp algorithms have the
same structure, they differ in which paths are considered valid at
each iteration (findPath). In Edmonds-Karp, a path is considered
valid as long as cf (p)> 0. Such paths are called Augmenting Paths
(APs). For a path to be valid in Base Flow, it has to have cf (p)> 0,
but also preserve the invariant that the flows on the edges incident to
an extra node cannot have “opposite up-down directions”. Figure 6
depicts the possible directions for the flow that do not break this
rule. Intuitively, this invariant guarantees that the base flow “could
be” a flow in any instance of the family of graphs (after performing
a few minor changes). Therefore, its value does not exceed the cost
of any cut of any instance of Go. Given that these new paths are a
restricted form of APs, we call them Restricted Augmenting Paths
(RAPs).

getFinalInstance: Upon termination of computeBaseFlow,
i.e., when no more RAPs exist between s and t, a cut {A,B} is com-
puted in the same way as previously described for the Edmonds-
Karp algorithm. Set A consists of the nodes reachable from the
source through a valid path, while B = V \A. After computing this
(intermediate) cut, we form the final instance, Gfinal of Go, i.e., the
one that will give us our final cut, by transforming the graph in the
following way. For each special node, x:

1 If all children of x belong to the same set (A or B), then the
special node, x, has one extra node in Gfinal, as in Ginit.

2 If its children are split between the two sets, then two extra
nodes are added, and each one is connected to the children
belonging to each set.

Optimality: The final result can be non-optimal in some cases,
when there are special nodes. The resulting cut is optimal if no
AP is found when a maximum flow is computed (line 4), even with
special nodes. Otherwise, in order to define the bounded error, let
wx be the weight of the edge from a special node x to each of its
nx children. The cost of the cut computed by Algorithm 1 does not
exceed the cost o of the optimal cut by more than ∑x∈X wx. In con-
trast, if a MIN-CUT algorithm (e.g., Edmonds-Karp) was applied
on the original graph, the cost of the computed cut could reach up
to o+∑x∈X (nx− 1)wx, which can be significantly higher. A for-
mal proof showing how this error bound is derived is presented in
a separate technical report [13].
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Figure 6: BASE-FLOW ALGORITHM: For each special node in the
graph, an extra node is added and, after each iteration, the total
flows of all edges incident to an extra node cannot follow opposite
up-down directions.

4.3 Generalized Min k-Cut Problem
The problem that PIXIDA has to solve is GENERALIZED MIN

k-CUT problem, which differs from the GENERALIZED MIN-CUT
problem we analyzed so far. To solve the GENERALIZED MIN
k-CUT problem, we apply the Isolating Cuts heuristic (§4.1), and
therefore translate the GENERALIZED MIN k-CUT problem to k
GENERALIZED MIN-CUT problems. To solve each of these prob-
lems, our algorithm initially finds the instance on which to compute
the minimum cut, Gfinal. Then, for each problem, its Gfinal is com-
puted independently from the ones selected for the remaining prob-
lems, and this may lead to some children of special nodes ending
up in more than one different partition in the final solution.

To eliminate such overlapping partitions, we apply the following
greedy strategy. Suppose that two or more partitions overlap, e.g.,
Pi ∈ P where i∈ [m, ...,n]. The overlap is then Gover =

⋂n
i=m Pi 6= /0.

In this case, we compute the cost of removing Gover from each of
the partitions by summing the weights of the edges with one end in
Pi−Gover and the other in Gover, and we keep Gover in the partition
where we have to pay the most for removing it, i.e., the one with the
minimum cost. A detailed description can be found in a separate
technical report [13].

5. PIXIDA ON SPARK
We implemented PIXIDA by extending the code of Spark [22].

This section describes two important design decisions concerning
the implementation of PIXIDA as a modified version of the sched-
uler of Spark.
Stage Pipelining: For performance reasons, Spark organizes op-
erators in Stages. Each stage groups together as many consecutive
operators with one-to-one dependencies as possible. The bound-
aries between stages are the shuffle operations, or any cached par-
titions from previous stages, as would happen in iterative jobs. In
the WordCount example, the flatMap and map operators are in
the same stage, while reduceByKey (shuffle) is in a separate one
(Figure 7(b)). Stages are then split into tasks (Figure 7(c)), the ba-
sic execution unit, which are executed in parallel. While a stage
has to wait for all previous stages (i.e., all their tasks) to be fully
executed before it can start its execution, operators within a stage
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Figure 7: Stage and Task creation in Spark and PIXIDA for Word-
Count example. In Spark, map and flatMap are always put in the
same Stage, which is not the case for PIXIDA, if the two operators
are not placed on the same SILO during graph partitioning.

are pipelined. Pipelining allows for better performance, since oth-
erwise each operator, e.g., flatMap in the WordCount example,
would have to be fully executed (i.e., all its input has been pro-
cessed), before its following operator, e.g., map, can start.

In PIXIDA, we had to introduce the additional constraint that we
can only place two operators with a one-to-one dependency in the
same stage if they are also placed on the same SILO by the graph
partitioning phase. Therefore, this may result in more stages than
in Spark, as illustrated in Figure 7(d). There, the graph partition-
ing phase splits the graph after the flatMap operator, causing the
flatMap and map operators to end up in different stages. Given that
stages constitute workflow barriers, this may result in additional job
completion latency. To reduce these overheads, and only for these
cases, PIXIDA introduces stage pipelining. This means that for two
stages with one-to-one dependencies, as in Figure 7(d), a task of
the child stage (e.g., T4) can start as soon as its parent (T1) finishes,
without waiting for the whole parent stage to finish. This allevi-
ates most of the overheads coming from the creation of additional
stages in PIXIDA, as shown in Section 6.4.
SILOs and Delay Scheduling: When assigning tasks to nodes, it
may be the case that there are no free resources in the preferred
SILO. In these cases, allowing a task to wait indefinitely for re-
sources on the preferred SILO can lead to unacceptable latencies.
PIXIDA balances the tension between bandwidth minimization and
job completion time using delay scheduling [21]. Under such a
scheme, a timer is set when a task is waiting for an available execu-
tion slot on its preferred SILO. Upon expiration of a timeout, tdelay,
currently set to 5 sec, the task is scheduled on the first available
execution slot on any SILO.

6. EVALUATION
We evaluated PIXIDA through a series of experiments on Ama-

zon EC2 and a private cluster. The questions we try to answer are:

1. What are the bandwidth savings achieved by PIXIDA? §6.2
2. Does GENERALIZED MIN-CUT lead to a larger cross-

SILO traffic reduction than MIN-CUT in the presence of
Dataflow Forking? §6.3

3. What is the contribution of each individual optimization? §6.4
4. How do the offline processing steps perform? §6.5

EU US-West US-East
EU 1.02 Gbps 68.4 Mbps 139 Mbps
US-West 1.01 Gbps 145 Mbps
US-East 1.01 Gbps

Table 1: Bandwidth between the different EC2 locations.

6.1 Experimental Setup
For our evaluation, we used two testbeds and two configurations

to test a variety of scenarios. We ran all experiments 10 times and
report the average and the standard deviation of the results.

Testbeds: We evaluate PIXIDA on EC2 and on a private clus-
ter. The experiments on EC2 show how PIXIDA performs in multi-
tenant and geographically distributed environments, while the pri-
vate cluster provides an isolated and controlled environment. Note
that the results on the local cluster are conservative, since all nodes
are connected to a single switch. In these settings, there is no bot-
tleneck link, thus the impact of PIXIDA’s overheads on the overall
performance is more pronounced.
• EC2: 16 m3.xlarge instances, each with 4 cores and 15 GB of

RAM. The machines are located in 3 different regions, namely
EU, US-West, and US-East. Table 1 shows the bandwidth be-
tween the 3 locations, as measured using iperf.
• Private Cluster: 6 machines, each with an 8-core AMD Opteron

and 16 GB of RAM. All machines are connected to a single
1Gbps switch.

Applications: For our evaluation, we use the following applica-
tions, each representing a different class of algorithms. Note that
no modifications to the application code were required to port them
to PIXIDA.
• WordCount (WC): represents an “embarrassingly parallel” ap-

plication. Its code is presented in Figure 1.
• K-Means (KM): represents an iterative convergent algorithm.

This is an important class of computations, especially in the Ma-
chine Learning community.
• PageRank (PR): represents an iterative convergent graph pro-

cessing computation.

Configurations: We further distinguish 2 configurations, which
differ on whether the (single) output SILO holds part of the input.
• Overlapping: The output SILO holds part of the input, i.e., the

input/output SILO sets have an overlap.
• Disjoint: The output SILO does not hold any part of the input,

i.e., the input/output SILO sets are disjoint.
Assuming 3 SILOs, A, B, C, with C being the output SILO, in

the disjoint case the set of input SILOs will be A and B, while in
overlapping it will be A, B, and C.

On EC2, SILOs correspond to regions (i.e., data centers), hence
we have 3 SILOs, each consisting of 5 nodes. In the private cluster,
we split the nodes into 2 SILOs, one of 3 and one of 2 nodes. In
both testbeds, the remaining node is used as the master node of
Spark and the NameNode for HDFS.

In all experiments, HDFS was used as the underlying storage
system with a block size of 128 MB. In the disjoint case, on EC2 the
input is stored in EU and US-West, whereas on the private cluster,
the input SILO is the 3-node one.

Inputs: The size of the input of each application on each of the
testbeds is presented in Table 2. On EC2, for WC we used 10 GB
of data from the Wikipedia dump, for PR we used the page graph
extracted from a full snapshot of wikipedia, which accounted for
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Figure 8: Cross-SILO traffic and latency results of the comparison between PIXIDA and Spark on EC2.

WC PR KM
EC2 10GB 1.1GB 10GB
Private 1GB 250MB 1.5GB

Table 2: Input size of each application for both testbeds.

1.1 GB, and for KM we created an artificial dataset of 10 GB of
randomly generated vectors of size 50.

On the private cluster, we scaled down the input from the EC2
experiments. Thus, WC had 1 GB, PR had 250 MB, and KM used 1.5
GB of data.

6.2 Comparison to Existing Solutions

6.2.1 Existing Schedulers
To compare PIXIDA against existing schedulers, we run Spark (v.

0.8.0) with and without PIXIDA. For this set of experiments, we run
all three applications on both testbeds and for both configurations.
The results for bandwidth utilization are presented in Figure 8 and
Table 3, for EC2 and the private cluster, respectively.

In addition, and although the goals of PIXIDA do not include
optimizing job completion time, the above results also contain the
latencies achieved by PIXIDA and Spark. For the latency numbers,
we note that the job completion times reported for Spark are lower
bounds of the actual latency. That is because, for the cases where
(part of) the output does not end up in the required output SILO, we
do not count the time it would take to transfer it there, since this
would have to be done outside the Spark framework.

EC2 Results: Starting with EC2, which represents the main
target environment for PIXIDA, the results of the comparison be-
tween PIXIDA and Spark are presented in Figure 8. The results
show that PIXIDA consistently reduces the cross-DC traffic, while
maintaining low response times. In particular, in the disjoint con-
figuration, PIXIDA reduces cross-SILO traffic by 51%, 57%, and
26%, for WC, PR, and KM respectively, while for the overlapping
one, this becomes 42%, 57%, and 27%.

Focusing on the iterative jobs, i.e., PR and KM, PIXIDA tries to
confine iterations to a single SILO. But even when this is not pos-
sible, e.g., when there is a join between data from more than one
SILO, PIXIDA transfers data when its volume (in the data flow) is
minimized. This is the reason behind the significant traffic reduc-
tion achieved, since the data transferred during and across iterations
often has a large volume, which is multiplied by the number of it-
erations. WC differs in that it is not iterative and consists of only 2

PIXIDA Spark
WC PR KM WC PR KM

Disjoint Input/Output Silos
Traffic(MB) 185 34 0.006 248 249 0.052
Latency(s) 51 154 62 44 148 62

Overlapping Input/Output Silos
Traffic(MB) 213 179 0.039 404 249 0.043
Latency(s) 52 150 21 44 144 21

Table 3: Cross-SILO traffic and latency of the comparison between
PIXIDA and Spark on the private cluster.

stages. In this case, PIXIDA transfers data only once from the input
to the output SILO, i.e., during the shuffle between these stages.
This is not the case for Spark, where in all our experiments, apart
from the shuffle that affects all SILOs, most of the final output is
stored in a different SILO from the target location, and thus an ad-
ditional transfer of the final output to the destination SILO would
be required.

Regarding latency, we see that PIXIDA’s reduction of the traffic
that traverses the high-latency cross-DC links leads to better job
response times despite i) the latency of Spark being measured con-
servatively, as mentioned earlier, and ii) the potentially more stages
created by PIXIDA (Section 5).

The exception to this improvement in latency was PR in the
disjoint case. This is due to the fact that PIXIDA tries to place
tasks wherever cross-SILO traffic is minimized, instead of spread-
ing them uniformly among all nodes in the system. In resource
constrained environments, this may lead to increased latency, as
tasks may have to wait for execution slots to be freed before being
able to run. This is the case in this set of experiments. By analyz-
ing the logs, we found that almost all of the difference (24s out of
the 29s) is due to joins taking place in each iteration. The stages
of these joins involve data from both input SILOs and execute the
CPU expensive computation of the new weights of the pages, thus
creating tasks that are both CPU and IO intensive. By spreading
tasks uniformly among the nodes, Spark has 1 or 0 tasks per node,
while PIXIDA puts all the tasks on the EU SILO, which has an av-
erage of 1.8 tasks per node. This results in an average runtime of
a task for this stage of 31s on Spark, and 42s for PIXIDA, which
explains the difference. This highlights that in the tradeoff between
latency and cross-SILO traffic minimization, PIXIDA chooses traf-
fic minimization. This explanation is fully aligned with the results
obtained in the private cluster in Table 3, where the input is scaled
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Figure 9: Job Completion times with (ON) and without (OFF) stage
pipelining for all 3 applications.

down, and there are enough execution slots for all tasks, thus avoid-
ing contention. In this case, PIXIDA achieves almost the same la-
tency for PR as Spark. If we wanted PIXIDA to be more latency
friendly and less aggressive at minimizing cross-SILO bandwidth,
delay scheduling with a smaller timeout would amortize the impact
of this phenomenon, since the placement constraints are relaxed
upon timeout.

Finally, an interesting observation is that PIXIDA manages to de-
crease the impact of network volatility on the job completion time.
By reducing the traffic that has to traverse the “narrow” and bursty
cross-DC links (Table 1), which are shared with the rest of the In-
ternet traffic, PIXIDA consistently reduces the standard deviation of
the completion times on EC2, as shown in the bars of Figure 8.

Private Cluster Results: Table 3 shows that PIXIDA consis-
tently reduces cross-SILO bandwidth utilization, with results that
are mostly comparable to the EC2 case. However, in this case,
there is a higher latency cost when using PIXIDA. This was ex-
pected since the overheads of PIXIDA are more pronounced, as all
nodes are connected to a single switch, and therefore do not have
a “narrow” link between them. As such, the latency overheads in-
troduced during our scheduling process are not compensated by the
savings brought by avoiding the latency of cross-DC links.

6.2.2 Centralized Solution
As described in Section 1, to process geo-distributed data, orga-

nization nowadays initially transfer all the data to a single DC and
process them locally. When compared to such a solution, PIXIDA
requires from 2 times (for PR) to orders of magnitude (for KM)
less bandwidth. This can be seen by comparing the EC2 results for
PIXIDA in terms of bandwidth consumption in Figure 8, to the size
of the input for each experiment, presented in Table 2.

6.3 Min-Cut vs Generalized Min-Cut
Although some of the graphs of the jobs in Section 6.2 contain

special nodes, our logs reveal that their final “cuts” do not contain
the outgoing edges of these nodes. In other words, both the GEN-
ERALIZED MIN-CUT and MIN-CUT algorithms output the same
partitions, thus forming identical job scheduling plans, with no dif-
ference in the achieved cross-DC bandwidth reduction. To confirm
this, we repeated the experiments using the Edmonds-Karp algo-
rithm for graph partitioning and the results for the volume of data
transferred were the same as in PIXIDA.

To capture a situation where GENERALIZED MIN-CUT achieves
bandwidth savings when compared to MIN-CUT, we developed the
Spark application depicted in Figure 10. Even though this example
application was developed with the specific goal of highlighting
that MIN-CUT may in some cases be sub-optimal, we note that that
was inspired by a processing job from a measurement study we are
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Figure 10: Example illustrating the better fit of the GENERALIZED
MIN-CUT against MIN-CUT to our scheduling problem.

conducting for another project. In particular, the job initially reads
from a file in HDFS (in <key, value> format), and applies two
different filters, to select two different record subsets. These
subsets are later transformed (map), e.g., there is a transformation of
the key, and then (outer) joined, in order to correlate records that
refer to the same (new) key. This workflow appears, for instance,
when logs from two different dates are collected (using a filter),
the key then changes to reflect the event that triggered each record,
and finally the records are joined on the new key to detect event
correlations.

We ran this application on the local cluster using the disjoint con-
figuration. The input consisted of 300+ MB of data, and we sched-
uled the tasks based on i) our GENERALIZED MIN-CUT algorithm,
and ii) the Edmonds-Karp algorithm for the MIN-CUT problem.
Edge weights in Figure 10 represent the output of the Tracer for
each stage of the application, in megabytes. When partitioning, our
algorithm adds an extra node, Ve, between V0 and V1,V2, and cuts
the edge, e0,e between V0 and Ve (304 MB), while Edmonds-Karp
cuts e5,6 (324 MB). In this case, PIXIDA achieves about 8% traffic
reduction when compared to a strawman design that applies MIN-
CUT2. (The job completion latency is approximately the same in
this comparison.) Note that these benefits can easily become even
more pronounced depending on the characteristics of the analy-
sis. For instance, if the ratio sizeOf(value)/sizeOf(key) was
larger, then the benefits would also increase. This is because, al-
though common keys between the outputs of V3 and V4 are kept
only once, the values remain. In addition, it can be argued that as
the number and the complexity of the libraries for big data ana-
lytics increase, it becomes more likely that some applications will
encounter scenarios where PIXIDA is beneficial.

6.4 Design Features of Pixida
We next evaluate the individual design choices of PIXIDA, namely

i) the benefits from stage pipelining, and ii) the effects of delay
scheduling when computational resources are scarce. The results
presented in this section were obtained in the private cluster.

Stage pipelining: To evaluate the contribution of stage pipelin-
ing, we ran all applications on the private cluster and measured
the average job completion times with pipelining enabled and dis-
abled, for the disjoint configuration, where pipelining has a higher
impact. The choice of the disjoint configuration highlights the fact
that, while the input SILO is executing its tasks, resources at the
output SILO are sitting idle, and thus pipelining allows the waiting
time on the output SILO to be overlapped with the execution time
of the input SILO.

2In this example, adding a single extra node could also allow the
Edmonds-Karp algorithm to find the optimal cut. This is because
the special node has only two children. For a more complex exam-
ple of a graph where adding the extra node alone does not solve the
problem, the reader is referred to [13].
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tdelay WC 2GB WC 4GB
Silo (%) Traffic t Silo (%) Traffic t

102 95.8 501 76 61.4 2049 94
3 ·102 95.8 501 78 58.4 2049 98

103 100 379 84 59.4 2049 99
3 ·103 100 379 88 58.4 2049 99
5 ·103 100 379 89 83.3 1482 113
3 ·104 100 379 95 100 748 152
6 ·104 100 379 114 100 748 155

Table 4: Percentage of tasks executed on the preferred silo, traffic
(MB) and job completion times (s) for different values of the tdelay
(ms) and the input size for WC.

The results in Figure 9 show that pipelining improves completion
times for all applications, with the exception of KM, where there
are no benefits. For WC, the reduction is 13.3%, while for PR it is
11.6%. In the case of KM, pipelining offers almost no improvement
due to the nature of the job. In this case, only the final transfer is
scheduled on the output SILO, and, although this is pipelined with
the final stage of the computation, the small size of the output does
not enable significant improvements.

Delay scheduling: To evaluate the impact of delay scheduling
in resource-constrained environments, we ran WC in the disjoint
configuration with 2 and 4 GB of input, and for different values
of the timeout (tdelay), i.e., the time for a task to wait until it is
allowed to be scheduled on a node outside its preferred SILO (Sec-
tion 5). Table 4 presents the percentage of tasks executed on their
preferred SILO (locally) and the corresponding cross-SILO traffic
and completion time.

The results show that, for the same timeout, as jobs become
larger, latency increases and task locality decreases. This is ex-
pected since the larger the job the higher the number of tasks that
may have to wait for resources to be freed. Furthermore, we see
that, for a given input size, as the timeout increases, the percent-
age of tasks executed on their desired SILO also increases, at the
expense of latency. This is due to the fact that tasks are allowed
to wait more for resources to be freed on their preferred location,
instead of being scheduled on a sub-optimal one (in terms of traffic
minimization). Another observation is that although the job com-
pletion time increases, the amount of cross-SILO traffic stays the
same (up to a certain point). The reason is that: i) we are in the pri-
vate cluster that has not “narrow” links, and ii) within a SILO, tasks
can be placed on a different node than the one that holds (most of)
the input of the task, thus leading to additional latency. This is be-
cause nodes within a SILO are considered equivalent. Finally, after
a tdelay of 30 seconds, the difference in cross-SILO traffic for 4 GB
is significant. The reason is that 30 seconds is approximately the
duration of the slowest stage of the job, as observed in our logs.
This leads to all tasks being executed on their preferred SILO.

6.5 Tracer and Partitioning Algorithm
Finally, we evaluate the Tracer and the Partitioning algorithm. In

this case, the first thing to note is that in most cases (apart from KM)
the Tracer takes more time than the actual application to complete,
despite the fact that it processes only 20% of the original input.
The reason is that, during the Tracer, each operator runs to com-
pletion, before the next operator can execute (i.e., there is a single
operator per stage). In particular, the slowdown of the Tracer when
compared to the actual job is 2× for WC, 2.7× for PR, whereas
for KM we have a speedup corresponding to a Tracer completion
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Figure 11: SILO-nesting and its implications on PIXIDA.

time of 0.6×. This difference is due to the fact that, during the ex-
ecution of the actual job, WC allows for denser stages, i.e., stages
composed of more operators, while in KM most stages contain only
a single operator. This leads to the structure of the Tracer for KM
being closer to that of the actual job (with a single operator per
stage). As mentioned, although time consuming, a single run of the
Tracer can be amortized over a large number of job executions.

Concerning the Partitioning algorithm, its running time is orders
of magnitude lower than the typical time required for a data paral-
lel job, with a value ≤ 0.08 seconds in all of our experiments. In
addition, and to compare the running time of our partitioning algo-
rithm to that of Edmonds-Karp for the MIN-CUT problem, we ran
the latter on the same graphs as the ones used in Section 6.2. The
results show that there was no significant difference in the running
times achieved by both of them (the difference was always under
0.01 seconds). This is expected, as, although some of these exam-
ples contain special nodes, their final “cuts” do not contain any of
their outgoing edges. This implies that both algorithms, Edmonds-
Karp and ours, perform the same steps, modulo some additional
transformations and checks that are not costly.

7. DISCUSSION
This section discusses two extensions to the design of PIXIDA,

namely i) how it can achieve multi-layer optimization, e.g., both
inter-DC and inter-rack (within a DC), and ii) how it can accom-
modate different placement policies.

7.1 Hierarchical Silos
As previously mentioned, PIXIDA allows SILO nesting, i.e., silos

composed of silos. This allows PIXIDA to simultaneously minimize
bandwidth usage at multiple levels, e.g., at both the rack and the DC
level. To achieve this, we apply delay scheduling at the lower levels
of SILOs. For example, in a scenario with DC-SILOs composed of
rack-SILOs, a task initially tries to be placed on its preferred node
(only for the case of initial tasks, since Spark tries to co-locate them
with the input); if it does not succeed within tdelay time units, it tries
to find a node in the same rack as the preferred node; upon another
tdelay it tries to find a node in the same DC as the preferred node;
and after another tdelay time units it is free to choose any node.

The challenge in this case is that, by optimizing data movement
in one of the levels, we may not be minimizing the traffic at the
other levels. This is illustrated in Figure 11, where we assume rack
and DC-level SILOs, and minimizing cross-DC traffic has a higher
priority than cross-rack traffic savings. In this example, we have
the input of a job consisting of 6 partitions, spread unevenly among
4 racks, R1,2, R1,3, R1,4, and R2,1 located in 2 DCs (DC1,2), and the
output of the job is required to be stored in R1,1 in DC1. Each of the
racks in DC1 holds one partition, while R2,1 in DC2 holds 3. Ap-
plying the Isolating Cuts strategy (§ 4.1) using rack-level SILOs and
solving each of the 5 resulting MIN-CUT problems would result in

81



the partitioning shown in Figure 11b. This partitioning scheme, al-
though optimal for rack traffic minimization, has a cross-DC cost
of 4, while placing V6 on a rack in DC1 would have a cost of 3.

To address this, we need to run the optimization algorithm at
multiple levels, starting with the higher level in the SILO hierarchy
and moving downwards. In the above example, we would initially
run the algorithm using DC-level SILOs to guarantee cross-DC traf-
fic minimization. Then, within each partition, we would run the
algorithm using rack-level SILOs to determine the preferred racks
within each DC.

7.2 Policy Enforcement
PIXIDA is able to accommodate task placement policies and con-

straints as a natural extension of its graph partitioning problem.
Policies for task placement are normally either in the form of i)
priority policies, or ii) placement constraints.

Priority Policies: This category includes priority-based schemes,
such as strict priority and weighted fair scheduling, among others.
Supporting them is the responsibility of the resource negotiator, and
is orthogonal to the role of PIXIDA.

Placement Constraints: This category includes jobs that have
data placement constraints, for instance due to national regulations,
or to internal rules within an organization, which bind some data to
specific servers (e.g., financial data must be stored in servers at a
specific, protected location within a DC).

To optimize task placement for jobs with such data placement
constraints, we make the observation that these constraints concern
the storage of the raw data, and not the results of computations over
them. This implies that up to some depth in the job graph, all sub-
computations involved should be performed at specified locations.
After that, we assume that the remaining tasks can be placed in any
location, as they operate on intermediate results that are safe to be
shipped to different locations (e.g., aggregates). In other cases, i.e.,
when all the tasks have pre-defined locations, there is no placement
flexibility, thus no room for optimization.

With the aforementioned observation in mind, in these cases, the
machines with the specific property define a separate SILO, and to
specify that a task has to be placed in that specific SILO, it suffices
to connect the node that corresponds to the task in the job graph to
its preferred SILO with an edge of infinite weight. This transforma-
tion guarantees that the “cut” of the graph will never include that
edge, resulting in the task being placed on that SILO.

8. RELATED WORK
Several recent systems target efficient wide-area stream process-

ing [4, 23, 3, 16, 14, 18, 19]. With the exception of JetStream [16],
Geode [19, 18], and Hourglass [14] (and, to a lesser degree, Irid-
ium [15]), these systems focus on latency and fault-tolerance, and
not cross-DC traffic. Geode [19] is the closest related work, since
it targets wide area big data analytics. However, the approach of
Geode is rather different from our techniques, since it consists of i)
pushing computations to edge DCs, ii) caching intermediate results
and computing diffs to avoid redundant transfers, and iii) apply-
ing an iterative greedy approach to gradually adapt data replication
and task placement to minimize cross-DC traffic. Their techniques
could be integrated into PIXIDA to allow for further gains and run-
time adaptation of the execution plan. In Hourglass [14], the au-
thors assume the use of nodes spread in the open Internet, and pro-
pose a decentralized, iterative operator placement algorithm, which
assumes no global knowledge. This assumption is too pessimistic
in our settings, as working with a DC-based deployment allows for

some global knowledge that can be leveraged to simplify the algo-
rithms and improve their accuracy. In JetStream [16], the authors
propose i) merging the storage with the processing layer, and im-
posing structure on the input data, and ii) applying adaptive filter-
ing to minimize bandwidth requirements. The first design choice
contradicts our design goals for a general scheduler that can be in-
tegrated in current data-analytics stacks. As to the second choice,
filtering/sampling the input to reduce its volume leads to approxi-
mate results being produced. In environments where reduced ac-
curacy is acceptable, adaptive filtering is complementary in that it
can be applied with PIXIDA to further improve its performance. In
addition, JetStream only supports operators with one-to-one depen-
dencies, e.g., map and filter, thus limiting its expressiveness, as it
does not support operators like reduce and general joins. In Irid-
ium [15], the authors mainly focus on minimizing latency, which,
as they show, is often at odds with minimizing traffic. However,
their system also includes a knob for trading off latency and cross-
DC bandwidth, by using a heuristic to place tasks on nodes where
data transfers are minimized. Contrary to PIXIDA, this heuristic
accounts for each Stage of a job individually, rather than the job’s
graph as a whole. In addition, Iridium uses statistics about query
frequencies and data accesses in the underlying storage system to
move (parts of) datasets to locations where they are most likely to
be consumed. This strategy, which crosses the storage and the pro-
cessing layers of the data analytics stack, could be integrated in
PIXIDA to achieve further bandwidth savings. Finally, Photon [4]
is an application-specific stream processing engine, in contrast to
PIXIDA whose functionality can be integrated with any existing
general purpose framework.

In the area of graph algorithms, a graph problem that is related to
the GENERALIZED MIN-CUT is the MIN-CUT problem on hyper-
graphs [10]. Although similar, its formulation has the same limita-
tions as MIN-CUT in our settings. In the GENERALIZED MIN-CUT
problem, the optimal partitioning of the children of a special node
is not known in advance, thus the initial hyper-graph can be seen,
once again, as a family of hyper-graphs with one member per pos-
sible partitioning of the children of each special node.

9. CONCLUSION
In this paper we presented PIXIDA, a scheduler for data paral-

lel jobs that process geo-distributed data, i.e., data stored on mul-
tiple DCs, and tries to minimize data movement across resource-
constrained links. To achieve this, PIXIDA abstracts its goal as a
new graph problem, which extends the classical MIN k-CUT prob-
lem from graph theory, and includes a solution to this new problem
as part of its design. We integrated PIXIDA into Spark. Our experi-
ments show that it leads to significant bandwidth savings across the
targeted links, at a small price of an occasional extra latency, only
in resource-constrained environments.
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