
The Tortoise and the Hare: Characterizing synchrony in distributed environments
(Practical experience report)

Daniel Porto∗, João Leitão†, Flavio Junqueira‡, Rodrigo Rodrigues∗

daniel@gsd.inesc-id.pt, jc.leitao@fct.unl.pt, fpj@apache.org, rodrigo.rodrigues@inesc-id.pt
INESC-ID / Instituto Superior Técnico, ULisboa∗, NOVA LINCS / FCT - UNL†, Dell EMC‡

Abstract—The design of distributed protocols that run in
data centers and enterprise clusters is heavily dependent on
synchrony assumptions regarding the timing behavior of the
participating nodes and the network. However, little is known
about the actual synchrony of real distributed systems, and how
it varies across deployments. To better understand this timing
behavior and how it impacts the design and implementation
of distributed protocols, we conduct an extensive measurement
study of the latency for transmitting and processing messages
between nodes in four different environments. Our study
determines how protocol characteristics affect the latency
behavior. We also determine how different environmental
factors can affect the measured latency and whether high
latency events manifest globally or locally. Our results suggest
several directions for reducing latency, and for leveraging
recent distributed computing models in a more judicious way.

I. INTRODUCTION

Distributed protocols are at the foundation of the systems
that form the infrastructure of today’s computing services.
Examples of such systems range from the ecosystem of
distributed systems that run in data centers for supporting
cloud services, to smaller scale parallel or replicated systems
that run in some enterprise clusters.

The design and the dependability properties of distributed
protocols is crucially dependent on timing assumptions
regarding the behavior of participating nodes and the net-
work. In the design of distributed algorithms, these timing
assumptions are encapsulated in a synchrony model (e.g.,
synchronous, asynchronous, partially synchronous, etc.)

Nowadays, many deployed systems are based on algo-
rithms, such as Paxos, that do not require any synchrony
assumptions for safety [1]–[3]. Such an assumption of an
asynchronous system is conservative, but clearly safe. Con-
versely, assuming a synchronous system enables protocols
with fewer replicas, e.g., one can solve consensus with only
f + 1 processes [4]. However, guaranteeing that the timing
assumptions of a synchronous system are not violated in
current data centers is very difficult without very long time
bounds, which leads to the typical conservative choice of
modeling the system as asynchronous.

Given the general trend towards an increased predictabil-
ity of data center systems [5] and networks [6], [7], it is pos-
sible that the calibration of such timers will become easier
and encourage designers of dependable distributed systems
to make more optimistic assumptions [8], [9]. However, it is

important to understand whether this optimism is warranted,
and what factors may break such predictability.

In this paper, we shed some light on these questions by
conducting an extensive measurement study of the commu-
nication latency between participating nodes of a distributed
system in four environments, corresponding to different
modern and very distinct deployment scenarios: two public
cloud IaaS environments, and two private environments with
demanding workloads, namely a small cluster operated by
a software company for testing and an academic cluster for
conducting research experiments.

In our study, we not only continuously measure the
latency between processes running on different machines in
each of these environments, but also try to understand how
sensitive is latency to protocol characteristics such as the size
of the protocol messages, the type of processing involved,
or the need to access the disk as part of the processing of
protocol messages. Additionally, we determine how some
environmental factors affect the measured latency. These
factors include CPU, memory, and disk usage, garbage col-
lection (GC) activity of the processes involved, or network
traffic. Finally, we also study how different participants
perceive the latency towards other processes.

Our main findings are summarized as follows. (1) We
found that while these environments lead to mostly low
latency values, the latency distribution also exhibits a long
tail, which is accentuated in scenarios with heavy co-
located workloads. (2) Some characteristics of the distributed
protocols affect the observed latency more significantly than
others (e.g., one of the most penalizing aspects is logging
information to disk synchronously before issuing a reply).
(3) High communication latency is normally a characteristic
of nodes, and not the network, and therefore it is perceived
globally in an identical way across all the participants of a
distributed protocol. (4) From the environmental factors that
affect latency, the one with the strongest positive correlation
is the amount of time the node spends in GC activity.

In the remainder of the paper, after describing our deploy-
ments (§II) and methodology (§III), we present the analysis
of the collected data (§IV). Then we discuss (§V) how
these findings: (1) allow for several interesting avenues for
optimizing the latency in similar environments, and (2) lead
to a much more informed and judicious way to parameterize
the emerging class of system models for building dependable

systems that leverage the increased predictability of enter-
prise and data center environments [8], [9]. We conclude
with a survey of related work (§VI) and final remarks (§VII).

II. TARGET SYSTEMS

Infrastructure systems can range from simple deployments
with a few nodes (e.g., simple Web applications backed by
a database) to deployments spanning many clusters and data
centers. The behavior of each individual system depends on
a number of factors, including the amount and complexity
of processing it performs, the compute resources it uses, and
the interference of coexisting systems. As a first example,
consider the case of search engines, where a query is
scattered across a number of search nodes to parallelize the
processing; individual nodes process a partition of the docu-
ment collection to obtain candidate results. Such complexity
can induce some imbalance in the processing of a query,
despite attempts to balance the computation across nodes.
Search nodes heavily use memory resources and access the
disk occasionally. They can also share resources with other
systems [10], [11]. Data analytics frameworks similarly
present complex processing and the presence of stragglers
has been the subject of extensive work [12]. As a final
example, consider coordination services like Chubby [2] or
ZooKeeper [3]. In contrast with the other examples, these
have very lightweight processing and the complexity is in
the protocol itself. Such services access disk for durability
and memory heavily, and are typically latency sensitive.
Understanding the latency behavior of such systems entails
a precise characterization of the protocol behavior.

To be able to derive more general observations despite
this diversity of infrastructure systems, we focus on the
Remote Procedure Call (RPC) primitive that many systems
rely upon rather than focusing on a specific application
or class of applications. We investigate in this work the
behavior of RPCs between pairs of processes and from an
initiating process to a group of other processes. Such a
scatter-gather pattern of group RPCs is present in a number
of systems: search engines often have a master that sends
a query to a group of processes and collects the results;
in consensus protocols, a leader broadcasts a propose and
collects acknowledgments; in distributed log engines, such
as Apache BookKeeper, a client broadcasts a record write
and collects acknowledgments; systems like Apache Kafka
use a variant of such a group RPC where replicas pull
updates from a leader instead of having the leader initiating
the replication.

We focus only on the latency of RPCs for simple pro-
cedure implementations. In particular, we implement both
group and point-to-point RPCs, and we vary the RPC
implementation to exercise CPU, network, and disk IO. We
acknowledge that the effects of complex and unbalanced
processing can further affect the latency observed in infras-
tructure systems, but understanding such application-specific
effects is beyond the scope of our study.

Table I: Overview of data collected
Data Pub. Cloud 1 Pub. Cloud 2 Enterprise Academic
Period (days) 6 4 23 219
Samples RPC 6M 2M 16M 261M
Samples RPC + status - 97% 15% 40%
Group sizes 3,5,7 4,7 3,4,7 3,4,5,7,9

III. DATA SETS

We conducted our study in following environments.
Public Cloud 1 and Public Cloud 2. These are two popular
IaaS platforms, i.e., they offer the ability to rent virtual
machines (VMs) on demand. We co-located all processes
within the same data center, but we have no information
whether they are co-located at the same server.
Academic cluster. This is a cluster of a research institute
with over 60 researchers. The cluster has around 70 ma-
chines with 2.67GHz Intel Xeon CPUs, 48GB of RAM,
bonded Ethernet interfaces, each with 1 Gbps. The OS
is a Debian Linux server edition without virtualization.
All machines are connected to two interconnected 1Gbps
switches. Researchers use the cluster for their experiments,
which make heavy use of cluster resources, namely CPU.
Entreprise cluster. This is a cluster at a software develop-
ment company with hundreds of employees. Its main product
is a platform for the rapid prototyping and management of
enterprise web applications. This is a very large software
platform, which is constantly evolving. This cluster is mostly
used for compilation and testing of this software. It is
composed of seven physical machines each with an Intel
Xeon dual core CPU (2.20GHz) and 192GB of RAM.
Machines are connected through a set of switches organized
in a tree. This cluster is virtualized using VMWare VSphere.

For each of the above environments, we deployed a set
of active agents that measure latency among themselves,
and a set of passive agents that continuously monitor the
environment on which the experiments run. Both the active
and passive agents were implemented in Java. The active
agents use the Netty library (v3.6.2) to support communica-
tion among different processes. The passive agent was de-
signed to have minimal impact on the performance of other
processes running in the system, following the guidelines
presented in [13]. The active agents operate in an open loop,
and periodically (every second) issue an RPC to a subset of
other active agents, and then measure the elapsed Round
Trip Time (RTT). To capture the features that vary across
distributed protocols, we started by partitioning the active
agents into groups (in a similar fashion to how a stateful
service partitions its state into several replica groups), with
the RTT measurements being conducted within all members
of each group. Participants of a group are changed daily. We
deployed groups of size varying from 3 to 9 as presented
in Table I. Thus, each agent issues periodically a “group
RPC”, consisting of sending an RPC request to all other
members of its group (including itself), waiting for a reply
from all of them, and measuring the arrival time of each
reply. In addition, the active agent also stores statistics

Table II: Passive agents: resource usage metrics
Resource Metrics
CPU % of aggregated usage of all cores
Disk IO queue size and time writing
Memory used/swap, page faults, stalls, #swap page IO
Network usage, errors, packet drops and collisions
Process Garbage collection duration and calls

of garbage collection (GC) calls. However, group size is
not the only factor that influences the latency between the
participants of distributed protocols. As such, we define
five “workloads”, corresponding to different RPC handlers
that exercise different resources. Within a group, each agent
rotates the workload it uses for each RPC in a round-robin
fashion, in the following order:
A (null): a 28 Byte request / 44 Byte reply pair, carrying
an identifier of the group RPC session and timestamp. The
handler for this workload does not perform any computation.
B (crypto): Same as A, except that the RPC handler at the
receiver side computes a cryptographic hash, to illustrate a
protocol that requires some CPU cycles to handle requests.
C (disk): Same as A, except that the handler of the RPC at
the receiver side will write the reply to disk, to illustrate a
protocol that logs information to disk synchronously as part
of handling protocol requests.
D (network): Same as A, plus the request/reply have a 50KB
payload, to capture the effects of large protocol messages.
E (all): This puts together the union of the above features.

We also run in every node (i.e., server for the Academic
cluster deployment and virtual machine instance for Public
Cloud 1, Public Cloud 2, and Entreprise cluster) an addi-
tional passive agent, which is materialized by an independent
process that periodically (every 1 second approximately)
obtains and stores from the underlying operating system
statistics concerning overall resource usage, namely: %CPU
usage based on jiffies at all cores; memory usage; network
utilization and failures; disk accesses for read/write opera-
tions. A detailed list of all monitored aspects can be found
in Table II.

Finally, we summarize the key metrics we collected in
Table I. The differences in measurement periods and group
sizes are explained by cost constraints for public clouds and
on the length of our access to the enterprise cluster.

IV. ANALYSIS

This section presents and analyzes the results from our
measurements. We split the analysis into four parts: an
overview of the latency distributions, an analysis of its
sensitivity to protocol design features, whether latency is
a global or a local phenomenon, and its correlation with
environmental factors.

We guide our analysis by the questions that each set of
measurements helps answering, starting with the following.

Question 1. What is the overall distribution of communica-
tion latency, and how does it vary across deployments?

100 101 102 103 104 105 106 107
time (ms)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o

f c
om

pl
et

ed
 re

qu
es

ts

95%

Pub. Cloud 1
Pub. Cloud 2
Academic
Enterprise

(a) RPC Latency - pairwise

100 101 102 103 104 105 106 107
time (ms)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o

f c
om

pl
et

ed
 re

qu
es

ts

95%

Pub. Cloud 1
Pub. Cloud 2
Academic
Enterprise

(b) RPC Latency - group

Figure 1: Overall latency distribution of completed requests

To analyze the overall distribution of inter-process com-
munication latency in the different environments, we report
the results for two kinds of RPC measurements: individual
and group RPCs. Individual RPCs measure the time for a
single caller and a single callee to communicate, while group
RPCs have a single caller that sends the RPC to all members
of the group and measures the time to collect the last answer
from the entire group.

Figure 1a presents the CDFs for all the individual RPC
latencies that we measured in the four deployments. Overall,
the latencies observed at Public Cloud 1 are more pre-
dictable than in the other environments, since almost all
measurements fall into a narrow interval of up to a few
tens of milliseconds. When comparing the remaining three
deployments, the latency measurements at Public Cloud 2
ramp up slower than the other two, but are faster than the
other two deployments when comparing a small subset of
the slowest RPCs (barely visible in Figure 1a, but more clear
in Figure 1b). This shows that these two environments have
longer tails of significant latency values than a public IaaS
service.

Figure 1b shows the corresponding measurements for
group RPCs. The behavior observed is similar to the one
for the individual RPCs, except that the long tails became
even longer. This is not surprising given that there are more
processes being contacted per data point, which reflects the
slowest RPC within the group. Interestingly, Public Cloud 1
still has a very short tail with over 95% of the group RPCs
below 100 ms.

Next, we consider the effects of protocol characteristics.
To this end we observe that, in distributed protocols, each
process can be seen as a state machine that holds a set
of protocol variables, and process incoming message by
invoking the corresponding handler, which updates the state
and optionally emits an output according to the protocol
logic. The work of the handler varies significantly from
protocol to protocol. For example, replication protocols that
tolerate Byzantine faults use cryptographic primitives in their
message handlers [14], whereas crash fault tolerant protocols
do not [15]. Another relevant characteristic is that protocols
often persist key information to a log on disk before issuing
a reply to protocol messages [15]. However, not all protocols
do this, namely those that require the constant availability

of a number of correct replicas that prevent such side
effects from being lost [14]. Protocol message sizes can also
vary significantly, for instance, depending on whether these
messages carry any data (such as an application request or
response) in their payload. To understand how these different
protocol characteristics affect the latency between processes,
we separately analyze the distribution of measured RTTs
according to the characteristics of the RPC.

Question 2. How does latency vary depending on the
characteristics of the distributed protocol, such as group or
message sizes, or type of processing for each protocol step?

We start by analyzing in Figure 2 the effect of partici-
pating in groups of different size. This figure contains four
plots, one per deployment, where each plot contains several
CDF curves of individual RPC latencies, one per group size.
The results indicate that the group size does not provide a
visible influence on the latency between processes at Public
Cloud 1, Public Cloud 2, and at the Academic cluster. This
is somewhat expected as the extra work required from the
initiating process is to send a few extra messages and process
the respective replies, which is sufficiently small to have a
negligible impact. Furthermore, in these two clusters, the
smaller groups tend to observe slightly lower latency than
the larger ones, as expected. For the Entreprise cluster,
the differences are more pronounced and the direction is
the opposite of what we expected: larger groups have a
lower latency. We do not have a definitive explanation
for this effect, though we hypothesize that larger groups
have a higher probability of containing at least one pair of
physically co-located virtual machines.

Next, we consider again all group sizes and vary the work-
load that is being used, in order to gain an understanding of
the effect of the various message handlers on RPC latency.
The results are shown in Figure 3.

The results show that adding only a cryptographic op-
eration (workload B) has little impact on the overall RPC
latency. This is because a cryptographic computation is a
CPU intensive task that adds little time to the message
transmission in the absence of a high CPU load. In contrast,
the remaining features have a visible impact on latency.
Furthermore, this impact depends on the deployment: in-
cluding only disk writes (workload C) leads to a larger
increase in latency than using only large messages (workload
D) in Public Cloud 2 and the Academic cluster, but both
lead to comparable (and visible) increases in latency in
Public Cloud 1 and the Entreprise cluster. This could be
explained by a larger discrepancy in some environments
between the latency of writing to disk and the latency for
transmitting and processing messages with tens of kilobytes.
As expected, the combination of features (workload E) leads
to the highest latency values. These results suggest clear
avenues for the optimization of distributed protocols, namely
by employing techniques for reducing the cost of logging,
such as batching groups of operations and parallelizing

storage and processing [16].
The next analysis addresses the following question.

Question 3. How differently is latency perceived by the
various processes in the same group?

In particular, we would like to understand whether there
is any discrepancy on how latency is perceived across
processes of the same group at any given time, i.e., whether
a slow process is simultaneously perceived as slow by all or
just a subset of the members of the group.

To understand this intra-group behavior, we had to con-
duct a separate analysis for each period of a single day
because, during our data collection, we changed the compo-
sition of the groups after each period of 24 hours.

Through an initial observation of the data, we realized
that several 24-hour periods manifested the pattern that is
illustrated in Figure 4, which plots the measured latencies
for one day of RPCs exchanged among processes within a
group of 3 members at Public Cloud 1. Each of the first
three plots (4a, 4b, and 4c) depicts the latency of RPCs that
initiated at a fixed process (nodes 1, 8, and 14). We can see
the same pattern irrespectively of the initiating process: a
large fraction of about 97% of the messages sent to node
1 and node 8 are fast, namely arriving in at most 50ms,
whereas a large fraction of 97% messages to node 14 require
more than 80ms to arrive. Conversely, Figures 4d, 4e, and 4f
group these latencies by the process receiving the RPCs. We
can see that node 14 always has a long tail latency, even with
regard to itself. The same pattern was observed in several
occasions in the remaining clusters, except for Entreprise
cluster where RPC latencies were overall evenly spread.

This pattern suggest that slowness is most likely a prop-
erty of the processes and not of an external factor such
as the network, since the slower processes are consistently
perceived as slow even by themselves. Furthermore, this
shows a very coherent view of slowness, where all the
processes, including the slow one, perceive a very similar
set of slow processes.

To understand whether we can generalize these conclu-
sions, we need to characterize whether similar patterns hold
for the remaining 24-hour periods of each deployment. To
achieve this, we start by defining the notion of a “slow
node”, so that we can characterize the distribution of the
number of slow nodes throughout the trace.

To find a precise way to capture the pattern of latencies
from slow nodes in, e.g., Figure 4, we define that process x
belonging to group G is perceived by y to be a slow node
when the 90th percentile latency of RPCs from y to x is
at least 2× that of the RPCs from y to the fastest process
(i.e., the process from G with the minimum 90th percentile
latency from y). In figure 4a, for instance, it is clear that
node 14 is perceived by node 1 as being slow since the
90th percentile latency of RPCs to 14 is significantly higher
than the 90th percentile latency of RPCs from 1 to itself
(the fastest one). (Note that the choice of 2× and the 90th

100 101 102 103time (ms)
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o
f c

om
pl
et
ed

 re
qu

es
ts

Grp:3
Grp:5
Grp:7
Grp:Overall

(a) Public Cloud 1
100 101 102 103time (ms)
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o
f c

om
pl
et
ed

 re
qu

es
ts

Grp:4
Grp:7
Grp:Overall

(b) Public Cloud 2
100 101 102 103time (ms)
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o
f c

om
pl
et
ed

 re
qu

es
ts

Grp:3
Grp:4
Grp:7
Grp:Overall

(c) Entreprise cluster
100 101 102 103time (ms)
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o
f c

om
pl
et
ed

 re
qu

es
ts

Grp:3
Grp:4
Grp:5
Grp:7
Grp:9
Grp:Overall

(d) Academic cluster
Figure 2: Latency distribution for RPC measurements with respect to group size

100 101 102 103 104
time (ms)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o

f c
om

pl
et

ed
 re

qu
es

ts

 Wkld:A
 Wkld:B
 Wkld:C
 Wkld:D
 Wkld:E

(a) Public Cloud 1
100 101 102 103 104

time (ms)
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o

f c
om

pl
et

ed
 re

qu
es

ts

 Wkld:A
 Wkld:B
 Wkld:C
 Wkld:D
 Wkld:E

(b) Public Cloud 2
100 101 102 103 104

time (ms)
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o

f c
om

pl
et

ed
 re

qu
es

ts

 Wkld:A
 Wkld:B
 Wkld:C
 Wkld:D
 Wkld:E

(c) Entreprise cluster
100 101 102 103 104

time (ms)
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o

f c
om

pl
et

ed
 re

qu
es

ts

 Wkld:A
 Wkld:B
 Wkld:C
 Wkld:D
 Wkld:E

(d) Academic cluster
Figure 3: Latency distribution of each group with respect to each workload

100 101 102 103
time (ms)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o
f c

om
pl
et
ed

 re
qu

es
ts

to 1
to 14
to 8

(a) from 1
100 101 102 103

time (ms)
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o
f c

om
pl
et
ed

 re
qu

es
ts

to 1
to 14
to 8

(b) from 8
100 101 102 103

time (ms)
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o
f c

om
pl
et
ed

 re
qu

es
ts

to 1
to 14
to 8

(c) from 14

100 101 102 103
time (ms)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o
f c

om
pl
et
ed

 re
qu

es
ts

from 14
from 1
from 8

(d) to 1
100 101 102 103

time (ms)
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o
f c

om
pl
et
ed

 re
qu

es
ts

from 14
from 1
from 8

(e) to 8
100 101 102 103

time (ms)
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

%
 o
f c

om
pl
et
ed

 re
qu

es
ts

from 14
from 1
from 8

(f) to 14
Figure 4: One-day intra-group latencies for Pub. Cloud 1

percentile is arbitrary, and as future work we would like to
understand whether varying this choice affects significantly
these results.)

Based on this definition, we computed the distribution of
slow nodes across all days of the study, from the perspective
of all processes in groups of size = 7 (the largest group in
most deployments). Figure 5a shows that there is a visible
presence of slow processes in several days of the trace, with
the Entreprise cluster being significantly more heterogeneous
than the other deployments.

Furthermore, we wanted to confirm whether the pattern of
the same process being perceived as slow by all processes
(including itself) was common across the experiment. To
achieve this, for each day where at least two processes
xi, xj perceive a non-empty set of slow nodes Si, Sj , we
compute the Jaccard similarity coefficient of these sets, i.e.,
J(Si, Sj) =

|Si∩Sj |
|Si∪Sj | .

(a) (b)
Figure 5: Histograms of number of slow processes per 24
hour period (a) and Jaccard index values (b).

Figure 5b shows the distribution of this similarity coeffi-
cient for the days where more than one process perceives at
least one other process as slow. The measured data shows
that the similarity coefficient is very high (almost always 1
in three of the deployments), suggesting that slowness is a
global phenomenon in most deployments, i.e., all processes
perceive the same subset of processes as being slow.

Finally, we analyze the existence of correlations between
high latency and various different conditions at the processes
and the network.

Question 4. How does the latency correlate with environ-
mental factors, such as the usage of various resources at the
host and the network?

To answer this question, we paired each RPC sample with
measurements concerning the usage of various resources at
the host, as well as measurements concerning the usage
of the network. Since these resource usage measurements
were taken periodically, independent of the RPC activity, we

chose to pair each RPC latency value with the measurement
that was conducted at the time instant that is closest to the
moment the receiver recorded the RPC.

To analyze this data in search of correlations between
latency and these various environmental factors, we present
scatter plots of latency versus resource usage (only for a
subset of influential resources), as well the result of com-
puting the Pearson correlation coefficient, which is depicted
in Figure 6. This shows that there is a strong correlation
between latency and the amount of time spent by the GC,
confirming that GC activity is likely to negatively affect the
latency observed by distributed protocols. This result opens
interesting avenues for research, e.g., on coordinating the
GC activity of different processes in a distributed protocol
(e.g., as in a holistic runtime system [17]) to confine the
asynchronous behavior to a small subset of processes, which
can then be exploited by the distributed computing model
to decrease the replication factors [8], [9]. The results also
show a moderate correlation of about 0.4 between latency
and the usage of several resources, namely disk writes, page
swapping (in and out), network usage and memory stalls.

The scatter plots in Figures 7 through 10 illustrate the
correlations described previously. For instance, results in-
dicate a strong positive correlation between latency and
GC in Figure 8. These plots also allow for making other
observations concerning resource usage. For example, the
existence of horizontal lines in Figure 7 indicates that there
is a strong prevalence of certain values for the CPU load.
After analyzing these values, we noticed they correspond to
a CPU utilization that is a multiple of 1

#cores , thus indicating
a pattern where a subset of the CPUs might be saturated,
while the remaining ones are idle. This stresses the need
for writing concurrent code in order to fully utilize existing
CPU resources.

V. DISCUSSION

The insights gained from the analysis can improve the
design of dependable distributed systems. For example,
there are several distributed computing models that leverage
stronger assumptions about timing to simplify the proto-
col and improve several of its aspects, such as message
complexity, number of communication steps, or replication
factors. E.g., assuming a synchronous model instead of
asynchronous allows for solving consensus with only f + 1
replicas instead of 2f + 1 [4]. However, if these stronger
assumptions are not met, the system may violate its safety
or liveness properties.

Timing assumptions are not “all or nothing” though,
and several models allow for setting knobs that trade the
strength of these assumptions for the improvements in the
characteristics of the resulting protocols. Our findings may
help calibrating those knobs in a way that maximizes such
protocol improvements without incurring in violations of the
specification of the system when those assumptions become
unrealistic. We discuss three such instances.

Γ-accurate failure detectors [18] allow for the output of
a failure detector to meet a relaxed accuracy property that
is limited to being accurate concerning a subset of the
processes, Γ. The authors then show the degree of accuracy
that is required to solve consensus in this model. In a crash
fault-tolerant system, failure detection is done by means of
timeouts. For instance, a failure detection module exchanges
keep alive messages between processes and reports those
that do not reply within a timeout as being suspected. In
this setting, our findings can be used to determine how to
set the cardinality of Γ as a function of the timeout value for
different deployments. For instance, this cardinality can be
set by determining, for the appropriate deployment scenario
and protocol characteristics, a sweet spot in the curve that
computes the likelihood of false positives as a function of
the value of the timeout (which can be directly derived from
our measurements).

Visigoth fault tolerance [8] is based on a system model
where each processes perceives a bounded subset of s slow
but correct processes, i.e., other system processes that do
not obey a synchronous bound with respect to it (where this
bound is set by a tunable parameter T for the time for inter-
node communication). This model allows for decreasing
the number of replicas required for consensus-based state
machine replication from 2f +1 to f +s+1. As such, there
is a trade-off where the larger the value of T , the smaller s,
and consequently the total number of replicas can be further
cut, at the expense of higher timeouts and lower protocol
performance. Again, our RPC latency measurements can be
used to set the parameter s in an informed way. In particular,
we can use our measurements to plot the value of s as a
function of T , and find a sweet spot in the above trade-off.

The XFT model [9] provides correctness up to a threshold
of a combination of faults and asynchrony. In short, the
system can either tolerate several faults or several slow
processes but not both. Just like in the Visigoth model this
model uses a configurable timeout value that determines
when a process is considered to be slow. As such, we could
also use our findings to determine the likelihood of processes
with an asynchronous behavior and thus contribute to the
above threshold. Based on this likelihood, we obtain an
informed estimate for how the actual tolerance of the system
to crash faults will vary throughout the system lifetime.

VI. RELATED WORK

The most closely related work are various measurement
studies of the performance of cluster and data center sys-
tems. In particular, there exist several studies of the per-
formance of a variety of cloud services [19]–[26], some
of which also measured the distribution of RTT times
between IaaS instances [19], [24], [26]. Our work has two
main distinctions regarding these prior studies. First, we
go beyond just measuring performance characteristic such
as latency and throughput, namely by taking the point of
view of the designer of distributed algorithms and trying

CPU Disk
access
calls

Disk
write
time

GC
calls

GC
time

Mem
major
page
faults

Mem
page
faults

Mem
used

Net
recv

Net
send

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
rr
el
at
io
n
w
it
h
hi
gh

 la
te
nc
y
RP

Cs

0.
20

4

0.
07

1 0.
19

0

0.
16

7

0.
16

5

0.
00

2

0.
02

3

0.
00

5

0.
24

0

0.
15

9

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

Pearson
P false correlation

(a) Public Cloud 2

CPU Disk
access
calls

Disk
write
time

GC
calls

GC
time

Mem
major
page
faults

Mem
page
faults

Mem
pages
swp-in

Mem
pages
swp-out

Mem
stalls

Mem
swap
used

Mem
used

Net
recv

Net
send

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
rr
el
at
io
n
w
it
h
hi
gh

 la
te
nc
y
RP

Cs

0.
03

7

0.
08

6 0.
19

3

0.
77

4

0.
51

9

0.
01

8

0.
07

2

0.
01

8

0.
01

1

0.
01

1

0.
01

0

0.
01

2

0.
07

0

0.
41

3

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

Pearson
P false correlation

(b) Entreprise cluster

CPU Disk
access
calls

Disk
write
time

GC
calls

GC
time

Mem
major
page
faults

Mem
page
faults

Mem
pages
swp-in

Mem
pages
swp-out

Mem
stalls

Mem
swap
used

Mem
used

Net
problem

Net
recv

Net
send

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
rr
el
at
io
n
w
it
h
hi
gh

 la
te
nc

y
RP

Cs

0.
00

8

0.
27

5 0.
38

8

0.
82

7

0.
42

0

0.
31

4

0.
03

2

0.
36

5

0.
16

8 0.
26

5

0.
06

4

0.
02

4

0.
35

0

0.
23

1 0.
31

2

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

Pearson
P false correlation

(c) Academic cluster
Figure 6: Correlation of high latency RPCs and resource utilization

(a) Public Cloud 2 (b) Entreprise cluster (c) Academic cluster
Figure 7: CPU usage as a function of the latency of individual RPCs

(a) Public Cloud 2 (b) Entreprise cluster (c) Academic cluster
Figure 8: Garbage collection calls as a function of the latency (log scale) of individual RPCs

(a) Public Cloud 2 (b) Entreprise cluster (c) Academic cluster
Figure 9: Number of disk writes as a function of the latency of individual RPCs

to understand how protocol features influence the timing
assumptions and distributed computing model. Second, we
compare the timing characteristics of IaaS with an enterprise
cluster and an academic cluster, and we correlate those
measurements with data regarding the environment, which
allows us to understand how these assumptions may need to
be adapted according to the deployment characteristics.

Another set of studies measured the characteristics of data
center networks [27]–[29]. The focus of these studies is
even more distant from ours, since their emphasis is on the
network characteristics. In particular, they measure aspects
such as link utilization, number of active flows, flow and
packet size and interarrival times, packet drop statistics, etc.

In the distributed computing community, a series of papers
proposed system models that make different timing assump-
tions regarding the ability for two processes in a distributed
system to communicate. For example, Dwork, Lynch, and

Stockmeyer have proposed models with an unknown bound
for message delays or with a known bound that is only
guaranteed after some unknown time [30]. Such bounds can
be expressed with failure detector abstractions [31]. Cristian
and Fetzer have proposed the timed-asynchronous model
where processes have bounded clock drifts [32]. Verı́ssimo
and Casimiro proposed the Timely Computing Base model,
where a synchronous and an asynchronous subsystem can
coexist in the same execution [33]. Guerraoui and Schiper
have proposed Γ-accurate detectors, where timeouts are only
an accurate way to infer liveness with respect to a subset of
the processes [18]. Both the VFT [8] and XFT [9] models,
mentioned previously, assume that a subset of the system
nodes observe timing bounds. Our work is complementary
to these models, in that it allows us to validate whether they
hold, to parameterize them, or even consider new ways to
approximate their assumptions.

(a) Public Cloud 2 (b) Entreprise cluster (c) Academic cluster
Figure 10: Network usage (for transmissions) as a function of the latency of individual RPCs

VII. CONCLUSIONS

In this paper we studied the latency of distributed proto-
cols running on four common deployments. In the future,
we intend to apply the lessons from this study to improve
the latency of distributed protocols, namely by finding
techniques to coordinate the activities of the protocols and
the surrounding environment. Furthermore, our data can be
used to automatically parameterize protocols that are based
on recent proposals such as VFT [8] or XFT [9].

Acknowledgments. This work was supported by FCT
with references UID/CEC/50021/2013 and UID/CEC/04516/
2013. The research of R. Rodrigues was funded by the
European Research Council (ERC-2012-StG-307732).

REFERENCES

[1] R. Guerraoui, “Indulgent algorithms,” in Proc. of the 19th
ACM PODC, 2000, pp. 289–297.

[2] M. Burrows, “The chubby lock service for loosely-coupled
distributed systems,” in Proc. of the 7th USENIX OSDI, 2006.

[3] P. Hunt, M. Konar, F. Junqueira, and B. Reed, “Zookeeper:
wait-free coordination for internet-scale systems,” in Proc. of
the USENIX ATC, 2010.

[4] N. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.
[5] J. Leverich and C. Kozyrakis, “Reconciling high server uti-

lization and sub-millisecond quality-of-service,” in Proc. of
9th ACM EuroSys, 2014.

[6] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Bet-
ter never than late: Meeting deadlines in datacenter networks,”
in Proc. of the ACM SIGCOMM, 2011.

[7] K. Zarifis, R. Miao, M. Calder, E. Katz-Bassett, M. Yu, and
J. Padhye, “Dibs: Just-in-time congestion mitigation for data
centers,” in Proc. of 9th ACM EuroSys, 2014.

[8] D. Porto, J. Leitao, C. Li, A. Clement, A. Kate, F. Junqueira,
and R. Rodrigues, “Visigoth fault tolerance,” in Proc. of the
10th ACM EuroSys, 2015.

[9] S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolic,
“XFT: practical fault tolerance beyond crashes,” in Proc. 12th
USENIX OSDI, 2016.

[10] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes, “Omega: Flexible, scalable schedulers for large
compute clusters,” in Proc. of the 8th ACM Eurosys, 2013.

[11] Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura, I. Goiri,
and R. Bianchini, “History-based harvesting of spare cycles
and storage in large-scale datacenters,” in Proc. of the 12th
USENIX OSDI, 2016.

[12] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-
G. Chun, “Making sense of performance in data analytics
frameworks,” in Proc. of the 12th USENIX NSDI, 2015.

[13] C. Smith and D. Henry, “High-performance linux cluster
monitoring using java,” in Proc. of the 3rd LCIC, 2002.

[14] M. Castro and B. Liskov, “Practical byzantine fault tolerance
and proactive recovery,” ACM TOCS, vol. 20, no. 4, 2002.

[15] L. Lamport, “Paxos made simple,” ACM SIGACT News,
vol. 32, no. 4, 2001.

[16] A. Bessani, M. Santos, J. Felix, N. Neves, and M. Correia,
“On the efficiency of durable state machine replication,” in
Proc. USENIX ATC, 2013.

[17] M. Maas, K. Asanović, T. Harris, and J. Kubiatowicz, “Tau-
rus: A holistic language runtime system for coordinating
distributed managed-language applications,” in Proc. of the
21st ACM ASPLOS, 2016.

[18] R. Guerraoui and A. Schiper, “”γ-accurate” failure detectors,”
in Proc. of the 10th WDAG. Springer-Verlag, 1996.

[19] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-
sensitive application performance in the cloud,” in Proc. of
the 1st Annual ACM SIGMM MMSys, 2010.

[20] D. Bermbach and S. Tai, “Eventual consistency: How soon is
eventual? an evaluation of amazon s3’s consistency behavior,”
in Proc. of 6th ACM MW4SOC, 2011.

[21] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp:
Comparing public cloud providers,” in Proc. ACM IMC, 2010.

[22] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime mea-
surements in the cloud: Observing, analyzing, and reducing
variance,” Proc. VLDB Endow., vol. 3, no. 1-2, 2010.

[23] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui,
“Exploiting hardware heterogeneity within the same instance
type of amazon ec2,” in Proc. 4th USENIX HotCloud, 2012.

[24] G. Wang and T. S. E. Ng, “The impact of virtualization on
network performance of amazon ec2 data center,” in Proc. of
the 29th INFOCOM. IEEE Press, 2010.

[25] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data
consistency properties and the tradeoffs in commercial cloud
storages: the consumer’s perspective,” in Proc. of the 5th
CIDR, 2011.

[26] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey, “Bobtail:
avoiding long tails in the cloud,” in Proc. of the 10th USENIX
NSDI, 2013.

[27] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understand-
ing data center traffic characteristics,” in Proc. of the 1st ACM
WREN, 2009.

[28] T. Benson, A. Akella, and D. A. Maltz, “Network traffic
characteristics of data centers in the wild,” in Proc. of the
10th ACM SIGCOMM IMC, 2010.

[29] S. Kandula, S. Sengupta, A. Greenberg, and P. Patel, “The
nature of data center traffic: Measurements and analysis,” in
Proc. of 9th ACM IMC, 2009.

[30] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
presence of partial synchrony,” J. ACM, vol. 35, no. 2, 1988.

[31] T. D. Chandra and S. Toueg, “Unreliable failure detectors for
reliable distributed systems,” J. ACM, vol. 43, no. 2, 1996.

[32] F. Cristian and C. Fetzer, “The timed asynchronous distributed
system model,” IEEE TPDS, vol. 10, no. 6, 1999.

[33] P. Verı́ssimo and A. Casimiro, “The timely computing base
model and architecture,” IEEE TC, vol. 51, no. 8, 2002.

