
IADIS International Conference on Applied Computing 2004, Lisbon (Portugal), March 2004

INTERNET VOTING: IMPROVING RESISTANCE TO
MALICIOUS SERVERS IN REVS

Ricardo Lebre
INESC-ID Lisboa

Address
ricardo.lebre@gsd.inesc-id.pt

André Zúquete

IEETA/INESC-ID Lisboa/UA
Address

avz@det.ua.pt

Rui Joaquim
INESC-ID Lisboa

Address
rui.joaquim@gsd.inesc-id.pt

Paulo Ferreira
INESC-ID Lisboa

Address
paulo.ferreira@.inesc-id.pt

ABSTRACT

With the explosive growth and consequent usage of the Internet as a medium to offer new services with increased value,
it became possible to develop Internet Voting Systems. So far, several have been proposed but few have been
implemented. REVS is an Internet Voting System based on blind signatures designed to tackle some of the real-world
problems presented by other systems. The main contribution of our work is to improve the robustness of REVS. This is
achieved with a scheme that prevents specific denial of service attacks against protocol participants, which are not easily
detected. In particular, we address the problem raised by colluded malicious servers preventing voters from voting and
the exhaustion of resources on servers. Then, we present a performance comparison of the solutions proposed against the
current REVS protocol.

KEYWORDS

Internet Voting, Blind Signatures, Digital Signatures, Denial-of-Service attacks

1. INTRODUCTION

With the explosive growth of the Internet and the improvement on communications it became possible to use
this infrastructure to offer new services with increased value. One of such services is Internet Voting, which
presents several advantages over the traditional method. For example, it allows the reduction of election's
operational costs and may prevent high abstention rates by avoiding the traditional movement to the booth.
However, in order to be adopted, voters must be fully confident with this type of systems. Such confidence
can only be achieved if they are resistant to faults, either exploited from outside or from inside the voting
protocol. It is possible to use auditing systems to detect attacks external to the protocol, and it should be
possible to mitigate protocol vulnerabilities. In particular, it should be possible to eliminate completely, or at
least to keep under reasonable margins, the collusion of protocol entities willing to prevent authorized voters
from voting. On the other hand, the vote submission system should be capable to filter out submitted
garbage. Otherwise the system could easily be overflowed by attackers.

Several voting protocols have been proposed [Chaum88, Fujioka92, Cranor97, Herschberg97, Okamoto97,
DuRette99, Ohkubo99, Joaquim03], however only few systems have been implemented [Cranor97,
Herschberg97, DuRette99, Joaquim03]. REVS [Joaquim03] is an Internet Voting System designed to tackle
some of the real-world problems presented by other systems (e.g. communication failures, server failures). It
is based on MIT's EVOX [Herschberg97] and EVOX Managed Administrators [DuRette99] but, unlike its
predecessor, it presents no single point of failure; in addition, in the presence of a communication failure it
allows the voter to resume the process from the state saved in a previous checkpoint.

The main contribution of our work is to improve the robustness of REVS by tackling attacks that cannot be
detected by auditing systems while the election stands. This is achieved with some protocol modifications

IADIS International Conference on Applied Computing 2004, Lisbon (Portugal), March 2004

that prevent denial of service attacks against participants. In particular, our solution prevents colluded
Administrator servers, which are responsible for validating votes, to prevent voters from voting. We also
present a solution to prevent the exhaustion of resources of other protocol servers, the Counters, which are
responsible for collecting votes. REVS was not able to check the validity of submitted votes until the end of
the election, allowing Counters to be overflowed with garbage. We modified the way votes are produced to
enable Counters to filter out garbage submitted during elections.

The remainder of this paper is organized as follows. In Section 2 we present the architecture of REVS
highlighting the properties guaranteed and the problems detected. In Section 3 we present our solutions to the
problems described before. Section 4 shows some performance results and compares them to the ones
presented by REVS. In Section 5 we present a critical overview of current systems. The paper ends with
some conclusions in Section 6.

2. REVS SYSTEM

2.1 Properties

In [Cranor97] Cranor presented the four core properties that any voting system should have:

1. Accuracy: (i) It is not possible for a vote to be altered; (ii) It is not possible for a validated vote to be
eliminated from the final tally; (iii) It is not possible for an invalid vote to be counted in the final tally.

2. Democracy: (i) It permits only eligible voters to vote; (ii) It ensures that eligible voters only vote once.
3. Privacy: (i) Neither authorities nor anyone else can link any ballot to the voter who casts it; (ii) No voter

can prove that he voted in a particular way.
4. Verifiability: (i) Anyone can independently verify that all votes have been counted correctly.

Another two non-core properties are additionally guaranteed by REVS protocol:

5. Collusion Resistance: (i) No electoral entity or group of entities can work in a conspiracy to introduce
votes; (ii) No electoral entity or group of entities can work in a conspiracy to prevent others from voting.

6. Availability: (i) The system works properly as long as the poll stands; (ii) Any voter can participate
from the beginning to the end of the poll.

Since the great majority of the existing systems are only theoretical they don't take into account operational
aspects. So, REVS [Joaquim03] has introduced a new functional property:

7. Resume Ability: The system allows any voter who had interrupted his voting process to resume or
restart it as long as the poll stands.

The first four properties are guaranteed by the blind signature scheme [Chaum82] used by REVS. The
solution proposed by [Joaquim03] for collusion resistance and availability imposes a trade-off that we will
explain latter.

Figure 1 - REVS current protocol.

IADIS International Conference on Applied Computing 2004, Lisbon (Portugal), March 2004

2.2 Protocol

Figure 1 presents REVS’ protocol steps, which are explained in more detail bellow.

1. Ballot distribution: The Voter contacts a Ballot Distributor to get a ballot for a given election. The
Ballot Distributor returns him the requested ballot, the election’s public key and the election’s operational
configuration (e.g. servers’ keys, servers’ locations), all signed by the election’s Commissioner. This is
done in two steps: the voter contacts a Ballot Distributor and provides his ID to receive the list of
elections in which he can participate. Then the voter chooses the election and requests a ballot for it from
a Ballot Distributor.

Figure 2 - REVS Ballot distribution and Ballot Signing.

2. Ballot signing: After expressing his will on the ballot, the voter commits to the ballot with a random bit
string and generates a digest of the committed ballot. Then it generates a random blinding factor, applies
it to the digest and sends the result to a subset of the Administrators for signing. The voter’s module can
save the answers, the bit commitment and the blinding factor into a non-volatile storage, preferably
provided by a mobile media, before using them. This enables the voter to stop and latter resume its
participation in the election, but may affect the voter’s privacy. An Administrator, after receiving a
request for signing, verifies if it had already signed a blind digest for the requesting voter and given
election. If not, he signs it and saves that signature; if he had signed before, it returns the previously saved
data, i.e. the digest's blind signature. After receiving the signature, the voter removes the blinding factor
and verifies its correctness using the original ballot digest and the Administrator's public key. This
process is repeated until a required number of signatures t is collected. Note that, because of the blinding
factor, the Administrators cannot link the signed ballots to the signatures they provided for (blind) ballot
digests.

3. Ballot Submission: In this step the voter constructs the ballot submission package, joining the ballot, its
signatures and the bit commitment. At this time the voter can save this data into secure mobile storage.
This is an optional step, because it helps improving the resume ability property, but again may affects
privacy. Then he submits this package to a Counter through an Anonymizer, encrypted with a hybrid
cryptosystem using a random symmetric session key and the election's public key, concluding the voting
protocol. The voter can submit the same package to any Counter as many times as he feels necessary to
be sure that the ballot has reached his destination. Although this introduces some fault tolerance, it
introduces also a new problem. A badly intentioned voter could try to make a denial of service attack to
any Counter, as we will see latter.

Figure 3 - REVS Ballot submission.

IADIS International Conference on Applied Computing 2004, Lisbon (Portugal), March 2004

4. Counting Phase: After the end of the election the Commissioner publishes the election's private key.
Then the counting process is performed by the Counters and involves the following steps: (i) Decipher the
submission packages with the election’s private key; (ii) Verify that all required t signatures from the
Administrators are present; (iii) Remove repeated votes, which are the ones with the same bit
commitment; (iv) Tally the remaining votes; (v) When using multiple Counters, the master Counter
collects all previous verified votes and proceeds with the final tally. All the Counters publish the contents
of all received submission packages and the Administrators publish all the blindly signed ballots.

After this publication the voter can verify if his vote was counted. If the vote isn't present at the tally he can
reclaim, presenting anonymously the previously saved vote. Also, anyone may verify the relation between
the total number of votes in the final tally and the number of votes signed by the Administrators.

2.3 Problems Detected

Being an Internet voting system, REVS is subjected to two distinct classes of attacks: external and internal.
External attacks are the ones that by targeting others than protocol entities may corrupt any of the protocol
properties (e.g. OS or network denial of service, IIS buffer overflow). On the other hand, internal attacks
target directly the protocol, trying to take advantage of any protocol vulnerability. External attacks, although
more common, may be detected using monitoring mechanisms such as IDSs (Intrusion Detection Systems).
With respect to internal attacks the problem is more serious because there is no way to report or even to
detect them.

We have detected two vulnerabilities in the current REVS protocol that can lead to internal attacks. This
section describes those vulnerabilities and the problems they may create.

2.3.1 Interference of malicious Administrators
A defective Administrator is one that fails to follow the protocol. That may happen either because (i) it is a
fail-stop server or (ii) it is a server that deliberately fails to follow the protocol. We call the first a faulty
Administrator and the second a malicious Administrator.

The threshold parameter t in the REVS protocol controls two different properties of the voting process: (i) the
degree of fault tolerance and (ii) the collusion of Administrators necessary to impersonate voters. Increasing t
decreases fault tolerance, because the number of allowed faulty Administrators is N-t. On the other hand,
increasing t increases the tolerance to the impersonation of voters by colluded malicious Administrators,
because they must get t signatures for producing a valid, impersonated vote. For example, if we have 11
Administrators and t = 9, the protocol tolerates at most 2 simultaneous, faulty Administrators and at least 9
servers must cooperate to generate a valid vote for an impersonated voter.

However, a malicious Administrator can behave like a faulty one without notice, leading to denial of service
scenarios. In the ballot signing phase of the REVS protocol an Administrator can answer the voter with
garbage instead of the correct blind signature. The voter can detect the problem by checking the returned
signature, but has no way to prove to a third party that the Administrator has misbehaved, maliciously or not.
So, an Administrator can maliciously and selectively deny its service to selected voters, while for the affected
voters it looks like a faulty server. This means that at least N-t+1 malicious Administrators need to be
colluded to prevent a voter from voting by returning false signatures. Recalling the example above, only 3
malicious Administrators need to be colluded to prevent voters from voting. Increasing t makes it worse,
because fewer colluded Administrators are needed.

Therefore, in order to prevent malicious Administrators to act like faulty ones, it is necessary to allow
independent third parties to control the correctness of Administrators’ replies,. We are assuming that in
REVS implementation there are supervision authorities that may inspect all interactions between voters and
Administrators in order to detect other simpler denial of service attempts, such as not responding to voters or
returning false error messages.

2.3.2 Invalid vote submission
In REVS votes are submitted anonymously and encrypted to protocols servers. Valid votes may even be
repeatedly submitted for fault tolerance reasons. Note that such votes won't be counted in duplicate because
of the bit commitment that makes the vote unique.

IADIS International Conference on Applied Computing 2004, Lisbon (Portugal), March 2004

However, Anonymizers and Counters cannot check the correctness of submissions before the end of the
election, when the decryption key is disclosed. Thus, these servers cannot prevent anyone, authorized voter
or not, to submit garbage. Consequently, Counters may overflow with useless data that can only be dropped
at the end of the election, eventually leading to denial of service scenarios.

One possibility for reducing this risk is to allow submissions only from authorized voters. However, this
access control must be done carefully, as Anonymizers and Counters cannot authenticate voters, otherwise
they could link voters to votes. Hence, Anonymizers/Counters should be able to check the correctness of
votes submitted anonymously. This can be achieved by adding to votes an anonymous authentication
credential that only authorized voters can get.

3. PROPOSED SOLUTIONS

The general solution for the two problems previously presented is to authenticate data with digital signatures.
Voters sign the data they send to Administrators and Anonymizers/Counters. This way, Administrators
cannot forge voter's requests and Anonymizers/Counters can check if the data was sent by an authorized
voter.

The critical aspect now is the management of the key pairs for signing and validating voter's requests.
Validating keys must be certificated to ensure their correctness. Additionally, the certification must ensure
anonymity when voters interact with Anonymyzers/Counters.

We decided to extend the functionality of Administrators in order to certificate voters' public keys. Such
certification is different from the standard certification provided by ordinary PKIs (Public Key
Infrastructures). Namely, (i) public keys must be certified by at least k Administrators and (ii) the
certification protocol may involve the exchange of normal or blind signatures.

The new threshold parameter k is, in theory, independent from t. It allows controlling separately the tolerance
to faulty servers and the tolerance to malicious servers attempting to denial service to voters.

3.1 Double Signing Authentication

As previously referred, we modified the blind signing phase of REVS in order to authenticate voter’s
requests using digital signatures. Thus, Administrators cannot forge voter’s requests in order to reply with
garbage, preventing them from voting. Figure 4 describes the process that is explained in more detail below.

Figure 4 - Double Signing Authentication

Each voter generates a pair of asymmetric keys {KVpub, KVpriv}. Then he certifies his key KVpub with the
signature of k Administrators. This process can be repeated as many times as he wants with any KVpub. After
acquiring the required signatures, the protocol is similar to REVS. The voter sends the blinded digest of the
committed ballot for signing, but now signed with KVpriv. In the same message goes the KVpub certificate,
i.e. the key KVpub and its k Administrators’ signatures.

Each Administrator only signs a voter’s blinded digest if all its k signatures are correct, and any supervision
authority can verify the correctness of such decision. Likewise, an incorrect reply from an Administrator can
be detected by a supervision authority.

IADIS International Conference on Applied Computing 2004, Lisbon (Portugal), March 2004

This is repeated until all the required t Administrators signatures are obtained. The Administrators store the
complete voters’ requests as a proof for future claims. Note that in both interactions the voter authenticates
himself to each Administrator contacted with the current username/password scheme of REVS.

3.1.1 Solution Analysis
With our solution, we are only modifying the ballot signing part of the protocol. There is no influence on the
accuracy property since it’s also required the validation of votes using Administrators’ signatures. The
authentication process is maintained, so democracy remains unchanged. The blind signature mechanism that
assures verifiability and the privacy properties was not compromised by our changes on the protocol. The
resume ability is guaranteed because: (i) The key certification process is idempotent; (ii) A voter resuming
the voting process may use different KVpub for each signed vote.

Resistance to Defective Servers The collusion resistance depends on the two threshold parameters t and k.
The first parameter controls the degree of collusion necessary for the impersonation of voters by
Administrators. The second parameter controls the degree of collusion of Administrators for preventing
voters from voting.

The lowest value of t and k controls the system’s tolerance against colluded malicious Administrators
attempting to interfere with the voting process. On the contrary, the highest value of t and k controls the
system’s tolerance against faulty Administrators. If t=k, then either value controls the system’s resistance
against defective Administrators.

3.2 Vote Validation

We modified the ballot submission phase of REVS in order to authenticate submission packages using also
digital signatures. This way, only authorized voters that may generate such signatures, can interact
successfully with Anonymizers and Counters.

We propose a solution that is similar to the one previously used for signing voter’s requests sent to
Administrators (described in Section 3.1). A submission package is signed by another voter’s private key and
the corresponding public key is certified by k Administrator’s blind signatures. The blind signatures prevent
Anonymizers and Counters from cooperating with Administrators in order to link votes to voters. Since only
authorized voters can get the required blind certificate, only authorized voters may successfully interact with
Anonymizer/Counters.

The key pair used for authenticating votes must be different from any of the key pairs used for authenticating
voter's requests to Administrators. Otherwise Administrators could easily link votes to voters by checking the
results publicly presented by Counters at the end of elections. For optimizing the protocol, both certificates,
this blind certificate and the one referred in Section 3.1, can be obtained simultaneously.

Note that this solution does not prevent authorized voters from submitting correctly signed random data. But
this behavior can be detected keeping some extra state in Counters and using auditing systems in
Administrators. If Counters store blind certificates in order to filter out different submissions using the same
certificate, then malicious voters are forced to require several blind certificates from Administrators. This
way they reveal their potentially malicious attempts and can easily be identified by election authorities,
because the interaction with Administrators requires identification of voters. Another possibility is to allow
Administrators, under a proper supervision, to slow down blind certifications for voters requiring them very
often.

4. RESULTS AND ANALYSIS

Since REVS was designed to work on a real-world environment, such as the Internet, it was given a great
deal of importance to its performance. Typically the bottleneck on the Internet is on the client side, since it is
where the slowest connections and fewer processing capability are. In REVS case, its design allows the easy

IADIS International Conference on Applied Computing 2004, Lisbon (Portugal), March 2004

addition of new servers to handle processing limitations. Most time-consuming operations are done offline
(e.g. key generation), so we opted to evaluate the communication penalties imposed by our solution.

4.1 Current REVS

Being REVS a ballot independent voting system we must make some assumptions before analyzing the data
transferred. In our tests, the election list is 375B long, the election data is divided in a fixed part with 2.5KB
(ballot choices, election configuration and election public key) and a variable part with N*128 Bytes long
(signing keys for Administrators running the election). Finally the ballot (answers) is 32 Bytes long. These
values were retrieved from a real voting experience at Instituto Superior Técnico – Technical University of
Lisbon.

Table 1- Data transferred in REVS (approximately).

 Ballot Distribution Ballot Signing Ballot Submission Total (1 voter)
N=5; t=4 2.3KB 1.1KB 1.1KB 4.5KB
N=7; t=6 2.5KB 1.7KB 1.6KB 5.8KB
N=9; t=8 2.8KB 2.2KB 2.1KB 7.1KB

Looking at Table 1 we can see that the data transferred in the Ballot Distribution phase has a small growth as
N grows. This is because of the necessary operational data transferred concerning the new Administrators.
The Ballot Signing and Ballot submission phases have a more relevant growth since the number of signatures
transferred grows linearly with t. The total data transferred is not relevant considering today's Internet
connections.

4.2 REVS with Double Signing Authentication

Our changes affected only the ballot signing part of the protocol with the new ballot signing mechanism. So,
all other data exchanges are kept the same. Table 2 presents the new values for the data transfer with double
signing authentication.

Table 2 - Data transferred with Double Signing Authentication (approximately).

 Ballot Distribution Ballot Signing Ballot Submission Total (1 voter)
N=5; t=4; k=3 2.3KB 3.1KB 1.1KB 6.5KB
N=7; t=6; k=4 2.5KB 5.2KB 1.6KB 9.3KB
N=9; t=8; k=5 2.8KB 8.0KB 2.1KB 12.9KB

Table 2 shows that we have solved the problem posed by malicious servers with an acceptable performance
penalty. The values for the new ballot signing phase are of the same order of magnitude as in the current
REVS.

4.3 REVS with Double Signing and Vote Validation

Considering that the new key validation interaction is part of the ballot submission phase, all other data
exchanges are kept the same. Table 3 presents the data transferred in REVS with both Double Signing and
Vote Validation.

Table 3 - Data transferred with Double Signing and Vote Validation (approximately).

 Ballot Distribution Ballot Signing Ballot Submission Total (1 voter)
N=5; t=4; k=3 2.3KB 3.1KB 1.9KB 7.3KB
N=7; t=6; k=4 2.5KB 5.2KB 2.7KB 10.2KB
N=9; t=8; k=5 2.8KB 8.0KB 3.5KB 14.3KB

Again, the solution proposed imposes no severe penalty on the Ballot Submission phase.

Concluding, the Double Signing and the Vote Validation phases increase slightly the data transferred
between voters and protocol servers. Both phases impose also a delay of k message exchanges. However,
because these exchanges may be done in parallel the delay is not significant.

IADIS International Conference on Applied Computing 2004, Lisbon (Portugal), March 2004

5. RELATED WORK

The reference protocol using blind signatures, known as the FOO protocol, was proposed in 1992 by Fujioka,
Okamoto and Ohta [Fujioka92]. In this protocol the voters cannot vote and walk away; they must wait until
the end of the election to submit their vote-opening keys, therefore bringing no convenience to voters. There
have been some implementations of protocols closely based on FOO, such as the Sensus [Cranor97] and
Evox [Herschberg97]. In both proposals the FOO protocol was changed to allow voters to vote and walk
away, however in both protocols it is quite easy to reveal intermediate results. To solve this problem an
improvement on FOO was proposed [Ohkubo99]. The improvement consists in using a (t,N) - threshold
cryptosystem. In this protocol the voter encrypts his signed ballot and sends it anonymously to a bulletin
board. There are N counters, so if N-t+1 of them are honest the results are only available at the end of the
election.

One of the unsolved problems of the previously presented protocols is robustness. In 1999, DuRette proposed
the Evox Managed Administrators [DuRette99], an improvement of Evox by the addition of more
Administrators. This improvement addressed the problems of collusion resistance and availability. However,
it still presents singular points of failure and uses a weak voter's authentication mechanism that simplifies the
impersonation of voters by Administrators, therefore leading to a much less robust system than the author
claims.

The REVS protocol [Joaquim03] is an improvement of DuRette's work. It uses a new authentication
mechanism that avoids the easy impersonation of voters and a new architecture that presents no singular
points of failure. These changes improved considerably the robustness of DuRette's work. But, as shown
previously in this paper, REVS also suffers from some problems concerning collusion resistance and invalid
vote submission. Furthermore, the current REVS implementation still uses a single key pair – the election
key pair, generated and managed by the Commissioner – for hiding votes during the election. But the system
can easily be improved to use a (t,N) - threshold cryptosystem for generating and using the election's key
pair. Note that this is mainly an implementation issue, since the votes will likewise continue to be hidden
with the election's public key and disclosed with the election's private key.

The first problem addressed by our work was to prevent colluded Administrator servers to stop voters from
voting without being detected. In all types of voting systems (i.e. based on blind signatures, homomorphic
encryption or mix-nets) if a PKI is used to manage voter's asymmetric key pairs then voters are able to sign
server requests and it is impossible for servers to forge voter's requests without being detected. The great
majority of Internet Voting Systems assume (implicitly or explicitly) the use of PKIs [Cranor97, Fujioka92,
Ohkubo99, Park93, Sako95a, Cramer97, Sako95b]. However, using PKIs is not convenient for voters
because they have to get and store securely a long-term private key. To our knowledge we have been the first
ones to handle this problem using asymmetric key pairs but without requiring a PKI. Instead, our solution
produces on-demand, per voter, temporary key pairs. The certification of the public components of those key
pairs is part of the voting protocol and the authentication of voters requiring that certification uses the
existing REVS username/password authentication mechanism. Thus, voters can sign their requests to prevent
false repudiation by electoral servers and do not have to manage a long-term asymmetric key pair, just a
password.

In Internet Voting Systems based on blind signatures voters must submit votes anonymously in order to keep
their vote intentions secret. If votes are submitted anonymously we have shown that can lead to denial-of-
service scenarios. Blind signature systems usually rely on anonymous channels or mix-nets to provide
anonymous submissions and completely ignore this denial-of-service problem. We have proposed a scheme
based on token authentication that enables electoral servers to mitigate the risk. Again, to our knowledge our
solution is unique.

6. CONCLUSIONS

In this paper, we analyzed the REVS protocol and highlighted two important denial of service vulnerabilities.
Namely, the possible collusion between malicious Administrators in order to prevent voters from voting and
the invalid vote submission in order to exhaust Counter's storage capacity. We presented a solution that uses

IADIS International Conference on Applied Computing 2004, Lisbon (Portugal), March 2004

digital signatures to guarantee both non-repudiation and authentication on votes. This solution improves the
resistance to malicious servers and also authenticates anonymously votes submitted to scrutiny. We also
presented a performance analysis of the improved protocol comparing the data transferred against the current
REVS protocol. Performance results obtained with real data dimensions and several configurations for the
operational environment showed that we have improved substantially REVS robustness with acceptable
performance penalties.

REFERENCES

[Chaum82] Chaum, D., 1982. Blind signatures for untraceable payments. Proceedings of Advances in Cryptology –
CRYPTO ’82. New York, pp. 199-203.

[Chaum88] Chaum, D., 1982. Elections with unconditionally-secret ballots and disruption equivalent to breaking

RSA. Proceedings of Advances in Cryptology– Eurocrypt’88. pp. 177-182.

[Cramer97] Cramer, R. et al, 1997. A Secure and Optimally Efficient Multi-Authority Election Scheme. Proceedings

of Advances in Cryptology – EUROCRYPT ’97. pp. 103-118.

[Cranor97] Cranor, L. and Cytron, R., 1997. Sensus: A security-conscious electronic polling system for the Internet.

Proceedings of the Hawaii International Conference on System Sciences. Wailea, Hawaii.

[DuRette99] DuRette, B., 1999. Multiple administrators for electronic voting. Bachelor’s thesis. Massachusetts

Institute of Technology.

[Fujioka92] Fujioka, A. et al, 1992. A practical secret voting scheme for large scale elections. Proceedings of

Advances in Cryptology - Auscrypt’92. pp. 244-251.

[Herschberg97] Herschberg, M., 1997. Secure electronic voting over the world wide web. Master’s thesis. Massachusetts

Institute of Technology.

[Hirt00] Hirt, M. and Sako, K., 2000. Efficient receipt-free voting based on homomorphic encryption. Proceedings

of Advances in Cryptology– EUROCRYPT’00. pp. 539-556.

[Joaquim03] Joaquim, R. et al, 2003. REVS - A Robust Electronic Voting System. Proceedings of IADIS International

Conference e-Society 2003. Lisbon, Portugal. pp. 95-103.

[Ohkubo99] Ohkubo, 1999. An improvement on a practical secret voting scheme. Proceedings of ISW: International

Workshop on Information Security.

[Okamoto97] Okamoto, T., 1997. Receipt-free electronic voting schemes for large scale elections. Proceedings of 5th

International Computer Security Conference. pp. 25-35.

[Park93] Park, C. et al, 1999. Efficient Anonymous Channel and All/Nothing Election Scheme. Proceedings of

Advances in Cryptology – EUROCRYPT’93. pp. 248-259.

[Sako95a] Sako, K., 1995. An improved universally verifiable mix-type voting System.

[Sako95b] Sako, K. and Kilian, J., 1995. Receipt-Free Mix-Type Voting Scheme: A Practical Solution to the

Implementation of a Voting Booth. Proceedings of Advances in Cryptology – EUROCRYPT ’95. pp. 393-
403.

