
REVS – A ROBUST ELECTRONIC VOTING SYSTEM

Rui Joaquim, André Zúquete, Paulo Ferreira
Instituto Superior Técnico (Technical Univ. of Lisbon) / INESC ID

R. Alves Redol, 9 – 6º andar
 1000 Lisboa, Portugal

[rui.joaquim, andre.zuquete, paulo.ferreira]@gsd-inesc-id.pt

ABSTRACT

There are many protocols proposed for electronic voting, but only a few of them have prototypes implemented. Usually
the prototypes are focused in the characteristics of the protocol and do not handle properly some real world issues, such
as fault tolerance. This paper presents REVS, a robust electronic voting system designed for distributed and faulty
environments, namely the Internet. The goal of REVS is to be an electronic voting system that accomplishes the desired
characteristics of traditional voting systems, such as accuracy, democracy, privacy and verifiability. In addition, REVS
deals with failures in real world scenarios, such as machine or communication failures, witch can lead to protocol
interruptions. REVS robustness has consequences at three levels: (i) the voting process can be interrupted and recovered
without weakening the voting protocol; (ii) it allows a certain degree of failures, with server replication; and (iii) none of
the servers conducting the election, by its own or to a certain level of collusion, can corrupt the election outcome.

KEYWORDS

Electronic voting, Fault-Tolerance, Robustness, Blind signatures.

1. INTRODUCTION

In the last few years several experiences have been conducted in order to facilitate elections. The
facilitations were introduced by new ways of expressing votes besides the traditional paper-based. Examples
of new voting interfaces and systems are touch screens, SMS messages from cellular phones and distributed
voting systems using the Internet (Monteiro 2001, UK-eDemocracy 2003).

Internet voting systems are appealing for several reasons: (i) people are getting more used to work with
computers to do all sort of things, namely sensitive operations such as shopping and home banking; (ii) they
allow people to vote far from where they usually live, helping to reduce abstention rates; and (iii) they may
support arbitrary voting ballots and check their correct fulfillment during the voting process.

However, Internet voting systems face several problems that prevent their widespread use today (CIVTF
2000, CALTECH-MIT 2001, Cranor 2001, IPI 2001, Rivest 2001, Rubin 2002). The problems can be
broadly divided in three main classes.

The first class includes security and fault tolerance problems inherited from the current Internet
architecture. Vital services, such as DNS name resolution, can be tampered in order to mislead users into
spoofing servers (Lioy et al. 2000). IP routing mechanisms and protocols, managed by many different
organizations, should deal with partial communication outages, however communication problems may arise.

The second class includes problems that are specific to voting protocols. These problems derive from the
assumptions of the protocols about the execution environment, namely:
?? Client machines used by voters must be trusted, in order to act as “trusted agents”, which is hard to

ensure in personal or multi-user computers with general-purpose commercial operation systems.
?? Servers controlling the voting process cannot (i) fail, (ii) become unreachable or (iii) pervert the voting

protocol. The protocol perversion can be done either by not reacting properly to client requests or by
trying to influence the election acting as a voter.

?? The voting protocol is not disturbed by communication problems or machine failures.
The third class includes problems that may be created by specific attacks against a voting protocol or a

running election. Such attacks may try to get some useful outcome, by subverting the voting protocol, or

simply ruin an election using DoS (Denial of Service) attacks against the participating machines or
applications. Another kind of attack is the coercion of voters, which can happen if they can vote anywhere
without supervision of electoral committees.

REVS is an Internet voting system designed to tackle some of these problems. In particular, the REVS
voting protocol, involving several participating machines, supports some types of communication and
machine failures by keeping a distributed loosely-coupled state. Each voter keeps a local state, in mobile non-
volatile storage, allowing him to stop and resume the election anytime and anywhere. Servers are replicated
and only a subset of them needs to be contacted by each voter. Each server keeps a distinct state regarding
the participation of each voter in the election, allowing voters to get many times the same answer from each
server. Each server alone is not able to act as any voter and cannot provide false replies to voters without
being noticed. The collusion of servers in order to interfere with the election (e.g. voting for absentees) is
prevented to a certain degree of collusion.

REVS is a blind signature electronic voting system based in DuRette’s (1999) work, witch improved the
EVOX system (Herschberg 1997). DuRette improved EVOX in order eliminate single entities capable of
corrupting the election (the EVOX Managed Administrator). Both DuRette’s system and EVOX are very
sensible to failures in communication or servers, a problem that we solved with REVS. Furthermore, the
DuRette’s system has problems concerning the authentication of voters, allowing an easy impersonation of
voters by the servers running the election. In REVS we solved this problem redesigning the voters’
authentication algorithm.

A first prototype of REVS is being implemented in the Instituto Superior Técnico (Technical Univ. of
Lisbon) to support elections, namely quality surveys. To this particular scenario, REVS servers are deployed
and managed by separate entities, namely central computer services, several departments and students’
organizations, in order to reduce collusion. A set of trusted machines are made available to voters, but they
can use any machine to participate in the elections. Voting ballots are signed Java scripts downloaded into
voters´ machines. These scripts are able to check the correct fulfillment of ballots and to contact the correct
REVS servers to submit them.

This document is structured as follows. Section 2 presents an overview of previous work stressing the
work in witch REVS is based on. Section 3 describes the protocol used and how it achieves robustness. In
Section 4 we describe the implementation details of REVS. Section 5 presents an evaluation of the system
and finally in Section 6 we draw some conclusions.

2. RELATED WORK

Researchers have been working in the electronic voting research area mainly after 1980, with an emphasis
in the last decade. Currently there is a consolidate taxonomy for classifying electronic voting systems and
well-defined sets of protocols for implementing them. We will start with a brief presentation of the taxonomy
and the alternative protocols, and then we will describe the DuRette’s system, the EVOX Managed
Administrator, upon which we designed REVS.

Researchers in the electronic voting field have already reached a consensus pack of four core properties
that an electronic voting system should have (Cranor and Cytron 1997):
Accuracy: (1) it is not possible for a vote to be altered, (2) it is not possible for a validated vote to be
eliminated from the final tally, and (3) it is not possible for an invalid vote to be counted in the final tally.
Democracy: (1) it permits only eligible voters to vote and, (2) it ensures that eligible voters vote only once.
Privacy: (1) neither authorities nor anyone else can link any ballot to the voter who cast it and (2) no voter
can prove that he voted in a particular way.
Verifiability: anyone can independently verify that all votes have been counted correctly.

Accuracy, democracy and verifiability are, in most cases of today's electoral systems, assured by the
presence of representatives of opposite parties. The privacy property is currently assured by the existence of
private voting booths, allowing voters to cast their votes in secrecy.

The particular nature of the Internet environment requires robust Internet voting systems. We define
robustness as the join of the following three characteristics:
Collusion Resistance: no electoral entity (any server participating in the election) or group of entities,
running the election can work in a conspiracy to introduce votes or to prevent voters from voting. If all

entities conspire this property isn’t achieved. So, this characteristic should be measured in terms of the total
number of entities that must conspire to guarantee a successful interference in the election.
Availability: (1) the system works properly as long as the poll stands and (2) any voter can have access to it
from the beginning to the end of the poll.
Resume Ability: the system allows any voter who had interrupted his/her voting process to resume it or
restart it while the poll stands.

The electronic voting protocols proposed so far are mainly divided in three different approaches:
protocols based in blind signatures1 (Fujioka et al. 1992, Sako 1994, Cranor and Cytron 1997, Herschberg
1997, Okamoto 1997 and DuRette 1999), protocols based in mix-nets (Chaum 1981, Park et al. 1993, Sako
and Kilian 1995, Ogata et al. 1997 and Jackobsson 1998), and protocols based in homomorphic encryption
(Benaloh and Fischer 1985, Benaloh and Yung 1986, Benaloh 1987, Benaloh and Tuinstra 1994, Sako and
Kilian 1994, Cramer et al. 1996, Cramer et al. 1997, Hirt and Sako 2000 and Baundron et al. 2001).

Each approach has pros and cons, but the ones based in blind signatures are more flexible. The blind
signature systems are open to all kind of ballot formats, and have less computational complexity than mix-
nets and homomorphic-based systems. Therefore, we chose this type of system for REVS.

Fujioka et al. proposed in 1992 a blind signature protocol, know as FOO, which became the reference in
blind signature voting protocols. Later, Cranor and Cytron (1997) with Sensus, and Herschberg (1997) with
EVOX, proposed their voting protocols and systems based on FOO. But both of them don’t control the power
of the Administrator. In 1999, DuRette proposed the EVOX Managed Administrator protocol, an evolution
of EVOX reducing the power of the Administrator. REVS is based in DuRette’s work, but we modified the
system in order to be fault tolerant, thus assuring availability. Furthermore, we modified the algorithm for
authenticating users because the one proposed by DuRette has personification problems.

2.1. The EVOX Managed Administrator

DuRette’s (1999) work tackles a common problem in voting protocols based in blind signatures:
preventing the Administrator from introducing ballots in the election. The idea is to ensure accuracy by
sharing the power of the election Administrator among several servers: there are n Administrators and it is
required t signatures of them to make a ballot valid. An additional signature from the Manager ensures
democracy.

Here’s an overview of the protocol (c.f. Figure 1): the voter contacts the Manager and obtains a ballot (1),
fills it and contacts t ? n Administrators for signing his ballot (2). Then the voter gets the Manager’s
signature over all the signatures previously obtained from the Administrators (3) and, finally, he submits his
vote to the Counter through an Anonymizer, which protects the voter’s privacy from the Counter (4).

If the Manager is not trusted than t ? n/2 + 1. However,
this threshold is not enough because DuRette’s system uses
one password per voter for all Administrators and for the
Manager. None of these entities know the password in
advance, because a UNIX-like validation is used. However,
a small set of Administrators, colluded with the Manager,
can generate false votes using a voter’s password once they
get it. The fraud may work like this: x colluded
Administrators use a voter’s password to get signatures
from all the Administrators not contacted by the voter and send to the Manager a signed vote that it could
accept and send to the Counter. With n Administrators and n/2+? required signatures, x is equal to 2? . If, for
improving performance, ? is a low value (1 or 2), the possibility of attack is not negligible. If t is less than
n/2 the Manager, it self, can introduce votes without the participation of any other entity.

1 Blind signatures are a class of digital signatures, consisting in getting a message digitally signed without giving any
knowledge about the message to the signer. This is like putting a document and a sheet of carbon paper in a sealed
envelope that somebody signs on the outside. After removing the envelope we get the signed document.

Voters

Administrators

AnonymizerManager Counter

4

3

21

Voters

Administrators

AnonymizerManager Counter

4

3

21

Figure 1 – EVOX Managed Administrator

This kind of fraud can be discovered using the servers logs. But if the Manager is also part of the
collusion, he can refuse to sign some votes saying that some error occurred or just refusing the connection
(too busy). In this case the introduction of votes for those refused voters will pass undetected.

The authentication method in REVS is also username/password based, but uses a different password for
each server, preventing voter’s personification by less than t colluded Administrators. The details about the
authentication scheme are presented in Section 4.

Another problem, but now respecting the robustness of the system, is the existence of a single Manager
(the replication of the Anonymizer and Counter is taken into account in DuRette’s proposal). The Manager
must sign all ballots and is also responsible for ballot distribution. Any malfunction on this server leads to an
interruption of the election, as it is a single point of failure. Thus, the system does not ensure availability.
Furthermore, the Manager is a performance bottleneck when considering large-scale elections.

Single points of failure should be avoided to increase availability, one of the properties that a robust
electronic system must have (c.f. Section 2). Therefore, in REVS there are no single points of failure.

3. REVS VOTING PROTOCOL

In REVS we have five types of servers: Commissioner, Ballot Distributor, Administrator, Anonymizer
and Counter. There is also a module that is used by voters to support their participation in elections,
performing all the proper interactions with election servers (get the ballot, get it signed by election servers,
submit the ballot, etc.).
Commissioner: Similarly to EVOX and DuRette’s systems, in REVS we also have a Commissioner. In all
three systems the Commissioner is the election supervisor, receiving complains made by any voter or
electoral server. If the received complains raise any suspicion, an investigation is made to find out the causes.

The Commissioner in REVS has also the responsibility of preparing the election, generating and keeping
secret the election’s keys, signing the ballot questions and defining the operational configuration for the
election (addresses and public keys of servers, number of required signatures, etc.).
Ballot Distributor: The Ballot Distributor is responsible for the distribution, for the voters, of the data set up
by the Commissioner for the election: ballots and operational configuration. This procedure is expensive in
terms of data exchange, so we decided to introduce this dedicated server in REVS.

All the information distributed by a Ballot Distributor must be signed by the Commissioner, in which all
voters trust. Thus, there may be several Ballot Distributors. This replication, besides reducing the work load
on each Ballot Distributor, improving efficiency in large-scale elections, provides protection to
communication or machine failures affecting Distributors, bringing robustness to the distribution process.
Administrators: The Administrators are the electoral entities that have the power to decide upon the
acceptability of a ballot from a voter. A ballot is acceptable for the final tally of the election only if it has a
minimum set of signatures from different Administrators. If n is the total number of Administrators a voter
must get t > n/2 valid signatures from different Administrators to make its ballot acceptable. This makes
impossible for any voter to get two valid votes.

A voter uses a different password to get a signature from each Administrator. And because one
Administrator cannot derive any other passwords from the one it knows, as we will show in Section 4.1, it
cannot alone impersonate a voter.
Anonymizer: The Anonymizer server provides anonymity to the voter’s machine, preventing a Counter from
associating a ballot to the machine owner. A voter can choose any number of Anonymizers from the ones
participating in the election. The Anonymizer hides the voter’s location and randomly delays and shuffles
several submitted ballots before sending them to Counters. The randomization of ballot submissions prevents
time analysis trying to discover voters’ ballots from the hour that have voted.
Counter: The Counter is the server who verifies the validity of the ballots, verifying that all required
signatures are on the ballot. Then the Counter removes the repeated ballots verifying a bit commitment (made
by the voter in the ballot signing phase (see, c.f. Section 3.1) and performs the tally.

Voters send their final ballots to Counters through Anonymizers encrypted with the public key of the
election preventing Anonymizers and Counters from watching votes during the election. Counters can only
analyze the votes when the election ends and the Commissioner releases the election key (private key).

REVS allows configurations with no single points of failure. So, in those configurations there must be
several Counters, each one of them reachable through an independent Anonymizer.

In the case of the existence of several Counters the voters can send theirs ballots to any Counter (or, more
correctly, to any Anonymizer), or even to several Counters. This means that different Counters will get
different sets of votes at the end of the election, and those sets may even contain repeated votes. A selected
master Counter obtains the final tally after gathering all the valid votes from the several Counters and
discarding the repeated ones. Like in EVOX, any person with access to the ballots collected by all Counters
can act as a master Counter. This increases the confidence in the election outcome.

3.1. The Protocol

The REVS protocol allows a flexible replication of all servers involved in the election process. With the
introduction of Ballot Distributors we separated every logical function into a different server, leading to a
more modular system than EVOX. The only restriction made is to the number of required signatures to make
a ballot valid, t, which must be greater than n/2, where n is the number of Administrators.

From the voters’ point of view, the REVS protocol is divided in
three steps (see Figure 2, detailed messages in Figure 3):
I. Ballot distribution: The voter contacts a Ballot Distributor to get a
blank ballot for a given election. The Ballot Distributor returns the
requested ballot, the election public key and the election’s operational
configuration, all signed by the election’s Commissioner. This is done
in two phases. First the voter contacts a Ballot Distributor and provides
a voter ID to receive the list of election in which he can participate.
Then the voter chooses the election and requests a ballot for it from a
Ballot Distributor.
II. Ballot signing: After expressing his will on the
ballot, the voter commits to the ballot digest with a
random bit string and blinds the committed digest with
a random blinding factor. Then the voter sends his
blinded committed ballot digest to the Administrators
for signing.

The voter’s module saves the answers, the bit
commitment and the blinding factor into a non-volatile
storage, preferably provided by a mobile media, before
using them. This enables the voter to stop and latter
resume its participation in the election, but affects the
voter’s privacy.

The Administrator, after receiving a request for
signing, verifies if it had already signed for the
requesting voter. If not, he signs and saves the
signature; if he had signed before, the Administrator
returns the previously saved data, i.e. the signature of
the blinded committed ballot digest.

After receiving a signature the voter updates it using
the blinding factor and verifies its correctness using the
original ballot digest and the Administrator’s public
key. This process is repeated until all required t
signatures are collected. Note that Administrators
cannot link the signatures they provided to the vote
with the signatures that the voter gets after applying the
blinding factor.
III. Ballot submission: in this step the voter constructs the ballot submission package, joining the ballot, its
signatures and the bit commitment. At this time the voter can save this data into secure storage. This is an
optional step, because it helps improving accuracy but affects privacy. Then he submits this package,

Voters

Administrators Anonymizers
Ballot

Distributors

1 2 3

Voters

Administrators Anonymizers
Ballot

Distributors

1 2 3

Figure 2 – REVS protocol

Vn

election list

Vn, Eid

election data

Voter Ballot Distributor

Administrator (i)

Vn, VpAi, Eid, BB

BB signed

{Ballot, Commitment,
Signatures}CKpub

Anonymizer

Counter

{Ballot, Commitment,
Signatures}CKpub

REVS Protocol Diagram Data Transferred

32 b

Variable

32 b + 32 b

Variable

32 b + 160 b + 32 b + 1Kb

1Kb

Variable + 160 b +
Signatures * 1Kb

Variable + 160 b +
Signatures * 1Kb

Vn – Voter’s number
Eid – Election identification
VpAi – Voter’s password for Administrator i
BB – Blind committed digest of the ballot
{m}Ckpub – m encrypted with Counter’s public key
Ballot – Ballot answers

Election list – list of the elections in witch the
voter can participate

Election data – Ballot questions, election
configuration, Administrators signing keys
and election public key. All signed by the
Commissioner

Note: The key size used is 1024 bits
All communications are over SSL

Vn

election list

Vn, Eid

election data

Voter Ballot Distributor

Administrator (i)

Vn, VpAi, Eid, BB

BB signed

{Ballot, Commitment,
Signatures}CKpub

Anonymizer

Counter

{Ballot, Commitment,
Signatures}CKpub

REVS Protocol Diagram Data Transferred

32 b

Variable

32 b + 32 b

Variable

32 b + 160 b + 32 b + 1Kb

1Kb

Variable + 160 b +
Signatures * 1Kb

Variable + 160 b +
Signatures * 1Kb

Vn – Voter’s number
Eid – Election identification
VpAi – Voter’s password for Administrator i
BB – Blind committed digest of the ballot
{m}Ckpub – m encrypted with Counter’s public key
Ballot – Ballot answers

Election list – list of the elections in witch the
voter can participate

Election data – Ballot questions, election
configuration, Administrators signing keys
and election public key. All signed by the
Commissioner

Note: The key size used is 1024 bits
All communications are over SSL

Figure 3 - REVS protocol details

ciphered with a hybrid cryptosystem using a random symmetric session key and the election’s public key,
through the Anonymizer, concluding the voting protocol. The voter can submit the same package to any
Counter as many times as he feels necessary to be sure that the ballot as reach its destination.

After the end of the election the Commissioner publishes the election private key. Then the counting
process is performed by the Counters and involves the following steps:

1) Decipher the submission package with election’s private key.
2) Verifying that all required t signatures from Administrators are present.
3) Removing repeated votes, which are the ones with the same bit commitment. If the length of the bit

commitment is large enough (160 bits in REVS) the danger of collisions is negligible.
4) Tallying the remaining votes.
5) When using multiple Counters, the master Counter collects all previous verified votes. Then checks

for repeated votes using the bit commitment, and proceeds with the final tally.
All the Counters publish the contents of all received submission packages, and the Administrators publish

all the blindly signed ballots.
After this publication the voter can verify if his vote was counted. If the vote isn’t present at the tally he

can reclaim presenting anonymously the previous saved vote. Also, everybody can verify the relation
between the total number of votes and the total possible valid votes signed by the Administrators.

4. IMPLEMENTATION

REVS was fully implemented in Java, enabling it to be installed and executed on any computational
platform. For encryption we used the logi.crypt 1.1.2 crypto package. We also used a database back-end in
REVS servers, namely the 3.23.53-max version of MySQL.
Election preparation: Before we can start using REVS an election must be prepared. This preparation
consists in generating the election key pair, registration of voters and configuration of the servers. The
registration of voters consists in defining their identification (username) and collecting their passwords for all
Administrators (this is secure because the passwords are recorded in an Unix-like method).

The configuration of the servers consists in installing the servers (this includes the generation of theirs
public and private keys), and setting up theirs databases with the election and voter’s information.

The voter’s module can be distributed to the voters in the registration process or can be downloaded later
from the election official site or from some Ballot Distribution server. The voter’s module comes with the
Commissioner public key.

4.1. System security

In EVOX and EVOX Managed Administrator systems it is possible to run several elections
simultaneously. This possibility is controlled distributing the right ballots to voters, but nothing was done to
prevent the voters from exchanging ballots, or even to use ballots stealed from other voters. Thus, it is
possible for voters to participate in elections for which they are not authorized to.

In REVS every Administrator has an asymmetric key pair for each election, so even if the voters manage
to exchange the ballots the signatures will not match and the ballot will be discarded.

The voter’s module represents the voter, so it’s important that the voter trusts it. In REVS the
Commissioner signs the voter’s module, ensuring its integrity.

When implementing a secure application, aspects such as intervenient authentication and security in
communications must be taken into account.

In REVS we use RMI over SSL to provide security in the communications. When establishing a
connection with a server the voter uses the server public key to authenticate the server.

For authenticating voters we used the well-known username/password method. The voter must use a
different password for each different Administrator for preventing impersonation. But for keeping the
authentication user-friendly we should not force the voter to memorize all passwords. Thus, we designed an
algorithm for generating all necessary passwords from a small set of secrets.

Our algorithm uses two secrets (see Figure 4): a strong password (non trivial password, like a large
random alphabetical string) and an activation PIN that should be memorized by the voter. The voter

introduces these two passwords in the voter’s module and it computes all required passwords, one for each
Administrator. Because the algorithm uses digest
functions, an Administrator Ai knowing a voter’s
password Pi, cannot compute any other password Pj, j?
i, known by Administrator Aj.

For improved security both passwords should be
chosen by the voter. At a registration phase the voter
should give the actual passwords, in an Unix like
method, that will be used to authenticate itself to the
Managers. Another possibility is to give the passwords
to the voters and allow them to choose new ones.

5. EVALUATION OF THE FUNCTIONALITY OF REVS

The evaluation of the functionality of REVS is made under several assumptions. First we will clarify
those assumptions, and then evaluate REVS considering the characteristics presented in Section 2.1 and also
considering its usability and scalability. The assumptions are:
?? The cryptographic algorithms used are hard to break. In REVS there are three cryptographic algorithms

used: (i) RSA, for producing and checking blind and non-blind signatures and encrypting the keys used
to encrypt the submission packages; (ii) Triple-DES, used to encrypt the submission packages; and (iii)
SHA-1, for all required digest computations.

?? The communications are secure. All communications in REVS use SSL and servers are authenticated
with their public keys.

?? The servers, voters’ computers and communication gateways are not vulnerable to attacks, such as DoS
or infection by Trojan horses or viruses.

?? The Anonymizers used are honest and work correctly.
?? The required number of signatures respects t > n/2.
?? The voter decided to save his data in secure non-volatile storage in steps I and II of the voting protocol.
?? The Commissioner only publishes the election private key after the end of the election.
Accuracy: The vote cannot be altered because that would destroy all Administrators’ signatures. A voter can
verify if his vote was eliminated from the final tally, examining the list of received votes published by
Counters, and can correct this sending his submission package anonymously. The elimination of votes when
using several Counters is harder because it implies the elimination of the vote from all Counters. Because the
signatures can be verified by anyone and are published with the votes, it is impossible for an invalid vote to
be part of the final tally. Therefore, all three aspects of accuracy are respected.
Democracy: Each voter can only vote once in each election because t > n/2 (a voter cannot obtain two valid
votes). All voters can vote as long as t Administrators and one Anonymizer are available. Therefore, the two
aspects of democracy are guaranteed as long as the system works.
Privacy: While the assumptions stand, the first part of privacy is guaranteed. The second part, as in most
voting protocols proposed so far, isn’t accomplished, allowing the voter to prove his choice.
Verifiability: The final tally can be made by anyone, verifying the signatures on the votes and summing all
votes. Each voter can verify if its own vote is correct, and assumes that the other votes are correct because of
the signatures they have.
Collusion Resistance: This characteristic depends on the number of Administrators, n, and required
signatures, t. To cast a vote one needs the cooperation of t Administrators (increases as t grows). To prevent a
voter from voting n–t+1 Administrators must conspire, preventing the voter from obtaining the required t
signatures (decreases as t grows). So, it’s obvious that it’s necessary to make a trade-off between the two
parts of this property.
Availability: The system is available as long as there is a minimal set of servers running correctly. The
minimal set is actually one Ballot Distributor, t Administrators, and one Anonymizer/Counter pair. The two
last properties intrinsically depend on the configuration of the system.
Resume Ability: As explained in Section 3.1, the voter can recover from an interruption in the voting
protocol as long as the voter keeps its voting data, i.e. the bit commitment and the blinding factor.

Pin

Mi
Password

Digest

Digest Pi

M0 = digest (Password, Pin)
Mi = digest (Password, Pin, Mi-1) Pi = digest (Mi, Pin)

Pin

Mi
Password

Digest

Digest Pi

M0 = digest (Password, Pin)
Mi = digest (Password, Pin, Mi-1) Pi = digest (Mi, Pin)

Figure 4 – Password generation

Robustness: REVS is a robust system because achieves the last three properties, as defined in Section 2.

5.1. Implementation evaluation

REVS was designed to support large scale elections. In this section we will evaluate the prototype of
REVS concerning implementation decisions, time spend in cryptographic functions (in the voter’s module
and Administrators) and amount of data transferred.

As seen before, REVS can run with no single point of failure, therefore avoiding bottlenecks. All the
servers have a database back-end and were implemented in a way that, if necessary, a cluster can be easily
implemented to improve performance. With this design and implementation considerations we believe that
REVS can easily support large scale elections.

To evaluate the prototype performance we have made some tests using a computer with a Pentium III
processor, 384 MB of RAM running Windows XP Professional.

Regarding the voter’s module we determined that it would take less than half a second to compute 1000
passwords; the blinding process is done in less than 200 ms; and the verification of the blind signatures is
done in less than 30 ms. So, if we use REVS in a configuration requiring 5 signatures, the voter’s module
would compute all cryptographic functions in about a second.

The Administrator is the other entity that must compute cryptographic functions (signing blinded ballots).
In our tests we verified that an Administrator takes less than 200 ms to verify voter’s identity and sign the
blinded ballot.

Besides servers’ performance it’s also necessary to analyze the amount of data transferred in the protocol
(c.f. Figure 3). Being REVS a ballot independent voting system we must make some assumption before
analyzing any data transfers: we assume that the election list is 3 Kb long; the election data is divided in a
fixed part with 10 Kb (ballot questions, election configuration and election public key), and a variable part
with n * 1024 bits long (signing keys of the Administrators running the election), finally we assume that the
ballot (the answers) is 256 bits long.

Table 1 – Data transferred in REVS with two Anonymizer-Counter chains

 Ballot
Distribution

Ballot
Signing

Ballot
Submission

Total
(one voter)

Total
(one million voters)

n = 3; t = 2 ? 16 Kb ? 4.4 Kb ? 9.6 Kb ? 30.0 Kb ? 3.6 GB
n = 5; t = 3 ? 18 Kb ? 6.6 Kb ? 13.6 Kb ? 38.2 Kb ? 4.6 GB
n = 7; t = 4 ? 20 Kb ? 8.8 Kb ? 17.6 Kb ? 46.4 Kb ? 5.5 GB

The data presented in Table 1 was obtained for a configuration of REVS with two Anonymizer–Counter

chains (and the voter submitting to both Counters). As can be easily seen, REVS offers a good data transfer
performance. It also provides a good tradeoff between increased security and data transfer, about 1 GB for
each additional signature required. Note that all calculations don’t take in account the additional traffic
generated by the communications over SSL.

Regarding the required computation and data transfer aspects, the previously presented data allows us to
conclude that our prototype of REVS is efficient and can be used in large scale elections.

6. CONCLUSIONS

We have presented REVS, an electronic voting system able to perform well in faulty environments like
the Internet. REVS is a robust electronic voting system based on blind signatures that tolerates failures in
communications and servers while maintaining all desired properties of a voting system.

Another important characteristic of REVS is the ballot independency; which facilitates its use in any kind
of elections or surveys.

The implementation of REVS was carefully designed for assuring scalability and availability in large-
scale elections. In particular REVS was fully implemented in Java, and can use replication to avoid
bottlenecks and single points of failure.

For future work, REVS can beneficiate from a more sophisticated anonymity mechanism. The
authentication mechanism could also be substituted with one based on public keys, but only after this
technology becoming largely available to guarantee the usability of the system.

REFERENCES

Baudron, O. et al., 2001. Practical Multi-Candidate Election System. Proc. of the 20th ACM Symp. on Principles of
Distributed Computing. Philadelphia, USA, pp. 274-283.

Benaloh, J., 1987. Verifiable Secret-Ballot Elections. Yale University PhD thesis, YALEU/DCS/TR-561.
Benaloh, J. and Fischer, M., 1985. A Robust and Verifiable Cryptographically Secure Election Scheme. Proc. of 26th

IEEE Symp. on the Foundations of Computer Science. Los Angeles, USA, pp. 372-382.
Benaloh, J. and Tuinstra, D., 1994. Receipt-Free Secret-Ballot Elections (Extended Abstract). Proc. of 26th ACM Symp.

on the Theory of Computing. Montreal, Canada, pp. 544-553.
Benaloh, J. and Yung, M., 1986. Distributing the power of Government to Enhance the Privacy of Voters. Proc. of 5th

ACM Symp. on Principles of Distributed Computing. Calgary, Canada, pp. 52-62.
CALTECH-MIT, 2001. Voting-what Is, What Could Be. Available at http://www.vote.caltech.edu/Reports
Chaum, D., 1981. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Comm. of the ACM, 24(2).
CIVTF, California Internet Voting Task Force, 2000. A Report on the Feasibility of Internet Voting. Available at

http://www.ss.ca.gov/executive/ivote
Cramer, R et al., 1996. Multi-Authority Secret-Ballot Elections With Linear Work. Proc. of Advances in Cryptology –

EUROCRYPT ’96. Berlin, Germany, LNCS 1070, pp. 72-83.
Cramer, R. et al., 1997. A Secure and Optimally Efficient Multi-Authority Election Scheme. European Trans. on

Telecommunications, 8(5), pp. 481-490.
Cranor, L., 2001. Voting After Florida: No Easy Answers. In Ubiquity, 1(47).
Cranor, L. and Cytron, R., 1997. Sensus: A Security-Conscious Electronic Polling System for the Internet. Proc. of the

Hawaii International Conference on System Sciences. Wailea, Hawaii.
DuRette, B., 1999. Multiple Administrators for Electronic Voting. MIT Bs.C thesis.
Fujioka, A. et al., 1992. A Practical Secret Voting Scheme for Large Scale Elections. Proc. of Advances in Cryptology –

AUSCRYPT ’92, Queensland, Australia, LNCS 718, pp.244-251.
Herschberg, M., 1997. Secure Electronic Voting Using the World Wide Web. MIT Ms.C thesis.
Hirt, M. and Sako, K., 2000. Efficient Receipt-Free Voting Based on Homomorphic Encryption. Proc. of Advances in

Cryptology – EUROCRYPT ’00. Bruges, Belgium, LNCS 1807, pp. 539-556.
IPI, Internet Policy Institute, 2001. Report of the National Workshop on Internet Voting: Issues and Research Agenda.

Available at http://www.internetpolicy.org/research/e_voting_report.pdf
Jakobsson, A., 1998. A Practical Mix. Proc. of Adv. in Cryptology – EUROCRYPT ’98, Espoo, Finland, LNCS 1403.
Lioy, A. et al., 2000. DNS Security. Proc. of TERENA Networking Conference. Lisbon, Portugal, pp. 22-25.
Monteiro, A. et al., 2001. Sistemas de Votação Electrónica. FCT, Lisbon University, TR-01-X. (In portuguese)
Newmann, P., 1993. Security Criteria for Electronic Voting. Proc. of 16th Nat. Computer Security Conf. Baltimore, USA.
Ogata, W. et al., 1997. Fault Tolerant Anonymous Channel. Proc. of Information and Communications Security ICICS

’97. Beijing, China, LNCS 1334, pp.440-444.
Okamoto, T., 1997. Receipt-Free Electronic Voting Schemes for Large Scale Elections. Proc. of Workshop on Security

Protocols ’97. Paris, France, LNCS 1361, pp. 25-35.
Park, C. et al., 1993. Efficient Anonymous Channel and All/Nothing Election Scheme. In Advances in Cryptology –

EUROCRYPT ’93. Lofthus, Norway, LNCS 765, pp.248-259.
Rivest. R., 2001. Electronic Voting. Proc. of Financial Cryptography ’01. Grand Cayman, Cayman Islands.
Rubin, A., 2002.Security Considerations for Remote Electronic Voting Over the Internet. In Comm. of ACM, 45 (12).
Sako, K., 1994. Electronic Voting Schemes Allowing Open Objection to the Tally. Trans. of IEICE, E77-A(1), pp. 24-30.
Sako, K. and Kilian, J., 1994. Secure Voting Using Compatible Homomorphisms. Proc. of Advances in Cryptology –

CRYPTO ’94. Santa Barbara, USA, LNCS 839, pp. 411-424.
Sako, K. and Kilian, J., 1995. Receipt-Free Mix-Type Voting Scheme – A Practical Solution to the Implementation of a

Voting Booth. Proc. of Advances in Cryptology – EUROCRYPT ’95. Saint-Malo, France, LNCS 921, pp. 393-403.
UK-eDemocracy, 2003. http://www.edemocracy.gov.uk

