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ABSTRACT

In certain restrictive usage scenarios, personal mobile devices are
required to operate in some constrained manner. Security concerns
tend to be the most typical motivation, for example, as in “Bring Your
OwnDevice” use cases. However, because most device configurations
are strictly controlled by their respective users, today it is practically
infeasible to satisfy such requirements. In this paper, we present
TrUbi, a system that allows for dynamic and temporary restriction
of Android devices by disabling or locking specific functions for
limited amounts of time, e.g. network blocked. TrUbi enforces
global security policies by implementing an OS primitive named
trust lease. Our TrUbi prototype can efficiently enforce security
policies in unmodified real-world apps and paves the way for new
apps that are currently unsupported by existing mobile platforms.
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1 INTRODUCTION

As mobile devices make their way to becoming truly ubiquitous per-
sonal assistants and permeate every aspect of human lives, usage
scenarios begin to emerge that require them to operate under specific
restrictions. One example includes the so called “Bring Your Own
Device” (BYOD) scenarios in which personally owned devices are al-
lowed to execute privileged processes or access sensitive data within
a given organization. Regardless of how convenient this paradigm
may be for professionals (allowing them to carry along a single de-
vice for both personal and professional uses), as of today, BYOD is
far from gaining widespread acceptance, largely due to the lack of
organizations’ trust in personal mobile devices and fear of security
breaches. In fact, because personal devices are entirely controlled by
their owners, no assurances can be given with respect to compliance
with companies’ security policies.

The traditional way to ensure policy compliance is to use Manda-
tory Access Control (MAC) [1, 2, 18]. In this approach, each personal
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device runs under a predefined MAC policy centrally controlled by
the IT department of the company. The MAC policy prevents the user
from accessing potentially dangerous sites, running unauthorized
apps, sharing classified documents, etc. Although this approach
serves the company’s interests well, for device owners it entails com-
plete loss of control of the device. In particular, the device owner
must surrender his administration privileges to the company which
includes granting it access to all personal data and consequent loss of
privacy. The question we address in this paper is how to enable per-
sonal devices to be allowed to (1) restrict their functionality according
to specific usage scenarios, without the need to (2) yield control of
the device to a third party.

Toaddress this question, we presenta system called TrUbi. TrUbiis
an extension to Android OS that allows for dynamically constraining
the functionality of a mobile device according to the security require-
ments of a given use case. The key feature of TrUbi that enables
this behavior is a primitive called trust lease. A trustlease isa MAC
security policy which allows for blocking access to certain resources
(e.g., access to the Internet, changing the microphone settings) for
a certain amount of time. What is specific to trust leases is that the
restriction conditions to be applied are not unilaterally decided by a
third party, but must be agreed upon between the user (i.e., the device
owner) and the third party. Furthermore, the third party never gains
administration control over the device. Instead, the third party is
represented by a mobile application—named strapp—which must be
freely installed by the user on the device and has the same privileges
as any other standard mobile app. Then, when this application is
executed, it issues a trust lease request to the OS in order to install
a time-limited security policy specified by the third party. At this
point the user is prompted whether he agrees with the policy or not,
and is free to accept or decline it, respectively. Thus, in the BYOD
scenario, for example, the company only needs to implement a strapp
application containing the specification of the trust lease policy that
needs to be enforced on the personal devices at working hours; the
owner of each device must install this application and accept the
terms of the lease.

The concept of trust lease first appeared in our recently published
short workshop paper [19]. There, we not only introduce the basic
idea behind this primitive, but also make the case of how it can be
used to enable a broad range of new restricted mobile scenarios
(e.g., applying restrictions to the camera and microphone for privacy
purposes, place devices in silent mode in theaters). The current paper
goes beyond this original proposal by presenting TrUbi. In particular,
in this paper, we make the following contributions.

First, we present an OS-independent design of TrUbi which speci-
fies the basic mechanisms that must be developed in order to provide
trust lease support on a mobile platform (Section 2).



Second, we implemented a fully working version of TrUbi on
Android OS. TrUbi allows for the specification of rich restriction
policies, e.g., mute the sound, block network access by applications,
or force all applications to terminate except a few trusted ones. In
our current version, TrUbi can restrict up to 13 different functions
onadevice. Itis possible to specify flexible trust lease termination
conditions based on time or location (e.g., the vicinity to specific GPS
coordinates). We leveraged Android Security Modules (ASM) [11] to
build a fully workable TrUbi prototype (Section 3).

Lastly, we demonstrate the applicability and effectiveness of
TrUbi’s security policies. In particular, we built a BYOD use case
app that enables exams to be answered on students’ own devices
without cheating (Section 4). We evaluated TrUbi using a testbed
of 87 unmodified third-party apps on real devices, and found its
performance overhead to be small (Section 5).

2 DESIGN

In this work, we pursue the following goals: (1) devise a general
system architecture that supports the specification and enforcement
of restriction policies according to the trust lease security model,
(2) implement the system on commodity mobile devices, and (3)
demonstrate the potential of our system using real applications.

2.1 Threat model and assumptions

Our system must be robust against an adversarial user aiming to
subvert the security properties enforced by trust leases. In particular,
he may attempt to override the restrictive conditions of a trustlease by
trying to execute applications, modify system settings, or rebooting
the device. We assume that the operating system is correct, and that
it is part of the Trusted Computing Base (TCB) of TrUbi. We are
not going to address the problem of faulty OSes, or handle physical
attacks to the hardware. Furthermore, we assume that the device has
not been rooted, and that the integrity of the OS can be verified upon
boot using integrity checking mechanisms provided by the firmware
and hardware. The device can be equipped with trusted computing
hardware technology, such as TPM or ARM TrustZone, and factory
firmware to implement OS integrity measurement features at boot
(aka trusted boot) and a platform ID consisting of a certified public
key pair that can be used to implement remote attestation protocols.
The public key is certified by the device manufacturer. We adopt
Android, as our target platform.

2.2 Overview

We present TrUbi (Trusted Ubiquity), asystem that provides anew OS
primitive named trust leaseto enforce application-specific restriction
policies. To enforce trust lease restriction policies, TrUbi adopts a
reference monitor architecture, as shown in Figure 1. Here, the light
shaded boxes show a strapp (X) that owns a time-limited trustlease for
restricting network access. A trust lease reference monitor maintains
trust lease state information and coordinates their enforcement in
the system by interacting with restrictorand terminator components.
Restrictors implement specific restriction rules by setting the initial
state of targeted objects and preventing unauthorized modifications
to that state until the trust lease stops. Terminators are responsible
for implementing policies’ termination rules (Section 2.5). Each
trust lease maintains a reference to the strapp that requested its
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Figure 1: TrUbi architecture.

creation (owner). As explained in the following sections, only the
owner can invoke certain trust lease operations, namely stoplease
and quotelease. To illustrate how trust leases work in TrUbi, we use
a simple example.

2.3 A motivating usage scenario

To illustrate the concept of trust lease, take the following example.
Consider that we wanted to develop a mobile application for a “Bring
your own device” (BYOD) usage scenario within the context of uni-
versities or other educational institutions. Essentially, the idea is to
provide adigital alternative to printed exam copies, allowing students
to do the exams by interacting with a mobile application running on
their devices. This application would display the exam questions to
the student, read his responses typed on the screen, and submit them
to a centralized server whenever the exam duration had expired (or
the student had voluntarily submitted his answers). In this scenario,
the student would still be demanded to be present in an examination
room to answer the exam in the presence of a professor to prevent
students from cheating.

The trouble, however, is that if students are allowed to carry to-
day’s mobile devices, they can leverage numerous features of their
devices to cheat. First, mobile devices give them access to the Internet,
which means they can look for help in Web sites, join chat rooms, post
questions in forums, etc. Even if the school were to temporarily block
Internet connectivity through the local WiFinetwork, mobile devices
allow for communication with remote or co-located peers through
alternative interfaces, such as telephony, 3G/4G, Bluetooth, etc. Fur-
thermore, students can retrieve helper material previously cached
on the devices, or run certain applications to allow them to solve
certain problems (e.g., a calculator). In fact, all these operations are
possible, because personal mobile devices were designed to provide
their owners a great degree of flexibility in terms of extensibility and
customization. The downside, however, is that such devices cannot
be constrained to operate under restrictive scenarios, such as the
exam use case just described. A variety of other usage scenarios face
similar challenges. For a broader discussion about this topic, we refer
the reader to Santos et al. [19].

2.4 The concept of trust lease

The trust lease abstraction [19] aims to fill this gap. The key idea of
this primitive is to allow applications to issue requests to the OS in
order to restrict specific device functions for alimited amount of time.
Such functions include, for example, access to the network interfaces,
execution of certain applications, etc. The scope of these restrictions
is such that, while a trust lease is active, the user will not be allowed to



override them until the trust lease expires. Thus, because trust lease
requests are issued by applications, this simple primitive constitutes
abuilding block that allows applications to restrict mobile devices
according to the security requirements imposed by the specific usage
scenario. To demonstrate this potential, in Section 4 we show how
to leverage trust leases within the BYOD exam use case to prevent
students from cheating.

An important aspect to highlight is that a trust lease cannot be
issued without explicit approval by the user. This is because trust
leases force the user to temporarily reduce some of his privileges on
his personal device. For this reason, if a given application issues a
trust lease request to block access to certain resources, the user is
first notified about the resources to be constrained and duration of
the trust lease, and must first approve these conditions before the
trust lease can be activated by the operating system. Thus, a trust
lease can be seen as a contract between an application and the user in
which the user agrees to restrict certain functions of the device for a
certain amount of time as requested by the application. We call such
applications strapps.

Note, however, that, asinany other contract, the userisresponsible
for his actions, and user mistakes may bring negative effects. In par-
ticular, it can happen that a user overlooks the restriction conditions
of a trust lease and inadvertently accepts it without full awareness of
its effects. In such cases, the consequence is that some functions of
the device will be blocked temporarily, and the user will have to wait
until the trust lease expires in order to regain complete control of his
device. In the worst case, this feature can be exploited by malicious
strapps aiming to cause harm by blocking some of the device’s func-
tions for a large amount of time, thereby causing a denial of service.
To achieve this, the malware may try to induce the user to accept
a trust lease with a large expiration date. To reduce the negative
effects of such attacks, before granting a trust lease, the OS checks
the requested trust lease duration against a maximum value defined
as an OS configuration parameter.

2.5 Trust lease lifecycle

The OS mechanisms provided by TrUbi (see Figure 1) aim to govern
the lifecycle of trust leases. A trust lease comes into existence by
explicit request of a given strapp application. Essentially, the strapp
invokes a system call (startlease) which results in the activation of
the trust lease and subsequent change in the device state. The device
enters the restricted modein which some functions are temporarily
disabled. Eventually, the trust lease expires, and these restrictions
are removed, causing the device to switch back to unrestricted mode.
The signature of startlease is shown below:

startlease(p, f) — ;4| FAIL

This system call takes a restriction policy p and a callback function
f. The restriction policy specifies a set of restriction rulesaimed to
define which functions must be disabled, and a set of termination
rules for specifying the termination conditions of the trust lease. The
system call invocation can either succeed (returning a trust lease id
1;q) or fail. In fact, before the trust lease can be issued, the OS requires
the user to approve this request. If the request is denied the trust
lease request is aborted. Otherwise, the OS instantiates a trust lease
and applies the necessary restrictions. When the trust lease expires,
before switching back states, the systeminvokes the callback function
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Figure 2: Timeline of a typical trust lease.

f, which enables the strapp to perform any cleaning operations (e.g.,
encrypt data). Figure 2 illustrates these operations: strapp starts (1),
strapp invokes startlease (2), OS enters restricted mode upon user
authorization (3), callback executed upon termination event (4), and
OS leaves restricted mode (5).

2.6 Restriction rules and termination events

Restriction rules specify the system state that must remain unmod-
ified while a trust lease is active. For example, a restriction rule
“Network” may state that the network access must be disabled since
the trust lease starts until it expires. In general, restriction rules may
be designed to control access to peripherals (e.g., network, or cam-
era), system services (e.g., screenshot service, etc.), system settings
(e.g., muting the device, enabling bluetooth), or execution of appli-
cations. However, the specific restrictions supported in the system
are implementation-dependent. In Section 3.2, we present the rules
currently supported by our TrUbi implementation.

Termination events trigger the termination of an active lease, and
can be delivered in one of two ways. One way is by defining ter-
mination rules in the restriction policy. Typical termination rules
define time conditions, e.g., a timeout (T,y;). Additionally, they can
be based on location conditions, which confine trust leases to geo-
graphical areas defined, e.g., by GPS coordinates or vicinity to WiFi
access points. An alternative method for terminating a lease is by
explicit invocation of the system call stoplease. This system call aims
to allow the strapp that owns the trust lease to terminate it before the
termination rules occur. To invoke stoplease, the strapp only needs
to provide the trust lease id (/id) as parameter:

stoplease(l;y) » OK | FAIL

The reason for disabling a trust lease ahead of time is application
specific. By judiciously defining termination rules and invoking
stoplease, a strapp can generate a rich set of termination events. A
strapp can also express exceptional termination conditions. Analo-
gously, strapps can invoke startlease to start leases when only certain
location, temporal, or exceptional conditions hold.

2.7 Trust lease attestation

For some usage scenarios, strapps may need to convince an exter-
nal party that the device operates in restricted mode and possibly
communicate securely with that party. In particular, if a trust lease
expires while data is in transit, the external party may need to be
immediately notified and stop further data transmission in order
to prevent security breaches. Taking some ideas from the trusted
computing world, we address this need by providing a trust lease
remote attestation mechanism, which relies on two primitives:

quotelease(n) — q| FAIL
verifylease(g,n) — info| FAIL
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Figure 3: Trust lease attestation protocol.

Based on these two primitives, the strapp developer canimplement
a simple protocol between strapp and external party in order to
communicate securely and with guarantees that the trust lease is
active (see Figure 3). First, the strapp opens a secure channel with the
server (e.g., using SSL). Over the secure channel, the server challenges
the strapp by sending it a nonce, receiving a quote, and checking the
quote. Ifthe quote is valid, the strapp endpoint is trustworthy and the
communication is safe. To remotely detect that the trust lease ended,
the strapp developer can set a trust lease callback that closes the SSL
connection, thus signaling the external party that the trust lease has
expired and no more data should be sent. By combining trust lease
attestation with SSL, it is therefore possible to create a trusted session
between both parties.

Detailed trust lease attestation protocol: We now explain in
more detail the cryptographic operations that enable an external
party (challenger) to determine the trust lease state of a target device.
We assume that each OS is provisioned with a unique keypair and
that the private key is securely stored by the OS. The public key is
certified by the device manufacturer. The key certificate indicates
the version of the OS and whether the OS supports trust leases. We
refer the reader to Figure 3.

Under these assumptions, the basic protocol is as follows. The
challenger sends a nonce n to the target strapp, which invokes quote-
lease passing n as input. The OS simply returns the report message:
quote= (ml|n), C(K™T). The quote contains a signature of its cur-
rent restriction mode m (restricted or unrestricted) concatenated
with n. The signature is produced with the target device’s private key
K~ . The certificate of this key is included in the quote. The quote is
then returned to the challenger, which invokes verifylease to check
the quote. The quote is valid if: (i) the nonce in the quote matches n,
thereby detecting replay attacks, and (ii) the signature checks against
KT enclosed in the certificate and the certificate indicates that the
OS supports trust leases, which verifies that m returned in the quote
is meaningful.

This basic protocol can be advanced in three ways. First, the
challenger may need to validate the identity of the strapp, and
the conditions of the trust lease. To enable this, the quote can in-
clude the strapp identity (name, version, and signature) and details
about the trust lease (restriction policy and termination conditions):
quote= (ml|idallpglln)x. C(K™). This extrainformationis returned
by quotelease and can be validated by the challenger. Second, the
challenger may need to determine if the endpoint strapp is indeed the
owner of the lease. To ensure this, quotelease only returns a quote to
the strapp that currently owns the trust lease, otherwise it sends an
error message. Third, if there are concerns about the OS identity, the
protocol can leverage trusted computing hardware. In this case, the
quote must be extended with an additional signature issued with the
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platform’s identity key. This new signature covers the original nonce
n concatenated with a hash of the OS calculated upon boot. This hash
enables the challenger to validate the OS identity. To provide this
functionality, a unique identity key must be embedded into the device
by the device manufacturer.

2.8 Lease persistence and conflict resolution

Maintaining persistent trust lease state is a critical function of TrUbi.
In fact, keeping track of active trust leases in volatile memory alone
would constitute an important vulnerability. In such conditions, if
the device were rebooted, information of active trust leases would
be lost, resulting in a potential violation of terminator conditions.
We address this problem by backing up all relevant trust lease state
data persistently. When the phone bootstraps, TrUbi first checks for
persistent trust lease data and, if necessary, resumes any previously
interrupted trust leases.

Another important issue that TrUbi must handle is the case where
different strapps submit overlapping trust lease requests with con-
flicting restriction rules. In general, restriction rules are conflicting
whenever they act upon the same resource in order to impose ir-
reconcilable states. For example, two trust leases p1 and po which
require exclusive execution rights for strapp S1 and So, respectively.
In this case, a conflict clearly exists because only one of the strapps
can be given exclusive right to execute on the device. To address this
problem, we opted to reconcile conflicting requests by implementing
a simple first come, first served conflict resolution policy. In other
words, if a trust lease is active and a conflicting trust lease is issued,
the latter will only be enforced after the former expires or is explicitly
terminated.

3 IMPLEMENTATION

To validate our system design, we implemented TrUbi on Android-
based mobile devices. To facilitate the implementation of system-
wide hooks (explained in Section 3.3), we use an ASM implementation
from November 2014, which requires Android KitKat. TrUbi source
code was written in Java (10KLOC) and C (0.2KLOC).



// get reference to the TrUbi Manager
JASMAPP trubi = IASMAPP.Stub.asInterface(
ServiceManager . getService ("TRUBI") ) ;

// parse lease from XML file on ”“path”
LeaseHandler handler = new LeaseHandler(path) ;
Lease lease = handler.parseLease();
try {
// instantiate the trust lease in the system
int leaseld = trubi.startLease(lease, new TrustLeaseListener()

int callback(TerminationEvent ¢) {

// invoked before the lease ends

1
} catch (TrUbiRemoteException e) {
// lease creation failed
}

Listing 1: Java code fragment to start a lease.

3.1 TrUbi internals

Figure 4 presents the blueprint of our implementation. TrUbi rests
upon a standard Android stack, which comprises a modified Linux
kernel (bottom layer), the Android framework, which includes the
Android runtime, libraries, system services, and system apps (middle
layer), and client applications (top layer). TrUbi adds a set of specific
components (shown as dark shaded boxes) which implement the
trust lease reference monitor.

The core of the system is the TrUbi Manager, a system service that
enforces trust lease restrictions, coordinates the trust lease lifecycle,
and manages transitions between OS restriction modes. The TrUbi
Manager serves trust lease calls issued by strapps, which run on the
client application layer alongside regular Android applications. To
interface with the user and obtain trustlease authorizations, the TrUbi
Manager launches the Lease Confirmer system app, which displays
lease conditions to the user and provides buttons for accepting or
declining them. The TrUbi Manager keeps persistent state of ongoing
trust leases on the Lease Store.

To enforce access control restrictions, the TrUbi Manager relies on
asetof hooksspread across the system. Hooks monitor every accessto
restricted objects and trigger callbacks to the TrUbi Manager in order
to perform access control decisions. Some of these hooks are placed
in the Android framework (represented in Figure 4 as small shaded
boxes inside pre-existing Android system components). Their goal
is to control relevant events involving the lifecycle of applications
(e.g., launching an app), access to content providers (e.g., system
settings), or access to system services that control certain resources
(e.g., sound, camera). Some other hooks are located in the Linux
kernel (e.g., for restricting network access), more specifically in the
TrUbi kernel module. To streamline the communication between
hooks and TrUbi manager, access events are routed from the hooks to
the TrUbi Manager via a dedicated system service named TrUbi Bus.

3.2 TrUbi API

To expose its services to strapps, TrUbi provides a simple API which
implements the trustlease primitive introduced in Section 2. Listing 1
shows a sample Java code of the steps that a strapp developer would
need to follow to start a trust lease, namely: obtain a reference to the
TrUbiManager, read therestriction policy froman XML fileintoalocal
objectinstance, and invoke method start Lease with two parameters:
the restriction policy object, and the trust lease termination callback.

‘ T ‘ Restrictors ‘ Description ‘ w ‘
‘ A ‘ ExecApps ‘ Prevents the execution of applications. ‘ X ‘
R | Network Prevents access to the Internet. X
Camera Denies access to the camera. X
Phone Call Prevents making or receiving phone calls. X
SMS Prevents sending or receiving SMS / MMS messages. x

Screenshot Blocks screenshots.

S | Microphone Mutes the microphone.

Sound Force the sound to be muted. X

Brightness Dims device screen brightness and prevents changes. X

Airplane Mode Disables all wireless transmission functions of the device.

LED Forces the camera built-in LED to be disabled. X
Bluetooth Disables Bluetooth communication.
Time Prevents changes to system time.

Legend: T: type of restrictor, A: application, R: resource, S: settings, W: app whitelist.

Table 1: Restrictors supported by TrUbi.

Alternatively to XML files, the restriction policy can be initialized
programmatically. To terminate the trust lease explicitly (not shown
in Listing 1), the developer must invoke stopLease.

To accommodate a large range of restriction policies, we imple-
mented 13 different restrictors as listed in Table 1. For each restrictor,
we indicate: the type, name, a brief description, and whitelist support.
The type indicates the restrictor categories: application, resource, or
settings. TrUbi provides one application restrictor, five resource re-
strictors (network, camera, phone call, SMS, and screenshot service),
and seven setting restrictors (microphone, sound volume, screen
brightness, airplane mode, LED, Bluetooth, and system time). By
default the restrictions described in the table will be applied to all
applications installed in the system, comprising the strapp that owns
the lease. Some restrictors, however, can receive a white-list desig-
nating applications that will not be affected by the restrictor. The
fourth column of Table 1 places mark “x” if a whitelist is supported.

The trust lease remote attestation primitives follow the crypto-
graphic protocols specified in Section 2. For symmetric cryptography
we use AES-256, and for digital signatures RSA-1024 and SHA-2. To
secure the cryptographic keys, we use Android’s Key Store. In our
current implementation we do not verify the integrity of the kernel
using trusted computing hardware. The reason is that, in order to
ensure compatibility with ASM (see the next section), we used the
same hardware testbed as ASM’s authors did (Nexus 4 phones). How-
ever, this hardware offers no access to trusted computing primitives.
Nevertheless, this limitation is not fundamental.

3.3 System hooks

To implement the restrictors indicated above it was necessary to
modify the Android OS—both at framework and kernel levels—in
order to override the access control decisions taken by Android itself.
However, modifying the OS in such a range is not only complex and
error-prone, but poses serious obstacles to the development and in-
corporation of new restrictors in the future. To tackle this challenge,
the first approach we considered was simply to revoke Android per-
missions of the restricted resources. However, the spectrum of trust
lease restrictions is wider than that covered by Android permissions,
e.g., controlling app execution, system clock.



As aresult, to reduce the complexity of this task and facilitate the
extensibility of our system, we implemented a hooking mechanism
based on Android Security Modules (ASM) [11]. ASM is a security
framework that places hooks in the Android system and allows ap-
plication developers to override the system’s default access control
mechanisms by implementing custom access decisions in their ap-
plication code. ASM provides a backbone for placing and handling
hooks in both the framework and kernel: the TrUbi Bus is imple-
mented by the ASM Service, the TrUbi kernel module is based on the
ASM LSM for intercepting kernel hooks, and some framework hooks
are provided by ASM (in Activity Manager and Camera Service).

Note, however, that ASM alone is insufficient to implement TrUbi.
Figure 4 illustrates the extent to which we used ASM: the grey back-
ground indicates that a TrUbi component was natively implemented
by us, diagonal stripes under white background means that it was
based on an unmodified ASM component, and diagonal stripes under
grey background denotes that it was modified from a pre-existing
ASM component. In particular, we had to implement various frame-
work hooks unsupported by ASM, modified the ASM kernel module
(to control suspension and termination of application processes),
and built the remaining TrUbi components from scratch. Next, we
provide more details of the most technically relevant features that
had to be addressed specifically for TrUbi.

3.4 Blocking and resuming applications

TrUbi provides a restrictor named ExecApps, which prevents all but
the user-level apps specified in a whitelist from executing. When
atrust lease starts, TrUbi checks all running app processes that are
not identified in the restrictor’s whitelist, and suspends them until
the lease terminates. While the lease is active, TrUbi forbids the
execution of new processes for the apps not in the list. When the
lease terminates, TrUbiremoves the process executionrestriction and
resumes all suspended processes. Resuming application processes
aims to reduce the impact on user experience, since the app’s previous
state will be recovered after the lease terminates.

To ensure that the entirety of an application’s state is properly
suspended and resumed, TrUbi must keep track of all the processes
that belong to a given application. In fact, Android assigns a main
processtoeachapplication thatislaunched, and from this process, the
application code can spawn additional background processes using
the system call interface. However, keeping track of all processes
is relatively challenging. Although the ActivityManager controls
the lifecycle of applications’ main processes, it does not supervise
their background processes. For this reason, we must suspend /
resume applications’ processes from the Linux kernel. When a trust
lease starts, the TrUbi Manager sends a list of process UIDs that are
allowed to execute to the TrUbi kernel module. From the kernel,
TrUbiloops through the system’s process list and sends a SIGSTOP
signal to every process whose UID belongs to the userspace and is
not present in the list. When the lease finishes, TrUbi sweeps the
process list like before, but this time, sends a SIGCON'T signal to
the previously suspended processes, effectively unfreezing them. To
implement these operations, we extended ASM’s middleware-to-
kernel communication mechanism.

To prevent apps from running while a lease is active, we simply
used pre-existing ASM hooks placed in the ActivityManager. Some

of these hooks supervise the lifecycle of applications’ main processes
and components. TrUbileveragesthese hookstodeny operationsthat
result in the execution of new application processes: start Activities
and Services, bind to Services, and intent broadcasts to apps (which
cause the execution of Broadcast Receivers). Since background pro-
cesses can only be spawned from main processes, by blocking the
latter TrUbi also blocks the former.

3.5 Keeping track of time and location

In order to satisfy the trustlease conditions imposed by strapps, TrUbi
needs to securely keep track of time and location. To this end, given
that the OS is part of TrUbi’s trusted computing base, we rely on
mechanisms provided by or deployed into the OS. In particular, with
respect to time keeping, TrUbi uses a system background timer thread
that terminatestrustleases at the specified time. Whenaleaseisabout
to be enforced, TrUbi calculates the absolute expiration time of the
lease, and saves this information persistently. TrUbi keeps logging
the time left for the trust lease expiration so as to prevent device
reboots from interfering with the duration of the lease. Thus, even if
amalicious user reboots his device, TrUbi ensures that the lease is
resumed at system startup therefore ensuring full lease enforcement.
Additionally, to prevent the user or applications from modifying the
system time through the Settings app, TrUbi leverages hooks placed
in the System Clock and Alarm Manager system services.

Withrespectto thelocation, TrUbiimplements two location-based
trust lease terminators: gps and wifi. For location tracking, TrUbi
introduces changes to Android’s WiFi and Location managers. For
GPS, TrUbi waits for 30 location modification notifications indicating
the user is outside the lease’s perimeter before actually terminating
thelease. For WiFi, abackground thread scans surrounding networks
every 10 seconds, which are identified by their MAC, and terminates
the lease if the required WiFi networks are not within reach after
30 seconds. For GPS and WiFi, TrUbi again leverages its trust lease
persistence mechanism in case of device rebooting. Upon system
startup, TrUbi waits 30 seconds to assess the surrounding WiFi net-
works and 90 seconds for GPS signals, before deciding whether the
lease should be revoked or not. Time and space values are provided to
the terminators as parameters. By default, TrUbi defines a maximum
timeout.

4 USE CASE

To demonstrate TrUbi in a concrete usage scenario, we prototyped a
use case strapp named mExam, which was written in Java in about
2.7KLOC. This application provides support for a BYOD mobile sce-
nario whose goal is to replace printed exam copies with digital exam
submissions which can be performed from students’ own mobile
devices. In this context, exams must still be answered in examination
rooms in the presence of a professor.

To this end, we want to ensure that from the moment the student
enters the examination room, after being properly authenticated by
the professor (before the exam starts), until the moment the student
exits the room (upon completing the exam), students’ mobile devices
must be constrained to the execution of a single trusted application—
the mExam strapp—responsible for loading the exam questions froma
trusted server, displaying them on students’ devices, reading students’
local input, and submitting their responses back to the trusted server.
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Figure 5: mExam workflow.

To prevent cheating (e.g., by accessing the Internet on a browser),
TrUbi will be crucial by ensuring that these restrictions cannot be
overridden by students.

Figure 5 illustrates the steps implemented by mExam in order
to address these requirements. The first step represents a prepara-
tory operation in which the professor retrieves the identities and
credentials of enlisted students assigned to his examination room. As
students enter an examination room, the professor authenticates each
student and both their devices engage a protocol in order to enforce
the necessary restrictions on the student’s device. Communicating
over NFC, the professor’s device sends the required restriction policy
to the student’s device (step 2), and waits until the student accepts
the trust lease (step 3). The restriction policy specifies an ExecApps
restrictor granting exclusive execution rights to the mExam strapp
package. After approving the policy, the device enters the restricted
mode, and the student may take his place in the room. To start the
exam, the professor signals the exam server to allow the devices of
students in the room to retrieve the exam questions from the server
(step 4). The trust lease expires when one of five termination con-
ditions occur: the exam time limit is reached, the student submits
the exam, the student aborts the exam, the professor terminates the
student’s exam for some reason, or the student exits the room and
steps away from the local WiFi range.

Next, we briefly discuss relevant attacks that students can try to
launch and respective defense measures implemented by mExam.

Device swapping: Students may leverage a second device to cheat.
Although TrUbi does not offer a sound solution to this issue, appli-
cational mechanisms coupled with human invigilation can allow
for a professor to detect such frauds. In mExam, we implemented a
brightness detection solution, that allows the professor to be noti-
fied when this level drops, possibly meaning the device in question
is concealed. By doing so, we offer professors a justifiable reason
to enquire a student about his device’s state. At the same time we
also avoid situations where a student swaps the device and looks for
answers inadvertently, in plain sight of the professor. In this case, the
professor would be notified the legitimate device was hidden, and
the device the student was using was not the one authorized.

Malicious strapp: Students could be induced to install a malicious
mExam application which could compromise the normal course of
the exam, e.g., by terminating the trust lease ahead of time without
students’ awareness, which would prevent them from submitting
their responses. To prevent this problem, mExam relies on the app’s
signature verification feature implemented by TrUbi’s trust lease
negotiation mechanism. This means that during lease negotiation,
the mExam app installed on each student’s device has its signature

checked against the signature of a mExam application endorsed by
the school. This process allows the professor to detect the installation
of illegitimate mExam strapps.

WiFi spoofing: By spoofing a WiFi signal a student could lead
mExam to assume he was still taking the exam in case he left the
examination room without terminating it explicitly. Regarding this
issue, we assume it is the responsibility of the professor to ensure
students submit / abort the exam through mExam before leaving the
room, thus preventing further submission of exam answers. In this
case, professors benefit from mExam’s termination notification, i.e.,
a callback function similar to the one in Section 2.7, that notifies the
professor every time a student finishes his exam.

User impersonation. Another potential attack consists of allowing
a student physically located outside the premises of the examination
room, yet covered by the local WiFi network, to enrol and submit an
examonbehalfofanother student. However, given that students must
be authenticated through NFC, i.e., a close proximity technology, we
forcethe presence of the studentbefore the professor, thus eliminating
the possibility to perform this attack.

5 EVALUATION

Our evaluation of TrUbi aims to determine its impact to the func-
tionality of existing applications (Section 5.1), to the performance of
applications (Section 5.2), and to the user experience (Section 5.3).

5.1 Impact to the functionality of applications

To assess the impact of TrUbi to the functionality of applications we
need 1) to determine whether TrUbi’s trust leases are effective when
applied to real applications, and 2) to study potential side-effects to
applications when subjected to trust lease restrictions.

Methodology: To achieve our goals, we collected a test suite of
unmodified real-world applications and applied trust leases to them
under different patterns. For these patterns, we changed both the
type of restrictor applied by the trust lease and also the relative point
in time where the trust lease was applied: before, during, or after the
application has accessed a restricted resource.

Weselected applications thatrequire access toresources that TrUbi
can restrict: process, network, camera, phone call, SMS, microphone,
sound, brightness, LED, and Bluetooth. To test each restrictor, we
use amix of: system apps from the vanilla Android distribution (e.g.,
System Camera), and apps from the Google Play app market [9].
We chose apps that were popular and highly rated by March 2015.
Each restrictor was tested with 10 apps, except for the restrictors:
airplane mode, time, and screenshot. The reason for not testing
these restrictors with multiple apps is that they can be triggered only
through a limited set of entrypoints, such as the system settings, the
power button, or the Android Debug Bridge. In total, we collected 87
different apps. Most of these apps were used to test a single restrictor.
To test the process restrictor, we reused 9 of these apps.

The tests were performed on two Nexus 4 devices, featuring a
quad-core 1.5 GHz CPU, 2 GB of RAM, 16 GB of memory, 802.11 WiFi
interface, 768 x 1280 display, SMP camera, 3264 x 2448 pix, and a LED
flash. Both devices were flashed with Android 4.4.1 AOSP patched
with TrUbi code. For communications, we used WiFi.



Restrictors Size ABL ADL AAL
S/3/T B/K/F C/I/D L/F/R
CPU 1/9/10 -/-/10 -/10/~ 10/-/~
Network -/10/10 -/10/~ 9/1/~ 4/6/ -
Camera 1/9/10 -/10/~ 10/-/- -/=/10
Phone Call 1/9/10 10/-/~- 10/-/~ 10/-/~-
SMS & MMS 1/9/10 10/-/- 10/-/- 9/-/1
Microphone -/10/10 10/-/~- 10/-/- 9/-/1
Sound -/10/10 10/ -/~ 5/4/1 10/-/~-
Brightness -/10/10 10/-/- 2/8/ - 9/-/1
LED -/10/10 10/-/- -/10/ - -/10/ -
Bluetooth -/10/10 10/-/- 5/5/- 5/5/—
Total: 4/96/ 100 70/20/ 10 61/38/1 66/21/13

Legend: Size = test suite size (S = number of system apps, 3 = number of apps, T =
total number of apps); ABL = access before lease (B = access to resource blocked, K =
app killed, F = app frozen); ADL = access during lease (C = app state and GUI
consistent, I = app state and GUI inconsistent, D = app dies); AAL = access after lease
(L = seamless access, F = requires refresh operation, R = requires app restart).

Table 2: Trust leases on real mobile applications.

Trust lease effectiveness and side effects: For all tested applica-
tions, TrUbi was effective at enforcing trust lease restrictions, i.e.,
whenever a trust lease is active, applications have no access to the
resources that are constrained by the trust lease. Table 2 summarizes
our findings for three complementary cases.

Under “Access Before Lease” (ABL), the trust lease is activated
after the tested app has started to access a resource. As expected,
we observed that the access to the resource by the application was
blocked immediately since the activation of the trust lease. The way
how this access was blocked by TrUbi was manifested in three dif-
ferent forms: some applications stop having access to the resource
(1), others are killed (2), and others are frozen (3). Form 1 applies
when TrUbi can intercept all operations issued by the application
to a given resource. Examples include the microphone or the LED
flash. In such cases every access is preceded by an access control
decision that TrUbi can control. In contrast, for resources where an
access decision is made only when the application uses the resource
for the first time, TrUbi must kill the app in order to ensure that no
further accesses can be carried out by said application (form 2). This
policy is implemented for 10 camera apps and 10 networking apps.
For trust leases that restrict app execution, freezing unauthorized
apps is expected (form 3).

For the case “Access During Lease” (ADL), we activated the trust
lease first, and only then launched the application, which would
then attempt to access the restricted resource. In this case, despite
the fact that applications had been given legitimate access to the
resource (explicitly declared in the manifest and authorized by the
user), TrUbi was effective at suspending applications’ access rights
to that resource while the trust lease was active. However, different
applications reacted differently to this operation. For example, for
the camera, 9 out of 10 apps terminate; a single app remains executing,
but shows a black screen to the user and takes no photos. In other
cases, applications provide different outputs to the user. For example,
regarding the microphone, 9 apps tape silence, while a single app
notifiesthe userabout thelack of input. Asaresultofleaserestrictions,
we detected in some cases side effects to the consistency between the
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Figure 6: Execution time of API calls.

internal state of the app and its GUL In particular, we experienced
inconsistencies in 38 apps. For example, if the user turns on the
Bluetooth and a lease is active, an application will misleadingly show
the Bluetooth status as enabled. In contrast, 61 apps update their
visual interfaces consistently. For instance, all phone dialer apps
refresh their GUI properly by disabling calls. Under ADL, one app
crashed due to a null pointer exception.

Lastly, “Access After Lease” (AAL) covers the case where an app
attempts to regain access to a resource that had been blocked by a
trustlease. If the trustlease has expired, the app must be able to regain
access. Under AAL, we detected that, in most cases, applications
managed to regain access to the resource seamlessly: in 66 out of 100
tests. In other cases, however, the user must perform some manual
operation to “refresh” the GUI, e.g., by pressing the back button and
restarting an application activity. A refresh operation is required
by 21 apps. In more extreme cases, apps must be entirely restarted.
This occurs in 13 cases: 10 camera apps, and three apps handling
microphone, brightness, and SMS. Note that the reason for both
this abnormal behavior and the inconsistencies detected in ADL
cases is that trust leases modify the functionality that applications
are expecting from the Android API As a result, in order to work
properly with TrUbi, applications must be adapted to handle events
of revocation and reacquisition of resource access.

5.2 Impact to the performance of applications

To study the performance overheads of TrUbi, we measure the exe-
cution time of the API calls, and the time to setup trust sessions. All
measurements were taken from Nexus 4 devices using microbench-
marks. Unless stated otherwise, for each experiment, we report mean
and standard deviation of 50 runs. To avoid performance reading
noise from battery consumption, devices remain connected to the
power plug during our experiments.

Performance of TrUbi API: Overall, we find that the performance
overhead is small. Figure 6 presents our evaluation results of the
TrUbi API primitives. The relatively large standard deviation values
are mainly caused by the execution of Android’s garbage collector. As
for the start lease primitive, it was tested under different conditions.
Figure 6 shows that the minimum execution time of start lease is 23.5
ms and takes place when we restrict one resource without needing
to kill or to suspend applications (Start S). If we grow the number
of applications that need to be killed when starting the trust lease
(Start Kn), the execution times increase proportionally to the number
(n) of killed applications: between 34.32 and 146.3 ms, for 1 and 10



Trust Lease Installer Times
SSL phase | TRB phase Total
Time 0.32s £ 0.04 | 0.78s = 0.07 1.10s + 0.09
WiFi Percentage 29.09% 70.91% 100%
Round Trips 2 4 6
Time 0.70s = 0.05 0.89s = 0.05 1.59s + 0.06
NFC Percentage 44.03% 55.97% 100%
Round Trips 8 11 19

Table 3: Performance of attestation and lease deployment.

apps, respectively. If the trust lease freezes all services and apps, i.e.,
applies the process restrictor, the start lease takes 41.18 ms (Start F).

As opposed to start lease, all other TrUbi API primitives execute
in constant time since they are independent of the restrictors being
enforced. As shown in Figure 6, the primitives to stop, quote, and
verify a trust lease take 9.66, 6.7, and 26.54 ms, respectively. Compar-
ing the remote attestation primitives, we see that quotelease is more
efficient than verifylease. The reason is that the former performs a
single digital signature while the latter verifies two signatures: from
aquote, and from a certificate (see Section 2.7).

Performance of attestation and lease deployment: According
to our experience, a common operation performed by strapps is the
negotiation of trust leases. This operation leads one party to first at-
testasecond party, and then, upon successful attestation, instruct that
second party to deploy a specific trust lease. We call this operation
trust lease installer. Table 3 shows the total execution time of this
combined operation when the communication takes place over WiFi
(1.1 seconds) or NFC (1.59 seconds).

To better understand these numbers, we break them down into its
two constituent parcels: SSL handshake (SSL) and TrUbi handshake
(TRB). The SSL handshake is the first action to be performed by a
trust lease installer and takes two round trips to execute. The TrUbi
handshake ensues the SSL handshake and comprises two round trips
for (1) sending the restriction policy and starting the trust lease,
and (2) issuing and verifying quote signatures. With WiFi, the SSL
handshake takes about 29% of the total time, whereas with NFC,
this contribution increases to 44%. This is explained by NFC’s slower
connection setup time butalso because of the difference in the number
of round trips. Because NFC messages have a smaller payload, we
had to break down messages, resulting in a performance penalty,
where NFC takes over two times longer to complete the SSL phase,
when compared with WiFi. The difference between the number of
round-trips and performance is not linear, because NFC’s latency is
lower than WiFi’s. On the other hand, because TRB involves smaller
messages, the difference between NFC and WiFi is smaller.

5.3 Impact to the user experience

We concentrate on addressing two main questions, in particular: (Q1)
whether the ability of TrUbi to restrict the functionality of devices
undermines users’ confidence in the security of the system (which
could deter the adoption of TrUbi in the future), and (Q2) whether
potential users find the trust lease paradigm to be intuitive and TrUbi-
based applications easy to use.

Methodology: To address these questions we carried out two stud-
ies, both of which in the context of the mExam scenario. In one case,

we conducted a feasibility study consisting of two online surveys, one
for students and another for professors. Together, these surveys com-
prised a pool of 34 questions covering a broad range of topics, such
as security concerns and user incentives. We collected 20 answers
from students between 18 and 28 years old; 13 male and 7 female.
Additionally, we collected 10 professor answers; 9 male and 1 female.
In a second case, we conducted a hands-on usability study where
a group of users interacted with a TrUbi-enabled device running
mExam. For 20 minutes, users were instructed to answer a small
exam, as well as trying to cheat by circumventing the trust lease
mechanism. We conducted 10 tests with engineering students be-
tween the ages of 21 and 25; 7 male and 3 female; and with different
levels of proficiency in mobile devices: some students can send /
receive texts and phone calls, others manage apps and disk space,
and some even know how to develop mobile apps. For these tests we
used devices flashed with TrUbi. During the tests we aimed to find
out whether users understood the trust lease model, and how they
felt about its intuitiveness and ease of use. We were also interested
in seeing whether users’ perceptions on the trust lease model would
change after a hands-on experience with a TrUbi-enabled device.

Q1. Confidence: From the feasibility study, we learned that 75% of
the subjects were favorable to accepting the restrictions imposed by
trust leases in the context of an exam, as they believed such restric-
tions were clearly required for that particular application scenario.
Students felt comfortable with TrUbi’s privacy guarantees because
we explained that professors cannot covertly restrict settings with-
out students’ consent. Additionally, we explained professors cannot
access students’ private data leveraging trust leases.

From the usability study, the vast majority of students (90%) was
not distressed after confirming they couldn’t access other functions
of the device other than the mExam strapp itself, as they understood
the purpose and the time-limited duration of such restrictions. Some
of these students (30%) also answered the online survey, and declared
that after using mExam, their skepticism towards TrUbi’s effective-
ness has changed completely.

Q2. Usability: Overall, users were able to clearly understand the
concept of trust leases. However, some complaints were reported
mostly related with the user interface of our TrUbi implementation.
First, users had difficulty interpreting the lease conditions that TrUbi
displays in a pop-up window every time a trust lease is activated.
We learned that the text we were using to convey these conditions
was too verbose and should ideally be replaced by some suggestive
icon. Second, users expressed divergent opinions with respect to the
pop-up authorization windows every time a trust lease is requested
by a given application. Some users expressed the opinion that, af-
ter authorizing an application to request a specific trust lease for
the first time, this authorization decision remains implicit for future
trust lease requests by the same application. Other users, however,
declared it was important for them to be prompted for every trust
lease request. Based on these different reactions, we modified our
TrUbiimplementation to let users configure which option they prefer.
In particular, after the first trust lease authorization, users can opt to
receive only notifications that the trust lease has been reactivated
without the need to provide explicit input.



6 RELATED WORK

Alarge body of work aims to improve data security from untrusted
Android applications. Some systems aim to protect users’ privacy
through data shadowing [27], application workflow control [13], or
informationflow control [7,22]. Otherproposalsrefine Android’s per-
mission model in order to provide users with advanced features, e.g.,
assignment of different permissions to apps’ sub-components [24],
or definition of constraints on individual app resource usage [25].
Another group of proposals improves access control mechanisms by
mitigating privilege escalation, more specifically confused-deputy
and collusion attacks. Existing approaches may leverage static anal-
ysis techniques [10], runtime enforcement techniques [8, 16], or
both [26]. There is also extensive work in implementing mandatory
access control (MAC) for Android [5, 21]. ASM [11] and ASF [3]
provide middleware and kernel-level hooking APIs to implement
user-level access control models. All this work is complementary to
ours, since these systems assume users are fully trusted.

As for systems that impose restrictions to the device owner, we
highlight Digital Rights Management (DRM) and Trusted Execution
Environments (TEE). DRM systems such as OMA DRM [14] compli-
ant systems, or Porsha [15] aim to protect copyrighted content (e.g.,
preventing unauthorized copies). TEE systems [12, 18, 20] enable
secure execution of small pieces of app code from potentially compro-
mised OSes. Compared to TrUbi, DRM is narrower in scope since it
focuses on content protection only. TEE enforces restriction policies
for app modules, whereas TrUbi covers full-blown apps and services.

The closest systems to ours aim to allow for the maintenance of
security policies on mobile devices by trusted third parties. Mobile
Device Administration (MDA) systems, such as Samsung KNOX [18],
Android for Work [2], Android’s Device Administration API[1], or
DeepDroid [23], enable IT managers to install and maintain secu-
rity policies on company-owned devices. Such policies constrain
the kind of operations that users are allowed to perform, and are
usually employed within organizations to prevent security breaches.
Recent work [4] allows for ARM TrustZone-based mobile devices
to be regulated by centralized servers deployed within restricted
spaces, such as federal or corporate offices, or examination halls.
CRePE [6] is arelated system in which multiple trusted third parties
can maintain different sets of policies on a given device. MOSES [17]
allows for the definition and enforcement of security profiles that
implement different operation modes on smartphones (e.g. Work,
Private, etc). In all these systems, however, users must give away
full control of their devices on behalf of one or more third parties
which may hinder their adoption. TrUbi complements these systems
by providing the ability to negotiate restrictions and termination
conditions dynamically (through trust leases) without relying on a
trusted administrator. TrUbi is, therefore, more suitable for personal
mobile scenarios than existing systems. Lastly, although the concept
of trust lease has been introduced in prior work [19], TrUbi fully
validates this new OS primitive by presenting a full system design,
and demonstrating its practical implementation on a commodity
mobile operating system.

7 CONCLUSIONS

This paper presented TrUbi, a system providing trust lease support
for Android devices. Trustlease is a general abstraction that allows

applications to enforce functional restrictions on mobile devices. To
the best of our knowledge, TrUbi is the first implemented system that
explores the potential of this abstraction. TrUbi provides Android
developers with a simple API and expressive policy specification.
We demonstrate TrUbi’s potential by developing a use case applica-
tion showing a novel restricted mobile scenario. Moreover, through
extensive empirical evaluation, we show that TrUbi is efficient and
introduces low overheads to both system and applications.
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