
Task Based Load Balancing for Cloud Aware
Massively Multiplayer Online Games

André Pessoa Negrão, Luís Veiga and Paulo Ferreira
Distributed Systems Group, INESC-ID

Instituto Superior Técnico, Universidade de Lisboa

andre.pessoa@tecnico.ulisboa.pt,{luis.veiga,paulo.ferreira}@inesc-id.pt

Abstract—In this paper we propose a task based load dis-
tribution framework for Massively Multiplayer Online Games
running in hybrid cloud environments. Our solution breaks
down high level tasks into subtasks in such a way that i) core
subtasks (those with strong timing constraints) are executed at
private resources owned by game operators; while ii) background
subtasks (those with looser timing/reliability constraints) can be
offloaded to temporary resources acquired from a public cloud.
Our approach is lightweight and allows for faster deployment of
newly acquired servers, making it more suitable for temporary
overload situations. We present evaluation results confirming our
solution as a viable alternative to traditional strategies.

I. INTRODUCTION

The popularity of a Massively Multiplayer Online Game

(MMOG) is hard to predict at deploy time. In addition,

MMOGs have a highly dynamic active user population, which

experiences variations in number even over short periods of

time. These two factors combined make it difficult for MMOG

operators to anticipate the exact amount of resources necessary

to efficiently provision the game. As a result, operators tend

to adopt pessimistic measures by deploying static and large

infrastructures in which the number of resources is based

in worst case predictions of load. The result is an over-
provisioned environment in which a number of resources are

idle for most of the time [1].

In light of this, several authors [1], [2], [3], [4], [5],

[6] have proposed alternatives to over-provisioning based on

Cloud Computing (CC). By taking advantage of the elasticity

of CC [7], MMOG operators can deploy more conservative

infrastructures and resort to the cloud to acquire resources

according to the actual load experienced at runtime. As a

result, the available resources are used more efficiently and

the costs of deploying and supporting the game are reduced,

benefiting every stakeholder in the MMOG environment.

While cloud aware resource provisioning promises to im-

prove the cost-effectiveness of MMOGs, existing solutions

employ the traditional technique of partitioning/replicating the

virtual world on a fully operational game server deployed

at the newly acquired resource. This approach has two main

drawbacks. First, adding a new replica/partition to the system

entails reconfiguration costs (e.g., data migration) at deploy

time and heavy synchronization costs during the time the

acquired server is up. Second, given the unreliable nature of

the cloud, deploying fully operational servers might not be an

acceptable solution for some MMOG companies.

In this work, we propose a workload distribution solution

for cloud-aware MMOGs inspired by task based computing.

In our solution, when an overload event is identified, regular

high level tasks that are executed by the overloaded server

are broken down into subtasks that can offloaded to different

resources. Tasks are partitioned so that i) subtasks with strong

timing constraints or that require reliable game data are kept at

the original server or offloaded to reliable resources, while ii)

subtasks with less stringent timing requirements (background
tasks) can be offloaded to temporary resources acquired from

the cloud or to lightly loaded active resources.

The main advantage of this approach is that background

tasks can be designed to operate over abstract data and execute

low priority operations, while critical tasks/data are concen-

trated on reliable, long term resources. These characteristics

make task partitioning more suitable for temporary overload

situations (it introduces lower overhead at deploy time) and

for execution in unreliable environments (it promotes the use

of unreliable resources only for less critical operation).

The paper is structured as follows. Section II describes our

task based load distribution framework. Section III presents

implementation information. Section IV discusses the experi-

mental results obtained. Section V overviews the related work.

Finally, Section VI concludes the paper.

II. TASK PARTITIONING

In this section we describe our task partitioning framework

in detail. Without loss of generality, we discuss the process

as involving two servers, the main (or master) server and the

task (or worker) server. The master is the server that requests

load distribution in order to have its workload lightened. The

worker is the server that absorbs the extra workload coming

from the master (in the form of tasks).

A. Definition and Offloading

The task partitioning process consists in breaking down

a high level task that is executed as a whole at a single

server into multiple tasks: one core subtask and one or more

background subtasks. By default, the core task continues its

execution at the main server. Background tasks, on the other

hand, are meant to be offloaded to cloud resources.978-1-5090-3216-7/16/$31.00 c©2016 IEEE

2016 IEEE 15th International Symposium on Network Computing and Applications

48

The core subtask should be designed to keep responsibility

for executing the most time critical operations, as well as

those that require application specific information. Background

tasks, on the other hand, are designed to execute operations

with weaker timing and reliability requirements. In addition,

background tasks should be designed to be game-independent
– their execution should not require the installation of a copy

of the game, it should depend only on abstract data (e.g.,

standard geometric data, such as positions and areas).

This separation of concerns between core and back-

ground tasks allows a system facing an overload situation

to avoid/minimize the need for expensive code and/or data

transfer. The main server retains the main responsibilities for

user and data management; background tasks execute less

critical operations over abstract, non-sensitive data, making

them more suitable to be offloaded to unreliable resources,

such as those obtained from the cloud. They can, however, also

be offloaded to private resources, both new and active: because

task partitioning allows the high level task to be partitioned

into subtasks with arbitrarily small sizes, applications can more

easily take advantage of lightly loaded active resources.

While having independent background tasks is ideal for the

scenarios we envision, forcing this requirement on their design

would be too restrictive. This way, application designers

can also design dependent background tasks – background

tasks that need a full copy of the game data (or a reliable

partial copy). This solution gives application programmers

more freedom and still allows applications to benefit from the

advantages task partitioning provides in terms of separation

of concerns between reliable and unreliable resources. On

the downside, it has the potential of preventing the fast

server loading that independent background tasks allow. A

workaround to this is to design dependent subtasks with an

independent loading phase. This way, when they are offloaded

to a new server they can be executed while the application

loads onto the new machine. When loading is complete, the

subtask can be upgraded to its dependent phase.

B. Task Characterization

In state partitioning and state replication, the effects

of adding a partition/replica are general and mostly inde-

pendent of scenario: it results in a distribution of load

and server↔client bandwidth at the expense of additional

server↔server communication. When it comes to task par-

titioning, the arbitrary and application specific nature of the

process means that each task partitioning strategy may have a

different impact on each different resource. For example, one

task partitioning policy may only reduce computational load;

a different policy may have a higher impact on bandwidth,

while still influencing CPU usage.

For the load distribution process to efficiently make use of

task partitioning, each task partitioning strategy must have a

task descriptor that characterizes its effects on the relevant

resources. In particular, the task descriptor should describe

which resources will experience a load reduction at the master

and which resources will have a load increase at the worker(s).

The task descriptor can also contain a quantification of these

increases/reductions, although the reliability of the quantifica-

tions is difficult to ensure due to the dynamics of the execution

environment.

In addition to task characterization, servers also need to

be defined as core or background, in order for the system to

appropriately offload tasks. By default, private resources are

considered core and take precedence for the execution of core

tasks. Core resources can, however, also execute background

tasks if necessary.

Public resources, on the other hand, are considered back-

ground by default. Individual public resources can, however,

be promoted to the core group if application operators so

decide. Promotion can be done temporarily on-the-fly (e.g.,

if core resources are necessary, but the system no longer has

private resources available) or permanently, if operators see no

reason to distinguish between public and private resources.

III. IMPLEMENTATION

Our task based solution is an extension to the load bal-

ancing component of CloudDReAM [8], our middleware for

cost-effective execution of MMOGs in the cloud. Cloud-

DReAM follows a hybrid cloud architecture in which virtu-

alized servers can be acquired from public cloud providers,

as well as from a private cloud run by the operators of the

MMOG. To manage server→client traffic CloudDReAM uses

Interest Management [9], which consists in sending to each

user only updates that refer to relevant objects – typically

those within an Area of Interest (AoI) surrounding the player’s

avatar. In particular, we use our own Vector-field Consistency

(VFC) model [10], which divides the AoI into multiple zones

such that: updates to objects in the inner zone are sent to

the user immediately; as the distance increases, updates are

propagated at increasingly lower frequencies.

Within CloudDReAM, we implemented a few default task

partitioning strategies. Due to space constraints, in this paper

we focus on the two main strategies: matching and update

propagation partitioning. Matching is one of the main tasks

executed by a game server. It consists in identifying, for

each user, which objects are within the user’s AoI and, of

those, which ones have been modified (and, consequently,

need to be propagated to the user). The matching process

naturally lends itself to partitioning into two subtasks: the first

subtask identifies which objects are within each client’s AoI;

the second task identifies which of those objects have been

updated and need to be sent to the user.

Of these two tasks, the first one can safely be executed

at a task server, which becomes responsible for identifying

and informing the main server of modifications to each user’s

AoI . To make sure that the natural synchronization delays

between the master and the worker do not result in missed

interactions, the worker monitors and informs the master about

each user’s extended AoI – the actual AoI , plus an additional

area surrounding it. The master can, this way, keep track of the

objects in the nearby area and timely identify new additions

to any AoI .

49

(a) Frame rate. (b) Upload bandwidth.

Figure 1. Performance comparison between state and task partitioning.

To partition update propagation, we take advantage of the

multi layered characteristics of VFC by having the task server

propagating updates that refer to the less critical consistency

zones. Updates regarding high priority zones continue to be

managed by the master.

IV. EVALUATION

In this section we analyse how our solution fares against

state partitioning. To evaluate our solution, we deployed a 9

machine cloud from which new servers (VMs) are acquired as

necessary. We compare the performance of the system when

all servers are state partitioned against a version of the system

mixing task servers and state partitioned servers. For clarity,

we focus our evaluation on partitions that in one case are state

partitioned and the other are task partitioned. Thus, our results

show a pairwise comparison between the two strategies: a pair

of partitioned servers versus a main and a task server.

Throughout the analysis, we show the results obtained with

a varying number of clients. Clients were simulated by bots,

each controlling a single avatar that explores the game map.

We deployed clients evenly across the game map, resulting in

approximately the same number of clients in each partition;

as a result, the performance of the state partitioned server is

very similar. For this reason the figures show the averages of

the values obtained by each pair of state partitioned servers.

By contrast, due to their inherently asymmetrical relation, we

show the results of the master and worker servers separately.

The number of clients presented in each figure corresponds

not to the total number of clients in the system, but to the

number of clients shared by each pair of servers.

Figure 1(a) shows the performance differences between

state and task partitioning in terms of frame rate. Frame rate
measures how frequently the server is able to execute the

matching algorithm and send updates to clients. It is a crucial

high level metric that determines if the application is able to

provide its required quality of service.

As shown in the figure, the performance improvements of

offloading the matching task enable the system to ease the

natural degradation in frame rate that occurs as the number of

clients increases. Our solution is able to achieve frame rates

higher than 10 fps for up to 1500 clients, delivering optimal

frame rates for slow paced games and suitable for most types

of games. At 2000 clients, frame rates drop to approximately

6 fps, which, while not generally suitable, are still enough

for many types of games, especially under high load. The

partitioned system, on the other hand, experiences a clear sharp

decrease with more than 500 clients.

The frame rates of the worker, on the other hand, are

considerably lower than the master. This is due to the fact

that the worker has to execute the two parts of the matching

algorithm: 1) identifying if an object is within the AoI of

another and, if so, 2) identifying the specific VFC consistency

zone of such object. The worker, however, is responsible for

propagating updates that refer to the lower priority zones,

which have weaker requirements in terms of propagation

frequency. Considering the values achieved, it is unlikely

that the lower frame rates of the worker prevent the timely

propagation of such lower priority updates.

As Figure 1(a) shows, the worker is, nevertheless, able to

obtain higher frame rates than the state partitioned servers. The

main reason for this is that as the number of users increases,

update processing takes on a larger role at those servers,

due to conflict detection and synchronization with neighbour

servers, among other application specific issues. The worker,

on the other hand, does not handle such issues, because it only

deals with lower priority updates and does not participate in

neighbour synchronization.

Figure 1(b) shows the upload bandwidth results obtained.

The results show that the master is able to offload between

35%-40% of its bandwidth requirements to the worker. These

values put the maximum per-server upload bandwidth require-

ments of the task based solution, at most, 15% above those of

the state partitioned system, which has an approximately even

ratio between each pair of servers.

Note that the balanced distribution between state partitioned

servers only occurs because players have been evenly dis-

50

tributed across partitions. In practice, however, this situation

is highly unlikely and differences in load between partitioned

servers occur naturally. In fact, if the difference increases

past a certain threshold (due to hotspots), one of the servers

becomes overloaded. Overcoming this situation requires ac-

quiring a new server or, at least, redistributing the load among

active servers. In any case, this it involves expensive server

reconfigurations, adding more complexity to the system.

Task partitioning, on the other hand, is less exposed to

hotspots because workload partitioning between the master

and the server is mainly determined by AoI density (i.e.,

the average number of objects inside a user’s AoI), whereas

in partitioned systems the main factor is partition density.

Hotspots impact both of these factors, but have a stronger

influence on partition density, which depends exclusively on

the number of players in the partition. AoI density, on

the other hand, additionally depends on user behaviour and

increases at a slower rate.

V. RELATED WORK

Nae et al. developed some of the most seminal work on

cloud aware resource provisioning for MMOGs [11], [1].

Among their main contributions is a neural-network load

prediction algorithm that identifies the resources necessary

to provision a game environment over time. Marzolla et al.
[5]propose using a Queueing Network model to balance load

among servers in a multi-tier cloud infrastructure. Najaran

et al. [2] propose renting game servers from the cloud and

organize them in a P2P network. Glinka et al. [4] also

proposed a cloud aware infrastructure, but organize servers

as a replicated cluster.

The common factor between these solutions is that they

are based on traditional state partitioning/replication workload

distribution strategies, which have some important limitations.

First, they require full game servers, which take time to

become fully operational in the cloud. Load prediction may

minimize this problem, but makes the system too dependent on

its accuracy. Second, they involve server reconfiguration and

synchronization costs that are not suitable for temporary (and,

potentially, short-term) overload situations. Finally, they ex-

pose application data to the unreliable resources of the cloud,

which might not be acceptable for some game companies.

Our solution tackles these issues by allowing fast deploy-

ment of servers executing background tasks, which, by design,

are also more appropriate for execution in unreliable resources.

In addition, the task partitioning process is more stable, as it

maintains the most critical operations and data at the original

server.

Lim and Lee [12] have previously proposed a task based

load distribution scheme for MMOG-like environments. Their

solution allocates fine-grained, message-level tasks to servers

on a cluster at runtime according to CPU and network load.

However, their solution assumes a static infrastructure and

requires servers to be connected through high-speed networks,

which contrasts with the cloud environments our work targets.

VI. CONCLUSIONS

In this paper we proposed a task-based load balancing

architecture for Massively Multiplayer Online Games running

in cloud environments. Our system breaks down high level

server tasks into subtasks of arbitrary size and priority that

can be offloaded to other servers. Critical tasks are meant

to keep executing at the original server, while lower priority

tasks are designed to be offloaded to public cloud resources.

In comparison with the load distribution strategies typically

used in MMOGs, our solution is faster to deploy (making

it more suitable for temporary overload situations) and more

appropriate for execution in unreliable cloud resources. In

addition, it is general enough to allow applications to freely

define how and which tasks should be partitioned, as well as

the conditions for their offloading.

Acknowledgments: This work was partially supported by national

funds through FCT – Fundação para a Ciência e Tecnologia with

reference UID/CEC/50021/2013.

REFERENCES

[1] V. Nae, A. Iosup, and R. Prodan, “Dynamic resource provisioning in
massively multiplayer online games,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 22, no. 3, pp. 380 –395, march 2011.

[2] M. T. Najaran and C. Krasic, “Scaling online games with adaptive
interest management in the cloud,” in Proceedings of the 9th Annual
Workshop on Network and Systems Support for Games, ser. NetGames
’10. Piscataway, NJ, USA: IEEE Press, 2010, pp. 9:1–9:6.

[3] E. Carlini, M. Coppola, and L. Ricci, “Integration of p2p and clouds to
support massively multiuser virtual environments,” in Proceedings of the
9th Annual Workshop on Network and Systems Support for Games, ser.
NetGames ’10. Piscataway, NJ, USA: IEEE Press, 2010, pp. 17:1–17:6.

[4] S. Gorlatch, D. Meilaender, A. Ploss, and F. Glinka, “Towards bringing
real-time online applications on clouds,” in Computing, Networking and
Communications (ICNC), 2012 International Conference on, 2012, pp.
57–61.

[5] M. Marzolla, S. Ferretti, and G. D’Angelo, “Dynamic resource pro-
visioning for cloud-based gaming infrastructures,” Comput. Entertain.,
vol. 10, no. 3, pp. 4:1–4:20, Dec. 2012.

[6] C.-F. Weng and K. Wang, “Dynamic resource allocation for mmogs
in cloud computing environments,” in Wireless Communications and
Mobile Computing Conference (IWCMC), 2012 8th International, 2012,
pp. 142–146.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010.

[8] A. P. Negrão, M. Adaixo, L. Veiga, and P. Ferreira, “On-demand
resource allocation middleware for massively multiplayer online games,”
in Proceedings of the 2014 IEEE 13th International Symposium on
Network Computing and Applications, ser. NCA ’14. Washington, DC,
USA: IEEE Computer Society, 2014, pp. 71–74.

[9] K. L. Morse, “Interest management in large-scale distributed simula-
tions,” University of California, Irvine, Department of Information and
Computer Science, Technical Report ICS-TR-96-27, Jul. 1996.

[10] L. Veiga, A. Negrão, N. Santos, and P. Ferreira, “Unifying divergence
bounding and locality awareness in replicated systems with vector-field
consistency,” Journal of Internet Services and Applications, vol. 1, pp.
95–115, 2010.

[11] V. Nae, R. Prodan, and T. Fahringer, “Cost-efficient hosting and load
balancing of massively multiplayer online games,” in Grid Computing
(GRID), 2010 11th IEEE/ACM International Conference on, 2010, pp.
9–16.

[12] M. Lim and D. Lee, “A task-based load distribution scheme for
multi-server-based distributed virtual environment systems,” Presence,
vol. 18, no. 1, pp. 16–38, 2009. [Online]. Available: http://dx.doi.org/
10.1162/pres.18.1.16

51

