Manuscript

Pastel: Bridging the Gap Between Structured and Large-State
Overlays

Nuno Cruces, Rodrigo Rodrigues, Paulo Ferreira
INESC-ID, Lisbon, Portugal

Abstract

Peer-to-peer overlays envision a single overlay sub-
strate that can be used (possibly simultaneously) by
many applications, but current overlays either target
fast, few-hop lookups for contacting directly the re-
sponsible nodes, or slower multi-hop lookups that
can be used by applications that exploit the over-
lay topology (like multicast or anycast). In this pa-
per we present Pastel, an extension to Pastry that
bridges the gap between the two types of overlays.
Pastel maintains both Pastry routing tables and a
full information table, and we show how we can ex-
ploit synergies between the maintenance of the two.
We also propose a novel API that is richer than the
one offered by existing overlays, to give applica-
tions control over the type of lookups (structured,
multi-hop routing, or attempt direct contact).

We implemented Pastel in a discrete-event packet
level simulator and our results show that Pastel has
lookups that are usually more efficient than Pastry’s.
Furthermore, the bandwidth required by Pastel is
modest, even for a system with thousands of nodes.

1 Introduction

Peer-to-peer overlays (like Chord [24], Pastry [21],
Tapestry [11], or CAN [18]) form a decentralized,
self-organizing substrate that can be used by a myr-
iad of different applications with distinct require-
ments and ways of using the overlay. In many
cases, the designers of such overlays have expressed
the vision of deploying a single peer-to-peer over-
lay with many applications running on top of it
(e.g., [12]).

We can categorize the applications that have been
proposed to run on top of peer-to-peer overlays in
two broad groups.

The first group consists of direct contact applica-

tions that typically use a narrow get/put interface of-
fered by a layer running on top of a routing overlay
that implements a distributed hash table interface
(DHT) [7,22]. These applications (or, in some cases,
the DHTs that underlie them) only use the rout-
ing overlay to locate the node or set of nodes that
are responsible for storing a particular data item.
Once the lookup primitive returns the node or set of
nodes that are responsible for the information, these
nodes are contacted directly to store or retrieve the
data. Examples of such applications include file sys-
tems [15], or databases for citation indices [25].

The second group consists of routing applica-
tions, which are applications that actively use topol-
ogy formed by the routing overlay. For example,
a multicast application will form trees by taking
the union of the lookup paths to a common iden-
tifier [3]. The same principle is used by anycast ap-
plications [4].

In previous work, authors have presented propos-
als for reducing the lookup latency of peer-to-peer
overlays by increasing the amount of routing state
maintained by each node [10,13,17,19]. Such over-
lays achieve faster lookups because increasing the
knowledge of each node about other members of the
overlay will lead to a shorter lookup path, or ulti-
mately preclude routing (i.e., a full information or
“one-hop” lookup). However, such overlays cannot
be used by routing applications, where multi-hop
lookup paths are required.

This divide between overlays that support multi-
hop lookups and overlays that keep a large routing
state conflicts with the vision of a single overlay
that can support multiple applications (simultane-
ously or not). This is because routing applications
cannot be deployed in overlays with large routing
state (since they lack both the interface to contact



nodes along a lookup path and the topology formed
by structured overlay), and direct contact applica-
tions pay the penalty of slow lookups if they are
running on a multi-hop routing overlay.

In this paper we present Pastel, an extension of
Pastry that bridges the gap between the two types of
overlays. Pastel has a richer interface than the one
currently supported in existing peer-to-peer over-
lays. This interface enables the use of short lookup
paths (or, even better, full information lookups) for
direct contact applications, and long, proximity-
based lookup paths for routing applications.

The routing tables in a Pastel node can be func-
tionally divided in two parts: a structured part that
resembles a Pastry routing table [21] which is used
by routing applications, and an unstructured part
that maintains a full membership information table
with a large number of entries, to support efficient
lookups for storage applications.

This extended routing state will allow us to main-
tain the Pastry functionality that is used by routing
applications, and to extend it with highly efficient
(i.e., low latency) direct contact for the remaining
applications. But the reduced latency is not the only
advantage of Pastel. As we will show, there are syn-
ergies between the two parts of the routing state that
improve the maintenance protocols.

The design of Pastel also raised interesting is-
sues like how to control the extra bandwidth re-
quired to maintain a full membership information
at each node. We introduce a distinction between
strong links (that are aggressively kept up-to-date)
and weak links (that have a delayed reponse to un-
reachability) for the routing state in Pastel. We also
show how applications can deal with the presence of
weak links without affecting its correctness or per-
formance.

We implemented Pastel in a discrete-event packet
level simulator called p2psim [16], and we mea-
sured the efficiency of direct contact lookups and
the maintenance overhead introduced by the full
membership information in Pastel.

Our results show that Pastel can achieve lookups
that perform better than Pastry for direct contact ap-
plications: in the majority of the cases, multi-hop

routing is not required by these applications. Our re-
sults also show that the bandwidth required to main-
tain the extra state is modest, even for a system with
thousands of nodes. Furthermore, we achieve this
without sacrificing the multi-hop routing interface
required by routing applications.

The remainder of the paper is organized as fol-
lows. Section 2 gives an overview of Pastry, the sys-
tem we extended to build Pastel. Section 3 presents
an overview of our system. Section 4 presents the
Pastel design in detail. Section 5 shows an experi-
mental evaluation of our implementation. Section 6
presents related work, and we conclude in Section 7.

2 Pastry

In this section we summarize the design of Pas-
try [21], a peer-to-peer overlay that we used as a
starting point for the design of Pastel.

Each Pastry node is assigned a 128-bit identifier,
and the identifiers are ordered in a circular identi-
fier space modulo 2'?%. Node ids are uniformly dis-
tributed (e.g., they can be computed using a secure
hash of the nodes public key or IP address).

Pastry applications use items to partition their
workload, and assign to each item a responsible
node in the overlay, which is the numerically closest
live node (assuming that items have ids in the same
id space as nodes).

Pastry offers a route primitive that, given a mes-
sage and a key, reliably routes the message to the
responsible node. Assuming a Pastry network con-
sisting of N nodes, Pastry can route to any node in
less than [log,» N hops on average, where b is a sys-
tem parameter with typical value 4.

The routing algorithm “sees” Pastry ids as a se-
quence of digits with base 2°. Each node has a rout-
ing table that is organized into [log,» N1 rows with
2> — 1 entries each. Each entry in row # contains the
network address of a node whose node id matches
the present nodes node id in the first »n digits, but
whose 1 + 1st digit has one of the 2° — 1 possible
values other than the present node’s n + 1st digit (if
such a node is found in the overlay). Each entry in
the routing table refers to one of potentially many
nodes whose node id have the appropriate prefix.
Among such nodes, the one closest to the present



node (according to a proximity metric such as the
round trip time) is chosen.

In addition to the routing table, each node main-
tains network addresses for the nodes in its leaf set,
which consists of the nodes with the //2 numerically
closest node ids in each direction of the id space.

Using this state, the route operation works recur-
sively as follows. In each step, the node forwards
the message to a node whose node id shares with
the key a prefix that is at least one digit longer than
the prefix that the key shares with the current node
id. If no such node is found in the routing table, then
the message is forwarded to a node whose node id
shares a prefix with the key as long as the current
node, but is numerically closer to the key than the
current node id.

Node joins and departures are handled as follows.
When a node 7 joins the overlay, it initializes its state
by contacting an existing node asking to route a spe-
cial message to the id of the joining node, resulting
in some responsible node j. Then i obtains the leaf
set from j, and the nth row of the routing table from
the nth node encountered along the route to .

To handle node departures, nodes that are neigh-
bors in the id space periodically exchange keep-
alive messages. If a node is unreachable for some
duration then all nodes in the leaf set are notified
of that fact by the node that detected it, and nodes
remove this entry from their leaf set. Routing table
entries are repaired lazily when an attempt to route
through that node fails.

3 Pastel System Overview

We consider the Pastry system organization where
nodes are assigned a random 128-bit identifier, and
the identifiers are ordered in a circular identifier
space modulo 2!28.

As in Pastry, we assume that applications use
items to partition their workload, and assign to each
item a responsible node in the overlay, which is
the numerically closest live node. However, we also
need to take into account a variant of this occurrence
when the application uses replication, in which case
items have a set of responsible replicas, which we
will consider to be the set of k£ nodes whose ids are
numerically closer to the item id.

To maintain the routing capabilities of the over-
lay, and enhance the performance of direct contact
applications, we extend Pastry to maintain, side by
side, two sets of routing state: The Pastry leaf set
and routing table (parameterized by the number of
bits in a digit, ), and a full information table.

The additional routing information will enable an
extended API that satisfies both direct contact ap-
plications and applications that relie on structured
routing.

We envision that applications with mixed re-
quirements are those that will benefit the most from
having these two styles of routing available in the
same overlay. Unicast, anycast, multicast and broad-
cast are all well supported, and are usage patterns
shared by many applications. For example, a file
sharing system may use broadcast to perform com-
plex queries on shared files, unicast to gauge the
responsible for a file that is already identified, and
multicast groups to manage groups of nodes sharing
and downloading the same files.

4 Pastel Design

In this section we present a design for the Pastel sys-
tem in more detail.

4.1 Interface

With the two classes of applications in mind, we de-
vised the following application programming inter-
face, which we briefly outline. Note that the pre-
sented interface is slightly simplified for clarity.
The extension to Pastry consists of the send and
broadcast primitives.
Initialization

init(node) — allows the local node to either
join an existing Pastel overlay network, by referenc-
ing an existing node, or to bootstrap its own, initial-
izing all relevant state.
Message sending

send(msg, key[, k]) - tries to send the given
message directly (i.e., using the full membership in-
formation) to the live node with identifier numeri-
cally closest to key; if k is specified the k closest
nodes are contacted instead.

route(msg, key) - routes the message through
the structured overlay to the live node closest to key.



broadcast(msg[, depth]) - broadcasts the
message through the structured overlay; if depth is
supplied only up to 2% odes uniformly spread
in the identifier space are reached, otherwise all
nodes in the system are to be reached.
Message reception

deliver(msg, key) —callback invoked when a
message is received and the local node is the recip-
ient for the message, that is, its identifier is numeri-
cally closest to key among all live nodes for route,
or one of k nearby nodes for send.

forward(msg, key, next) — called when the
local node is about to forward the message, whose
recipient is the node closest to key, through the node
whose identifier is next.
Other operations

leafs(set) — callback used when membership
changes in the node’s leaf set.

part — abandon the overlay permanently and in
an orderly fashion.

4.2 Node State

Each Pastel node maintains a leaf set, a routing ta-
ble, and a full information table.

The leaf set and the routing table are identical
to the ones implemented in Pastry, and the system
tries to populate these with reachable nodes, thus
they must be kept current rather aggressively, espe-
cially the leaf set (see [21] for a precise description
of these tables).

The full information table does not need to be as
aggressively kept current, and we even deliberately
allow unreachable nodes to remain in this table for
some time period (we call these entries weak links).
This is because the correctness and liveness of Pas-
tel and the applications that use it do not depend
on the freshness of the information present in this
table. (The problem of performing lookups using
weak links is addressed in the next section.) This
table replaces Pastry’s neighborhood set with data
about all nodes instead of just a sample of nearby
nodes. For each entry, we maintain its node identi-
fier, network address, and freshness (time when last
contacted).

The storage cost of this data structure is accept-
able, especially if secondary storage is considered.

For instance, for 1 million 128-bit node IDs and
IPv4 addresses only about 25MB are needed. Given
this potential size, this table may have to be imple-
mented using a disk friendly data structure such as
a B-tree.

Bandwidth costs might be an issue, since nodes
can have short sessions [1, 23] and this leads to a
large number of notifications about routing informa-
tion being sent to everyone in the system. However,
weak links do not generate much maintenance traf-
fic. This is because we employ a strategy of a de-
layed response to unreachability: we wait for a cer-
tain amount of time T before we remove unreach-
able nodes from the full information table. There-
fore, we do not trigger events due to temporary dis-
connections. The importance of this strategy is sub-
stantiated by experimental studies that have shown
that despite short sessions, nodes in peer-to-peer
overlays tend to have much longer membership life-
times [1, 20], or, in other words, when they dis-
connect from the system, they tend to reconnect
later on. Furthermore, weak links also will allow
for piggybacking of information about membership
changes, which reduces protocol overheads.

Having a full information table is advantageous
to the maintenance of structured routing table en-
tries, since, when replacing entries in the routing ta-
ble, we can choose the best nodes among all live
ones, according to some proximity metric. To allow
sharing of proximity information, we can associate
synthetic coordinates (as determined by a system
like Vivaldi [6]) with node entries, instead of round
trip times which have to be determined individually.
This may lead to better choices for routing table en-
tries than Pastry, that relies on very scarce informa-
tion and the external knowledge of close by nodes
to find neighbors.

In the next sections we show how the full in-
formation tables also benefit from their structured
counterparts.

4.3 Routing

Pastel routes different message types in different
ways, supporting the requirements of diverse appli-
cations.

Messages sent with route are forwarded through



the structured overlay, using Pastry’s routing algo-
rithm [21] (i.e., using only strong links in the rout-
ing table and the leaf set).

Messages dispatched with the send primitive are
routed to the known node closest to the message key,
using the full information tables. If the closest node
is unavailable (which is more likely than when rout-
ing, since send uses weak links) the next closest
node is tried, and ultimately the live routing table
entries are used.

On the other hand, and if £ is specified, the mes-
sage is sent in parallel to the & closest nodes found
in the full information table, and the failure of some
of them is silently ignored.

We envision that direct routing applications will
use the send primitive in two distinct ways, depend-
ing on the application design.

The first scenario occurs if the application repli-
cates data among the leaf set of the responsible
node. In this case the application can use send with
a replication factor £ > 1. Since send uses weak
links, it may occur that the & replicas contacted are
not the exact current neighbors of the responsible
node, since some nodes may be down, and other
new nodes may not be contacted. However, we ex-
pect that the replication provided by the application
should be enough to tolerate such inconsistencies
(which we can see as being similar to node failures).

The other scenario is when the application just in-
tends to contact the exact responsible (and not just
one of the replicas). In this case, the send primitive
will not specify k, but it may fail to contact the re-
sponsible node (e.g., if a new responsible as recently
joined and the full information table did not reflect
this). To address this, the node that is contacted by
send forwards the message using the same proce-
dure (since it knows nodes closer to the key). Note
that even if this indirection is required, this is likely
to be faster than structured routing. In the worst
case, if send fails to reach the responsible node, we
can fall back to the traditional route primitive.

Messages distributed with broadcast are also
sent through the structured overlay using a mech-
anism similar to constrained flooding [2]. A node
wishing to broadcast a message makes each node

in its routing table responsible for distributing the
message to all nodes that share its prefix. When
all the descendants of a given node are contained
in its leaf set, the message is delivered directly to
them, and routing stops. The depth parameter can
be used to control maximum the number of nodes
that may receive the message, thus avoiding flood-
ing the network. A broadcast with depth D is accom-
plished by only broadcasting the message to the first
D lines in the routing table, decreasing D at each
hop. This way, the 28" nodes reached are uniformly
distributed in the identifier space, while at the same
time being amongst the nodes closest to the origi-
nating node, according to the proximity metric.

4.4 Join and Reconnect Protocols

When a node arrives, it must initialize all relevant
state and let others know he joined.

The first steps of the join protocol are very sim-
ilar to Pastry’s: The incoming node asks a known
overlay member to route to the id of the incoming
node, and the contents of the structured tables (rout-
ing table and leaf set) of the intermediate nodes that
are contacted are used to initialize the structured ta-
bles of the incoming node.

At this point, the full information table is now
either empty, if the node is joining the overlay, or
possibly outdated, if the node is reconnecting. Also,
the system nodes do not know of the existence of
the joining node.

Although this does not affect the system’s cor-
rectness, it affects the performance of the joining
node, and the latency of direct queries that should
reach the joining node. To address this, we need to
disseminate the join information to the remaining
system nodes, and the joining node must gather the
full membership information.

The protocol for disseminating the information
about the node join closely mimics the broadcast
primitive. Routing table entries are contacted and
made responsible for informing nodes that share
their prefixes about the join. A node should, how-
ever, locally terminate the routing of such messages
if it determines the joining node is already present in
his full information table. Also, when a node finally
delivers the join messages to nodes in its leaf set



Pastry

20

bandwidth (bytes/node/s)

1024 1740
system nodes

Pastel

w
o

w
o

Q
B 2
% W Join
8 20 OPart
E O Lookup
£ 15 B Maintenance
T .
2 @ Ping
210
c
[
2 5

0 - 1

1024 1740 3000

system nodes

Figure 1: Bandwidth of Pastry and Pastel, withb =4, L = 16 and k=9 (T = 1h)

(as per the broadcast protocol), or when it decides
to terminate further routing, it should report back
to the joining node. This report contains informa-
tion about all nodes that are leaves in the broadcast
tree, and allows the joining node to gather complete
membership information incrementally.

Reconnecting nodes must only download the up-
dates that occurred while they were offline. This can
be done efficiently using Merkle trees [14] to deter-
mine the missing information.

Note that, since correction is guaranteed by leaf
sets and the normal routing mechanisms, all these
messages are non-urgent, and can be piggybacked
on Pastry maintenance traffic to reduce IP level
overhead.

4.5 Leave and Part Protocols

When a node leaves the system permanently (e.g.,
when the Pastel application is uninstalled) it should
use the broadcast primitive to transmit a special
part message. Again, this message is not urgent and
can be piggybacked on Pastry maintenance traffic.

When a node fails without warning, or other-
wise transiently abandons the system, this is quickly
noted by the members of its leaf set who will evict
this node from that set. These nodes then start a
timer with time T plus some small random value. If
the node shows no activity before the first of these
timers expires, the node whose timer expired first
will broadcast the special part message on behalf of
the departed node.

Upon receiving a part message for a given node,

all information about this node should be deleted,
including information present in the full informa-
tion table, and pending timers related to that node.

Again, we stress that this leads to a significant
fraction of unreachable nodes in the full information
table of any give node, but we leave the solution of
this problem to the higher level layers, using replica-
tion (and waiting for a reply from any replica) or by
redirecting send requests to another nearby neigh-
bor.

5 Evaluation

This section demonstrates the benefits of using Pas-
tel through simulation. It shows that the mainte-
nance bandwidth required by Pastel is modest, even
for systems with a few thousand nodes, and that we
can improve significantly on Pastry’s lookup perfor-
mance. We also point out an improvement that can
lead to even better lookup performance in Pastel.

5.1 Experimental Setup

This evaluation uses an implementation of Pastel in
p2psim [16], a discrete-event packet level simulator
targeted at the evaluation of peer-to-peer protocols.

The simulations ran for 4 hours of simulated
time, of which only the last 3 hours are recorded to
allow for the system to stabilize. The simulator peri-
odically generates join, part and lookup events, that
follow exponential distributions. The average time
between joins and parts is 1 hour, and the average
time between lookups is 1 minute.

We used three topologies - with 1024, 1740 and



Pastry

w
o
L

n
o
L

n
o

o
L

o
L

bandwidth (bytes/node/s)

|
0 - T 1

1740
system nodes

3000

Pastel

w
o

n
o
L

W Join
OPart
O Lookup

n
o
L

o
L

D Ping

W Maintenance

o

bandwidth (bytes/node/s)

o

o

1740 3000

system nodes

1024

Figure 2: Bandwidth of Pastry and Pastel, withb =2, L =8 and k = 5 (T = 1h)

3000 nodes. The 1740 nodes topology models a real
network as described in [9]. The 1024 nodes topol-
ogy corresponds to a sample of nodes taken from the
1740 nodes topology, and the 3000 nodes topology
is a random euclidean topology designed to approx-
imate the other two in terms of the average round
trip time.

5.2 Bandwidth

Our first simulations compare Pastel with Pastry
in terms of bandwidth. We compared the average
bandwidth consumed by maintenance traffic by ev-
ery node in the system during the interval when
measurements were taken.

Figure 1 shows that Pastel adds some traffic to
manage membership changes. This traffic grows
linearly with N, which is what can be expected
in a system that keeps full membership informa-
tion. However, even for a system with thousands of
nodes, this bandwidth consumption is quite modest,
reaching a total of only 30 bytes/second/node in a
3000 node system. This shows that our design is
well-suited for systems of this order of participa-
tion, and will probably scale well to systems with
tens of thousands of nodes (or even a few hundreds
of thousands).

In Figure 2 we see similar results for a smaller
b (the parameter that defines the base of the digits
used in the routing protocol). We can see that band-
width costs in general are reduced. Reducing b does
not negatively impact Pastel’s lookup performance
due to its full information system, and it can be ar-

gued that a smaller b can actually be benefic for ap-
plications that take advantage of longer multi-hop
paths to distribute load.

5.3 Lookups

The next set of experiments examine the efficiency
of full information lookups in Pastel. The gathered
data corresponds to the anycast to any one replica:
the lookup message is sent in parallel to all the repli-
cas, and the first good answer is accepted.

Figure 3 shows that the percentage of lookups
satisfied in the first hop is between 50 and 60%.
This already represents an improvement over Pas-
try, that for the same network sizes and with b = 3
requires an average of 3 hops for each lookup. Also
note that in Pastel, when a one hop lookup fails, the
algorithm falls back to a Pastry lookup. Therefore in
the remainder of the cases we can get a performance
that is comparable to Pastry.

However, we believe we can improve Pastel fur-
ther to get the ratio of successful one hop lookups
above 90%, a result that was achieved by the One
Hop overlay [10], which uses a set of static trees to
distribute all join and leave events.

To understand the causes of failed lookups, we
investigated how full membership information was
being gathered at each node. We evaluated the
“quality” of full information tables by measuring
how many of those nodes are still live, and how
representative are those live nodes of all the live
nodes in the system. As can be seen in Figure 4, the
percentage of live nodes in the full information ta-



One-Hop

1024 1740 3000
system nodes

Figure 3: Percentage of lookups satisfied in one hop, with
L=2tandk=L/2+1(T = 1h)

bles remains approximately constant with network
growth. On the other hand, the representativity of
those nodes when compared to the entire system
reduces with network growth. This explains why
lookups are less efficient on larger networks.

Figure 4 can also be read the following way. The
first column represents the probability of a given
node in our full information tables being alive when
we try to contact him; the second column repre-
sents the probability that given a random identifier
we know the node responsible for it.

5.4 Delayed Response to Unreachability

To understand the impact of having a delayed re-
sponse to unreachability (i.e., waiting before we de-
clare an unreachable node to be removed from the
system) on the quality of the full information ta-
ble we tried halving the time 7 that we wait be-
fore announcing the departure of a node. As Fig-
ure 5 shows, varying T contributes to improve the
percentage of live nodes in tables (the first column).
On the other hand, it also contributes to lower the ra-
tio of the second column, which makes sense since
nodes evicted from the full information table may
return.

5.5 Replication Factors

We tried to analyze the effect of increasing replica-
tion factors in the quality of lookups. In Figure 6 we
see that increasing & gains us a little under 10% on
the ratio of successful one hop lookups. However,
given the large portion of unknown nodes, there is a
limit to how successful this can be.

From this analysis we gather that the best way
to improve lookup efficiency is to improve the way

Full Information Table

50% @ [live table nodes] / [table
nodes]

M [live table nodes] / [live

30% system nodes]

1024 1740
system nodes

Figure 4: “Quality” of the full information tables, with
T'=1h(b=4,L=16andk =9)

joins are handled, which will cause less nodes to be
unknown to other nodes. In particular, the broadcast
primitive we used to disseminate joins did not make
sure messages were delivered to all live nodes (this
limitation was also noted by other authors [5]). We
are currently working on improving Pastel to use
a more reliable version of the broadcast primitive,
and we believe that the final version of this paper
will include results of this improved implementa-
tion, probably with even better lookup performance.

6 Related Work

Our work builds on existing routing protocols
for peer-to-peer overlays. Initial proposals (like
Chord [24], Pastry [21], Tapestry [11], or CAN [18])
require multiple routing hops (typically O(log N))
to perform a lookup. More recent proposals (like
One Hop [10], Beehive [17], or Accordion [13])
have tried to increase the amount of routing state
maintained by each node to improve lookup per-
formance. The side effect of these proposals is that
the new overlays are not well-suited for applications
like peer-to-peer multicast [3, 26] or anycast [4]
that exploit the topology formed by the multi-hop
lookup paths. Pastel improves on the former group
of overlays by achieving a better lookup perfor-
mance of a single hop in most lookups. Further-
more, Pastel improves on the more recent propos-
als with increased routing state by also supporting
O(log N) lookups that enable the deployment of
“routing” applications like multicast. Furthermore,
we improve on the other algorithm that provides
one hop lookups [10] since OneHop uses a set of
static distribution trees to disseminate join and leave



Full Information Table

@[live table nodes] / [table
nodes]

MW ([live table nodes] / [live
system nodes]

1024
system nodes

Figure 5: “Quality” of the full information tables, with
T =30min(b=4,L=16and k=9)

events, which leads to load imbalance at the nodes
that are closer to the roots. Our proposal for using
broadcast distributes the load uniformly among the
system nodes.

Accordion [13] proposes a system that adapts
the size of its routing state in order to trade band-
width for lookup efficiency. Our system proposes
a slightly different tradeoff to achieve reasonable
bandwidth consumption. The tradeoff in Pastel is
between bandwidth consumption and the freshness
of the entries in the full information routing table
(and, consequently, the percentage of lookups that
complete in a single hop).

Pastel introduces an API that gives applications
the flexibility to choose between multi-hop and
single-hop routing. This extends existing APIs that
only support a single “route” primitive. Most no-
tably, a uniformed key-based routing API was pro-
posed [8] with the goals of facilitating independent
innovation in overlay protocols, services, and appli-
cations, allowing direct experimental comparisons,
and encouraging application development by third
parties.

7 Conclusion

This paper presents Pastel, a truly generic peer-to-
peer overlay that can be used by many applica-
tions. Pastel extends Pastry in order to create a sub-
strate that can support both fast, few-hop lookups,
for direct contact applications, and slower, multi-
hop lookups, for applications that exploit the over-
lay topology.

Pastel’s design demonstrates that synergies exist
between the maintenance of full membership infor-

One-Hop

1024 1740
system nodes

Figure 6: Percentage of lookups satisfied in one hop, with
L=2-2andk=L/2+1(T =1h)

mation and structured routing state, and that, by ex-
ploiting them, bandwidth and storage costs can be
kept low, even for reasonably sized and dynamic
systems.

We implemented Pastel in a discrete-event packet
level simulator and our results show that Pastel has
lookups that are more efficient than Pastry’s in the
majority of the time. Furthermore, the bandwidth re-
quired by Pastel is modest, even for systems with
thousands of nodes.

Currently, we are working on improving the
broadcast primitive used by Pastel’s protocols to im-
prove the coverage of our event dissemination, and
consequently the percentage of successful one-hop
lookups.

References

[1] R. Bhagwan, S. Savage, and G. Voelker.
Understanding availability. In Proceedings of the
2nd International Workshop on Peer-to-Peer
Systems (IPTPS’03), Berkeley, CA, Feb. 2003.

[2] M. Castro, M. Costa, and A. Rowstron. Should we
build Gnutella on a structured overlay? In Second
Workshop on Hot Topics in Networks (HotNets-II),
Cambridge, MA, USA, Nov. 2003.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, and
A. Rowstron. SCRIBE: A large-scale and
decentralised application-level multicast
infrastructure. IEEE Journal on Selected Areas in
Communications (JSAC), 2002.

[4] M. Castro, P. Druschel, A.-M. Kermarrec, and
A. Rowstron. Scalable application-level anycast
for highly dynamic groups. In Networked Group
Communication (NGC), Munich, Germany, Sept.
2003.



(3]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

M. Castro, M. B. Jones, A.-M. Kermarrec,
A. Rowstron, M. Theimer, H. Wang, and
A. Wolman. An evaluation of scalable
application-level multicast built using peer-to-peer
overlays. In INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer
and Communications Societies, pages 1510-1520,
San Francisco, CA, USA, Apr. 2003.
F. Dabek, R. Cox, F. Kaashoek, and R. Morris.
Vivaldi: A decentralized network coordinate
system. In Proceedings of the ACM SIGCOMM
'04 Conference, Portland, Oregon, Aug. 2004.
F. Dabek, M. F. Kaashoek, D. Karger, R. Morris,
and I. Stoica. Wide-area cooperative storage with
CFS. In Proceedings of the 18th ACM Symposium
on Operating System Principles, Banff, Canada,
Oct. 2001.
F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz,
and I. Stoica. Towards a common api for
structured peer-to-peer overlays. In Proceedings of
the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS’03), Feb. 2003.
K. P. Gummadi, S. Saroiu, and S. D. Gribble.
King: estimating latency between arbitrary internet
end hosts. SIGCOMM Computer Commun.
Review, 32(3), 2002.
A. Gupta, B. Liskov, and R. Rodrigues. Efficient
routing for peer-to-peer overlays. In Proceedings
of the 1st USENIX Symposium on Networked
Systems Design and Implementation (NSDI "04),
San Francisco, California, USA, Mar. 2004.
K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y.
Zhao. Distributed object location in a dynamic
network. In SPAA ’02: Proceedings of the
fourteenth annual ACM symposium on Parallel
algorithms and architectures, pages 41-52,2002.
D. R. Karger and M. Ruhl. Diminished chord: A
protocol for heterogeneous subgroup formation in
peer-to-peer networks. In Proceedings of the 3rd
International Workshop on Peer-to-Peer Systems
(IPTPS’04), San Diego, California, USA, Feb.
2004.
J. Li, J. Stribling, R. Morris, and M. F. Kaashoek.
Bandwidth-efficient management of DHT routing
tables. In Proceedings of the 2nd USENIX
Symposium on Networked Systems Design and
Implementation (NSDI ’05), Boston,
Massachusetts, USA, May 2005.
R. C. Merkle. A Digital Signature Based on a
Conventional Encryption Function. In Advances in
Cryptology, number 293 in Lecture Notes in

10

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

Computer Science, pages 369-378.
Springer-Verlag, 1987.

A. Muthitacharoen, R. Morris, T. Gil, and

B. Chen. Ivy: A read/write peer-to-peer file
system. In Proceedings of the 5th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 2002), Boston,
Massachusetts, USA, Dec. 2002.

p2psim: a simulator for peer-to-peer (p2p)
protocols.
http://pdos.csail.mit.edu/p2psim/.

V. Ramasubramanian and E. G. Sirer. Beehive:
O(1) lookup performance for power-law query
distributions in peer-to-peer overlays. In Proc. of
the First Symposium on Networked Systems Design
and Implementation (NSDI ’04), pages 99—112,
San Francisco, California, USA, Mar. 2004.

S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A scalable content-addressable
network. In SIGCOMM ’01: Proceedings of the
2001 conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 161-172, Aug. 2001.

R. Rodrigues and C. Blake. When multi-hop
peer-to-peer routing matters. In Proceedings of the
3rd International Workshop on Peer-to-Peer
Systems (IPTPS04), San Diego, CA, USA,
February 2004.

R. Rodrigues and B. Liskov. High availability in
DHTs: Erasure coding vs. replication. In Proc. of
the 4th International Workshop on Peer-to-Peer
Systems (IPTPS’05), Ithaca, New York, USA, Feb.
2005.

A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for
large-scale peer-to-peer systems. In Proc.
IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2001),
Heidelberg, Germany, Nov. 2001.

A. Rowstron and P. Druschel. Storage
management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. In
Proceedings of the 18th ACM Symposium on
Operating System Principles, Banff, Canada, Oct.
2001.

S. Saroiu, P. K. Gummadi, and S. Gribble. A
measurement study of peer-to-peer file sharing
systems. In Proc. Multimedia Computing and
Networking 2002 (MMCN), Jan. 2002.

L. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable



[25]

[26]

peer-to-peer lookup service for internet
applications. In SIGCOMM °01: Proceedings of
the 2001 conference on Applications, technologies,
architectures, and protocols for computer
communications, Aug. 2001.

J. Stribling, I. G. Councill, J. Li, M. F. Kaashoek,
D. R. Karger, R. Morris, and S. Shenker. Overcite:
A cooperative digital research library. In Proc.
Fourth International Workshop on Peer-to-Peer
Systems (IPTPS’05), Feb. 2005.

S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H.
Katz, and J. Kubiatowicz. Bayeux: An architecture
for scalable and fault-tolerant wide-area data
dissemination. In Proceedings of the Eleventh
International Workshop on Network and
Operating System Support for Digital Audio and
Video (NOSSDAV 2001), June 2001.

11



