
This article was downloaded by: [b-on: Biblioteca do conhecimento online UTL]
On: 23 May 2014, At: 16:16
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Parallel,
Emergent and Distributed Systems
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gpaa20

OpenCOPI: middleware integration for
Ubiquitous Computing
Frederico Lopesa, Flavia C. Delicatob, Thais Batistac, Everton
Cavalcantec, Thiago Pereirac, Paulo F. Piresb, Paulo Ferreirad &
Reginaldo Mendese

a ECT – Federal University of Rio Grande do Norte, Campus
Universitário, Lagoa Nova, NatalRNBrazil
b PPGI/DCC-IM – Federal University of Rio de Janeiro, Avenida
Athos da Silveira Ramos, 274, Cidade Universitária, Ilha do
Fundão, Rio de Janeiro, RJBrazil
c DIMAp – Federal University of Rio Grande do Norte, Campus
Universitário, Lagoa Nova, Natal, RNBrazil
d INESC-ID – Technical University of Lisbon, Rua Alves Redol, 9,
Lisbon, Portugal
e Federal Service of Data Processing, SGAN Quadra 601, Módulo V,
Asa Norte, BrasiliaDFBrazil
Published online: 02 Oct 2013.

To cite this article: Frederico Lopes, Flavia C. Delicato, Thais Batista, Everton Cavalcante, Thiago
Pereira, Paulo F. Pires, Paulo Ferreira & Reginaldo Mendes (2014) OpenCOPI: middleware integration
for Ubiquitous Computing, International Journal of Parallel, Emergent and Distributed Systems,
29:2, 178-212, DOI: 10.1080/17445760.2013.831415

To link to this article: http://dx.doi.org/10.1080/17445760.2013.831415

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,

http://www.tandfonline.com/loi/gpaa20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/17445760.2013.831415
http://dx.doi.org/10.1080/17445760.2013.831415

proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &
Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

OpenCOPI: middleware integration for Ubiquitous Computing

Frederico Lopesa1*, Flavia C. Delicatob2, Thais Batistac3, Everton Cavalcantec4,

Thiago Pereirac5, Paulo F. Piresb6, Paulo Ferreirad7 and Reginaldo Mendese8

aECT – Federal University of Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, RN,
Brazil; bPPGI/DCC-IM – Federal University of Rio de Janeiro, Avenida Athos da Silveira Ramos,

274, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil; cDIMAp – Federal
University of Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, RN, Brazil

dINESC-ID – Technical University of Lisbon, Rua Alves Redol, 9, Lisbon, Portugal; eFederal
Service of Data Processing, SGAN Quadra 601, Módulo V, Asa Norte, Brasilia, DF, Brazil

(Received 1 August 2012; accepted 23 July 2013)

In this paper, we present OpenCOPI (Open COntext Platform Integration), a Service-
Oriented Architecture-based middleware platform that supports the integration of
services provided by distinct sources, ranging from services offered by simple systems
to more complex services provided by context-provision middleware. OpenCOPI
offers selection and composition mechanisms to, respectively, select and compose
services provided by different sources, considering applications of both Quality of
Service and Quality of Context requirements. It also offers an adaptation mechanism
that enables to adapt the application execution due to service failures, service quality
fluctuation and user mobility. OpenCOPI allows the definition of applications in a
higher abstraction level by the specification of a semantic workflow that contains
abstract activities. This paper illustrates the use of OpenCOPI in an application from
the Gas & Oil Industry and it also shows the evaluation of the main mechanisms of
OpenCOPI: the service selection, composition, adaptation and workflow execution.

Keywords: integration platform; service composition; semantic workflow; adaptation
mechanism

1. Introduction

Ubiquitous Computing encompasses sensor-instrumented environments, which are often

endowed with wireless network interfaces, in which devices, software agents and services

are integrated in a seamless and transparent way and cooperate to meet high-level goals of

human users [18]. This computational power distribution provides new functionality

through support of personalised services and omnipresent applications [29].

Ubiquitous Computing environments are characterised by high heterogeneity and

dynamism. In these environments, the execution context is always changing. However,

tasks for context gathering, context handling and reaction to context changes should not be

tangled with application business logic because this approach tends to be repetitive and

error-prone. Instead, a more promising approach is to delegate those tasks to a context-

provision middleware [29,11,15,17,20,33,22,30] that should support most of the tasks

involved in the gathering and manipulation of context information in those heterogeneous,

dynamic and distributed environments, unburdening applications of handling contextual

information.

q 2014 Taylor & Francis

*Corresponding author. Email: fred.lopes@gmail.com

International Journal of Parallel, Emergent and Distributed Systems, 2014

Vol. 29, No. 2, 178–212, http://dx.doi.org/10.1080/17445760.2013.831415

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

http://dx.doi.org/10.1080/17445760.2013.831415

Typically, each context-provision middleware addresses different kinds of context

and adopts different models for handling and representing contextual information

(context model). In general, each middleware is suitable to meet different ubiquitous

application requirements. For instance, MiddleWhere [29] focuses on users and devices

location (addressing location-aware and mobility), while some middleware focus on the

management of wireless networks [16,8] and others are centred on the user activities and

preferences [18,7]. Moreover, context-provision middleware often use proprietary and

non-standardised protocols, thus resulting in isolated islands of devices using non-

uniform protocols [28]. The current trend is the emergence of more complex context-

aware ubiquitous applications that make simultaneous use of different types of services

supported by a myriad of service providers. Such services can encompass context-

provision functionalities as well as other functions, not necessarily related to context, but

also required for the proper operation/execution of ubiquitous applications. For example,

an application can require context-aware services to handle the contextual information

as well as conventional services, where conventional services can be database queries

services, legacy systems, messaging services, among others. Thus, complex ubiquitous

applications, in general, need to use several underlying platforms, each one providing a

specific type of context service. This feature increases the need for the integration among

these systems in order to provide a value-added service for users of ubiquitous

applications and to enable the use of several services provided by the underlying

middleware platforms, which can be composed to reach a high-level user goal.

In order to address this problem, we present the OpenCOPI (Open COntext Platform

Integration), a middleware platform that integrates context-provision services in a

transparent and automatic way and provides an environment to facilitate the development

of context-aware ubiquitous applications. OpenCOPI enables the integration of services

provided by distinct sources, ranging from services offered by simple ad hoc systems to

more complex services, such as services provided by context-provision middleware.

In addition, OpenCOPImeetsmany requirements ofUbiquitousComputing that, in general,

are not met by isolated context-provision middleware. Among these requirements, we can

highlight (i) an adaptive behaviour, in which applications dynamically adapt themselves

according to available services in the environment and (ii) the fact that applications should

be completely independent of specific concrete services, so that OpenCOPI enables to build

applications in a high abstraction level by specifying abstract activities.

Using OpenCOPI, applications only need to communicate with it to make use of

services provided by different underlying context-provision middleware. Moreover,

OpenCOPI provides service selection and composition mechanisms as well as an

adaptation mechanism. Service selection and composition mechanisms consider the

requirements of functional and non-functional applications, e.g. service quality metadata

(Quality of Service, QoS) and context quality (Quality of Context, QoC).9 The adaptation

mechanism enables to adapt the application execution due to service failures, service

quality fluctuation, emergence of new services and user mobility. Considering all these

characteristics, OpenCOPI enables complex ubiquitous applications to be easily built.

OpenCOPI architecture is based on Service-Oriented Architecture (SOA) [12] and on

the semantic Web services technology [5]. SOA has become a popular approach in

Ubiquitous Computing domains due to its characteristics such as loose-coupling, stateless

and platform independence, thus making SOA an ideal candidate for integrating

ubiquitous services [38]. In our work, according to the SOA approach, context-provision

middleware are providers that provide context services to ubiquitous applications

(clients), so that OpenCOPI works as a mediator between these players. In turn, the

International Journal of Parallel, Emergent and Distributed Systems 179

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

semantic Web services technology is an SOA implementation and therefore enables to

build ubiquitous systems with loose-coupling and platform-independence characteristics.

Moreover, OpenCOPI describes services through semantic descriptions that allow the

discovering and composition of services through inference mechanisms. Such semantic

descriptions are used to build semantic workflows, which are abstract descriptions of

applications that specify the order in which a set of (abstract) activities is performed by

various services to achieve the application goals [1]. Semantic workflows completely

decouple the workflow activities from the underlying services in order to enable the

development of applications independently of the available services or context-provision

middleware.

In this paper, we extend our previous work about OpenCOPI on the following

aspects by (i) detailing the composition and selection services, which were briefly

presented in [13]; (ii) including a running example and using it to illustrate all the

presentedmechanisms and showing how the abstract workflow is defined; (iii) performing

a more comprehensive evaluation of the proposed mechanisms, namely service

composition, selection and adaptation, as well as workflow execution, by using execution

plans more complex than those evaluated in our previous work and (iv) including the

evaluation of the implementation effort to build drivers to different context-provision

middleware, which is a task required by OpenCOPI. In addition, in this paper, we extend

the adaptation algorithm used in OpenCOPI and assess such algorithm by using different

configuration strategies to show that the overhead introduced by the adaptation is not

significant.

This paper is organised as follows. Section 2 presents the case study explored in this

paper and used to illustrate the OpenCOPI facilities. Section 3 describes the OpenCOPI

middleware platform. Section 4 discusses AdaptUbiFlow, the component responsible for

the OpenCOPI’s selection and workflow adaptation algorithms. Section 5 presents an

evaluation focused on service composition, service selection, workflow adaptation and

OpenCOPI’s overhead analysis. Section 6 discusses related work. Finally, Section 7

contains the final remarks.

2. Running example

This section presents a case study that is used along this paper. This case study is an

application from the Gas & Oil Industry domain that monitors the oil well in production

through a pumping unit machine in order to detect the need of changing the pumping unit

settings. Modifications may be necessary to increase the oil production and/or to decrease

the abrasion of some equipment of the pumping unit. Depending on the situation, the

application can trigger actions to make changes or directly notify the human responsible

for taking decisions about the pumping unit reconfiguration. This application was chosen

because it uses different types of context information provided by many sources.

To exemplify the use of OpenCOPI in the context of this application, we have selected

the burden variable to be monitored, which denotes the charge of oil extracted from a well

at each cycle of movement of a pumping unit. Each pumping unit has a specific maximum

value of burden (maxBurden) for its correct operation. If this value is abruptly reached, the

pumping unit operation must be stopped quickly to prevent its damage (a reactive

strategy). Furthermore, there is an intermediary value (intermValue), in which actions may

be taken (in a proactive way) to prevent the pumping unit to be stopped, consequently

avoiding loss of production and risks to the equipment. The complete case study

description, including the service providers, possible service compositions and services

F. Lopes et al.180

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

metadata can be found at the following URL: http://consiste.dimap.ufrn.br/projects/

opencopi/.

Figure 1 shows the workflow that represents the case study application in which each

activity is performed at least by one service. The execution starts in the first activity,

SubscribeBurden, which is related to a subscription to monitor the burden value of the

pumping unit. If the current burden value is between the pumping unit’s intermediary

burden value and the maximum value, then the workflow follows Flow1. If the burden

value is greater than the maximum value, then the workflow follows Flow2. Flow1

encompasses activities to automatically change the regime (relation between the length of

pumping unit’s stem and its frequency, in cycles per minute) of the pumping unit

operation. First, the SearchRegimeOptions activity looks for possible regimes of the

pumping unit operation, in which each regime variable is composed of a stem length value

and cycles per minute value. Then, the SearchPreviousChanges activity finds the regimes

previously used in this pumping unit. The next step is to change the regime

(ChangeRegime activity) and update this information (UpdateRegime activity) in the

registry of changes. Finally, a search is performed for technicians available

(SearchTechnicians activity) in the vicinity of the oil well and a message is sent to

them (SendMsgToEmployees activity). Thus, they can check whether everything is

running as expected. In turn, Flow2 describes the situation in which the burden value is

greater than the maximum limit of the pumping unit. To avoid damage to the pumping

Figure 1. Case study workflow.

International Journal of Parallel, Emergent and Distributed Systems 181

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

unit, the operation of the well is stopped (StopOilWellOperation activity). Next, a search is

performed to find the engineer responsible for this oil well (GetResponsibleEngineer

activity) and the technicians near to the oil well (SearchTechnicians activity). Finally,

warning messages are sent to them (SendMsgToEmployees activity).

Figure 2 presents the interaction among the case study application, OpenCOPI, and the

underlying service providers (including context-provision middleware). In this

application, we are considering nine service providers that are detailed as follows:

WellDatabase, ChangeControlSystem, BMDimensioner, GPSLocalizationMiddleware,

WifiLocalizationMiddleware, CellularLocalizationMiddleware, HRDatabase, GSMPlat-

form andMailPlatform. These different service providers offer services that are consumed

by the application through OpenCOPI. In this approach, the application is not aware of the

underlying service providers that supply the services consumed by the application.

In OpenCOPI, each activity of the workflow can be performed by one or more services,10

and a service is able to perform an activity if such service satisfies the functional and non-

functional requirements of an activity.

WellDatabase provides information about oil wells, being responsible for

asynchronously providing the current oil burden in each pumping unit. This provider

abstracts a widget of Context Toolkit (CT) [11], a context-provision middleware. This

widget monitors the pumping unit operation and triggers events to OpenCOPI through a

CT driver. This service performs the first workflow activity (SubscribeBurden).

BMDimensioner is a platform that provides services to manage the configuration of the

pumping unit’s operation regime. The services provided by this platform are responsible

for presenting the possible pumping unit configurations and changing them (e.g. switching

an operation regime to another one or stopping the pumping unit operation). This platform

provides services corresponding to the SearchRegime, ChangeRegime and StopOilWell-

Operations activities (presented in Figure 1).

ChangeControlSystem stores and recovers configuration changes performed at the oil

exploration equipment. In this case study, this system recovers which regimes were

Figure 2. Service providers of the case study.

F. Lopes et al.182

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

already used in each pumping unit. This system performs the SearchPreviousChanges and

UpdateChange activities (presented in Figure 1).

The GPSLocalizationMiddleware, WifiLocalizationMiddleware and CellularLocali-

zationMiddleware platforms are responsible for providing the location of technicians

spread over the oil field. Although they have the same functionality, each platform has a

different quality level (QoS and QoC) and their quality will influence the selection of the

service composition. Services provided by these platforms perform the SearchTechnicians

activity (presented in Figure 1).

HRDatabase is a system that provides employees information, e.g. which employees

are working at a given time. This system performs the GetResponsibleEngineer activity

(presented in Figure 1).

Finally, GSMPlatform and MailPlatform provide services used to send messages to

employees. As well as the location platforms, these platforms provide services with

different quality level, thus performing the SendMessageToEmployee activity (presented

in Figure 1).

3. OpenCOPI

This section presents OpenCOPI, a middleware platform, that integrates different service

providers including, but not limited to, context-provision middleware platforms to make

easier the task of developing context-aware adaptive ubiquitous applications. OpenCOPI

enables the collaboration of different service providers to reach a high-level goal, which is

to supply value-added services and contextual data to ubiquitous applications.

OpenCOPI provides its own communication model and an OWL (Web Ontology

Language) [36] ontology-based context model, in which context is handled by adopting

the semantic Web services perspective [23]. Under this perspective: (i) service providers

publish their services using the OWL-S language [37]; (ii) ubiquitous applications are

service consumers and (iii) OpenCOPI is a mediator that provides uniform access to

services used by ubiquitous applications.

Moreover, OpenCOPI offers automatic service composition, orchestration, execution

and adaptation to support these applications. Such composition and orchestration are

performed through a goal-oriented workflow, which decouples applications from the

underlying services that accomplish a given workflow goal and enables automatic service

discovering, service selection, composition and orchestration. The composition model

adopted by OpenCOPI is based on both services functionality and service metadata,

thus enabling a better choice among the available services with similar functionality,

e.g. different services that provide the same set of inputs and outputs.

In OpenCOPI, a semantic workflow is an abstract representation of a workflow

described in terms of activities, thus representing the application execution flow. In other

words, a workflow defines the sequence in which these activities must be executed. These

activities are described in terms of semantic Web services descriptions. In OpenCOPI,

each application has its own workflow and each workflow activity is a high-level

description of an application task. A workflow is independent of specific concrete services

as it separates the abstract activity from the concrete services that execute the activity.

This is useful mainly in cases where there are several similar available services11 offered

by different providers. In such cases, the service that best meets the non-functional user

requirements (i.e. service quality) can be chosen to be executed based on a given high-

level workflow. In order to execute a semantic workflow, it is necessary to create at least

one concrete specification for the workflow, which is called execution plan and contains a

International Journal of Parallel, Emergent and Distributed Systems 183

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

set of concrete, orchestrated Web services. Execution plans are built through an on-the-fly

process of service discovering and composition, according to the semantic enriched

interface of the selected services and the semantic workflow specification.

OpenCOPI also provides an adaptive mechanism (Section 4) that deals with service

failures or other changes in ubiquitous environments, which are highly dynamic.

Whenever a service failure happens, this mechanism automatically replaces the failing

service by an equivalent (and available) one. In addition, the adaptation mechanism

provided by OpenCOPI can reconfigure the application execution whenever there is a

significant degradation in the quality of the services that are being used, emergence of new

services with higher quality, or in case of user mobility. In this perspective, OpenCOPI

supports the fault-tolerance requirement of ubiquitous environments, thus increasing the

availability of such systems.

3.1 Architecture

OpenCOPI architecture encompasses two layers, namely ServiceLayer and Underlay-

IntegrationLayer as depicted in Figure 3. The components of these layers are explained in

Sections 3.1.1 and 3.1.2, respectively.

3.1.1 ServiceLayer

ServiceLayer is responsible for managing abstractions of services (OWL-S descriptions)

supplied by service providers. The components of ServiceLayer use such abstractions to

support workflow creation and execution, service selection, service composition and

Figure 3. OpenCOPI architecture.

F. Lopes et al.184

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

adaptation. In addition, they support context reasoning, context storing, among other

functionalities related to ubiquitous applications. These applications should implement the

IApp interface to communicate with the AppFacade facade, which is responsible for

receiving requests from the applications and forwarding them to the components of

ServiceLayer. Figure 4 shows a code snippet of the IApp interface with the basic

operations provided by OpenCOPI. Such interface enables the user to create, open and

execute a workflow and to specify his/her preferences regarding the selection and

adaptation processes, as detailed in Sections 3 and 4.

WorkflowManager. This component manages workflows, which are based on activities

described from abstractions of services provided by context-provision middleware.

The WorkflowManager component is composed of the following four (sub)components,

which provide support for specifying semantic workflows and generating execution plans.

The ServiceManager component is responsible for the following: (i) importing OWL-S

descriptions from service providers to OpenCOPI and validating such descriptions and (ii)

providing capabilities to search for basic concepts in the knowledge base (ontology) using

inputs and outputs of the available semantic Web services. SemanticComposer is

responsible for discovering and composing Web services according to the semantic

workflow specifications, i.e. it makes the mapping between workflow goals and

Web services. First, it tries to discover the services (among those available at the

SemanticServicesRepository) that can be used to compose the execution plan, given the

goals specified in the application request. Next, it tries to combine the discovered services

in order to consume all inputs and pre-conditions and to produce all outputs and effects

specified in the request. Then, the combined services are organised by SemanticComposer

according to the message flow between outputs of a service and inputs of the subsequent

service. The SemanticServicesRepository component stores both the ontologies that

describe the Web services and the execution plans. Finally, the WorkflowExecutor

component supports the workflow execution. It receives the execution plans generated

by the SemanticComposer and chooses a plan to be executed taking into account the

QoS/QoC of the service providers included in the plan. At run-time, WorkflowExecutor

executes the selected execution plan by making calls to the services provided by the

underlying context-provision middleware. In case of failure in one execution plan, the

WorkflowExecutor component chooses another execution plan (if any) in an attempt to

successfully execute the workflow.

MetadataMonitor. This component is responsible for gathering metadata about

services and context provided by context-provision middleware in order to feed the

ContextInformationRepository. OpenCOPI adopts an Service-Level Agreements [19]

approach in which service providers publish the quality metadata of their services and

Figure 4. Code snippet of the IApp interface.

International Journal of Parallel, Emergent and Distributed Systems 185

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

these metadata are used to select the services to be provided to the consumers. The quality

metadata are obtained from QoMonitor [4], a generic metadata monitoring system that

supports synchronous and asynchronous requests from OpenCOPI (or other middleware),

recovers metadata from several context providers and sends them to OpenCOPI. By using

QoMonitor system, OpenCOPI can abstract away the burden of dealing with the

complexities related to synchronous and asynchronous metadata monitoring. In a nutshell,

QoMonitor contains the following: (i) a metadata repository, which persists all QoS and

QoC metadata provided by service providers; (ii) a request handler, which receives the

requests from OpenCOPI (or other middleware using the QoMonitor), gathers the

metadata and sends the responses to OpenCOPI and (iii) an assessment module, which is

responsible for effectively monitoring and assessing QoS/QoC metadata of the services.

In such component, there is a specific assessor for each given QoS/QoC parameter. More

details about this monitoring system are presented in [4].

ContextReasoner. This component makes inferences about context data (low-level

context) gathered through the several context-provision middleware to supply high-level

and consistent context information for the applications.

ContextInformationRepository. This component stores context data and context

metadata, thus supplying context data to both the WorkflowManager and the

ContextReasoner components.

AdaptUbiFlow. The AdaptUbiFlow component [21] is responsible for the adaptation

process in OpenCOPI. As we previously mentioned, ubiquitous environments are highly

susceptible to changes, and several of them are unpredictable. In this context,

AdaptUbiFlow was specifically designed to deal with adaptation. In AdaptUbiFlow,

an adaptation means to replace the previously selected execution plan for another

execution plan, in which this new plan needs to meet the objectives of applications

specified in the workflow. This component works directly with the MetadataMonitor and

WorkflowManager components to identify a fault and automatically change the execution

flow in order to use another execution plan.

DevicesManager. The DevicesManager component manages the use of computational

entities in order to enable the migration of an application from a device to another in case

of user mobility or in case of resource limitations of the currently active device (e.g. low

level of energy, low level of free memory). These devices can provide services to be

consumed by applications, including services to provide context information of the device

(e.g. location, battery level, free memory level). When a user wants to start the execution

of an application, the DevicesManager component considers the device that is currently

used by the user as the active device, through which all interactions with the user are made.

When the user needs to change the current computational device (e.g. due to his/her

mobility), a new device is transparently reconfigured as the current active device. After

this reconfiguration, all interactions between user and applications are made through this

new active device. Each computational device must have a DeviceController component,

which enables the migration from a device to another and it is composed of two

subcomponents, DeviceMonitor and Driver. The DeviceMonitor component monitors the

device resources, such as level of energy, level of memory, level of free processor, device

location and services provided by the device itself. For instance, consider a situation in

which the user is using his/her tablet. When the DeviceMonitor detects that such tablet is

low-level energy, it notifies the OpenCOPI’s DevicesManager component, and then the

DevicesManager can evaluate the need of migrating the active application from the user’s

tablet to user’s smartphone or another user’s device. This notification is possible because

each DeviceMonitor provides a specific service to make notifications about the status of

F. Lopes et al.186

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

the monitored devices resources. This service can be consumed by the OpenCOPI’s

DevicesManager through device’s Driver component. Moreover, the DevicesManager

component enables the device to provide other (non-monitoring) services, e.g. a location

service using an embedded GPS that can be consumed by applications of other

OpenCOPI’s users. This is an interesting characteristic because it allows sharing of

resources, thus enabling devices with low computational resources (cheaper devices, in

general) to use resources of more powerful devices in terms of computational resources,

which typically are more expensive.

3.1.2 UnderlayIntegrationLayer

UnderlayIntegrationLayer is responsible for integrating service providers, mainly (but not

only) context-provision middleware, thus performing context conversion whenever it is

needed (from middleware context model to the OpenCOPI context model) and

communication protocol conversion. This latter type of conversion is required to integrate

middleware that are not compliant to Web services protocols and standards, but instead

adopt different protocols (e.g. sockets, RMI, CORBA). The IUnderlayIntegration inter-

face links service providers and OpenCOPI’s UnderlayIntegrationLayer. The components

of UnderlayIntegrationLayer are in charge of integrating service providers:

ServiceDiscovery. This component is responsible for discovering services into

environment and registering them in OpenCOPI. When discovered, traditional Web

services can be directly added to the SemanticServiceRepository since these services do

not deal with context information and therefore do not require context model

transformations. However, services provided by context-provision middleware need

additional operations to be properly integrated. For each context-provision middleware, it

is necessary to build a driver to implement the context model transformation, from the

middleware context model to the OpenCOPI context model. For context-provision

middleware that does not provide APIs complaint to the Web services technology, it is

necessary to build drivers in order to abstract away from the different APIs and to allow

the transparent access to the context data provided by these context-provision middleware

(see Figure 3). The driver is also responsible for issuing context queries and subscriptions

from OpenCOPI to the underlying context-provision middleware. Each driver should

extend the GenericDriver component.

GenericDriver. This component implements the OpenCOPI side of the interface and

defines operations for context model transformation and communication between a

specific context-provision middleware and OpenCOPI. Figure 5(a) shows an excerpt of

code in the Java programming language regarding the implementation of the

GenericDriver component. Figure 5(b) shows part of the driver built to the CT [11]

context-provision middleware. Such driver extends the GenericDriver class provided by

OpenCOPI.

ServiceFactory and ServiceBridge. The ServiceFactory component is responsible for

creating context services that encapsulate the specific middleware APIs; the ServiceBridge

component inserts these context services into the SemanticServiceRepository component

(subcomponent of the WorkflowManager component). Thus, each service provided

through the middleware API is represented by a Web service created by the

ServiceFactory component. Each one of these Web services uses the driver tailored for

the specific underlying middleware. Finally, UnderlayIntegrationFacade intermediates

the interaction between OpenCOPI and the underlying middleware.

International Journal of Parallel, Emergent and Distributed Systems 187

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

3.2 Context model

The OpenCOPI context model is specified as an ontology [13]. Such context model was

inspired in CONON ontology [35], but it includes extensions to allow the execution of our

workflow-based strategy. For example, Task and Object classes were inserted in the

ontology because they are used to create the workflow activities, in which each activity is

Figure 5. Code of the GenericDriver component (a) and part of the driver to CT that extends the
GenericDriver class (b).

F. Lopes et al.188

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

composed by a tuple kTask, Objectl. Similarly to the CONON approach, the OpenCOPI

ontology is implemented using the OWL language.

Since applications and services are commonly grouped as a collection of sub-domains

in ubiquitous environments, the OpenCOPI ontology is organised in two layers, namely

Generic Ontology Layer and Domain Ontology Layer. The Generic Ontology Layer

aggregates common concepts that can be modelled using a generic context model, which is

shared by all of the ubiquitous subdomains. In turn, the Domain Ontology Layer groups

different and extensible ontologies that describe particular ubiquitous environments,

e.g. home domain, office domain and petroleum exploration domain.

Figure 6 shows the representation of the OpenCOPI Generic Context ontology.

The model is structured around objects and tasks [14]. Tasks represent operations

implemented by one or more Web services, while objects can be physical or conceptual

things, including people, equipments, computational entities, messages and locations, as

well as can be used to describe inputs, outputs, pre-conditions and effects (IOPEs) related

to the tasks. Furthermore, it is possible to define associations between objects and tasks.

Figure 7 presents a partial definition of the Oil Exploration domain ontology (used in

the running example presented in this paper), which describes specific sub-classes (objects

and tasks) related to oil exploration environments. This ontology shows several

relationships between objects and between tasks and objects. An example of an object–

object relationship is the locatedIn relationship between the Equipment and Location

objects, which means that an equipment is located in a particular location. An example of a

task–object relationship is the relationship between the Send task and theMessage object,

which means that a message (email or SMS) can be sent (using some communication

channel).

3.3 Managing workflows

In OpenCOPI, the user needs to specify a workflow that represents the application

activities. Based on this specification, OpenCOPI performs a service composition,

i.e. searches for services that meet each specified activity and creates the possible

execution plans. If more than one execution plan is created, OpenCOPI needs to select one

of them to be executed. This selection is based on service and context quality

Figure 6. Partial description of the Generic Context ontology.

International Journal of Parallel, Emergent and Distributed Systems 189

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

(respectively, QoS and QoC). After selecting an execution plan, OpenCOPI can start the

execution of the execution plan by invoking each service. However, during the execution

of the execution plan, it may be necessary to trigger an adaptation process. This adaptation

process can be started due to a fault or quality degradation of a service or if new services

(with better quality) emerge. Users can configure the service selection and adaptation

processes in an easy way through an XML configuration file. Details about the workflow

specification are presented in Section 3.4, while details of the creation and execution of

execution plans are presented in Sections 3.5 and 3.6, respectively. Section 4 presents the

AdaptUbiFlow, which is the component responsible for selecting execution plans and

performing the adaptation process. The whole process is depicted in Figure 8.

Figure 7. Partial description of the Oil Exploration ontology.

Figure 8. Workflow management process in OpenCOPI.

F. Lopes et al.190

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

3.4 Workflow specification

In OpenCOPI, a workflow is represented by a direct acyclic graph in which each

intermediary node represents a specific service and each directed edge represents the two

services of the execution sequence. Each graph begins with an initial node and ends with a

final node. Initial and final nodes do not represent any service, but they are used to indicate

the beginning and the ending of the graph. Each complete path between the initial node

and the final node is an execution path, which represents a possible execution plan in the

workflow. Thus, the graph represents the workflow with all possible execution plans.

In Figure 9, a graph with some possible execution paths are shown, for instance (i) S1 ! S2

! S3 ! S4 ! S5, (ii) S1 ! S20 ! S3 ! S400 ! S5, (iii) S1 ! S6 ! S400 ! S5

and so on.

The workflow specification consists of describing the activities of a business process

through the combination between a task and an object (classes in the context model).

OpenCOPI provides an assistant that enables users to select these activities without the

need of creating each of them since they are already pre-defined according to the set of

tasks and objects specified in the context ontologies. These activities are, abstract

meaning, that the binding to the concrete service that will perform the activity is done at

run-time. The assistant shows a Task list and an Object list, in which the user can select a

kTask, Objectl tuple (e.g. kSubscribe, BloodPressurel or kSend, Messagel) to describe each
activity of a semantic workflow. The assistant also shows the list of possible IOPEs related

to each specified activity, enabling the user to select which IOPEs should be added to the

activity definition. Thus, the user describes only the abstract activities of the workflow, so

that when executing the workflow, OpenCOPI performs inferences on the ontologies to

discover which services perform each workflow activity and composes the possible

execution plans with these discovered services.

Figure 10 shows the process of creating workflow activities. The user requests, via

OpenCOPI’s GUI, the creation of a new activity. The request is received by the

WorkflowManager component, which is responsible for creating and editing the workflow.

This component asks the ServiceManager component for the list of possible tasks. Then,

ServiceManager recovers the concepts described in the domain ontology stored in the

SemanticServiceRepository component, loading all concepts in memory, and returning

the list of tasks and respective objects (objects related with each task) to the

WorkflowManager component. Next, the ServiceManager component shows these

concepts for the user, which selects the desired task and the object (e.g. the Subscribe task

Figure 9. Example of graph representation for a workflow.

International Journal of Parallel, Emergent and Distributed Systems 191

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

and the Burden object), so that this tuple is sent to WorkflowManager. Then,

WorkflowManager asks the ServiceManager component for the list of respective IOPEs of

this activity. With the concepts in memory, the ServiceManager returns the list of possible

IOPEs for the WorkflowManager, which forwards this list to the user. Then, the user

selects which IOPEs should be considered for this activity, thus finishing the process of

including an activity. This process is repeated for each activity of the workflow.

Once the user finishes specifying a workflow using the provided assistant, OpenCOPI

generates a representation of such workflow in the OWL ontology language, as illustrated

in Figure 11. Figure 11(a) depicts part of the OWL description that represents the

workflow activities. In this figure, it is possible to identify the activity arbitrarily named

Activity_1, which is composed of the Subscribe task and the Burden object, thus resulting

in the kSubscribe, Burdenl tuple, which describes such activity, as well as the associated

inputs (PumpUnit and OilWell, respectively, represented by the elements Input_4 and

Input_5) and outputs (Regime, represented by the element Output_6). Figure 11(b) shows

another part of the OWL workflow description that presents the configuration of the

execution process of the activities. In this specific case, we have a list of activities in which

the first activity to be executed is represented by the Activity_1 index; next, the activity

represented by the Activity_7 index is executed and so on. Such specification is used by the

OpenCOPI’s semantic reasoner for making inferences over the ontologies of the available

Web services and then discovering the services that are suitable to perform the activities

that compose the semantic workflow that specifies the business process regarding the

ubiquitous application.

The OpenCOPI’s assistant also allows using flow control connectors (condition,

repetition, etc.) at the semantic workflow specification. Figure 12 presents the assistant

screenshot in which three activities have already been added to the workflow and the

activity Choose_RegimeOption composed of the Choose task and the RegimeOption

object is being added.

Figure 13 presents a screenshot showing the second step of the addition of an activity.

This step consists of selecting the IOPEs, thus showing the inputs (RegimeList and

ChangeList) and an output (Regime) selected for this activity. When the user presses the

Finish button, the new activity is added to the workflow.

Figure 10. Process of creating a workflow activity.

F. Lopes et al.192

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

3.5 Creating execution plans

Once the workflow is completed, the next step is the creation of the execution plans.

Such creation is done by the SemanticComposer component in three steps:

(i) discovering which registered services can be used to satisfy the activity’s IOPEs;

(ii) matching the selected services in order to consume inputs, produce outputs and meet

pre-conditions and effects of each workflow activity and (iii) ordering the services of

each created execution plan, following the sequence of activities defined in the workflow

specification (service orchestration). OpenCOPI uses the matching algorithm presented

Figure 11. Partial OWL description of a workflow.

International Journal of Parallel, Emergent and Distributed Systems 193

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

by Mendes et al. [24] that composes Web services from a semantic workflow

specification taking into account the required inputs and pre-conditions and the produced

outputs and effects regarding each activity. Similar to workflows, the produced

execution plans are also described in the OWL ontology language, as illustrated in

Figure 14. This figure shows part of the description of an execution plan in which, for

example, the service described by the SendSMStoEmployees.owl service ontology is

Figure 12. Assistant for creating a workflow (part 1 of 2).

Figure 13. Assistant for creating a workflow (part 2 of 2).

F. Lopes et al.194

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

immediately executed after the service described by the SearchClosestTechniciansGPS.

owl service ontology.

3.6 Executing a workflow

Figure 15 shows the sequence of messages started after a user requesting the execution of a

workflow. Message 1 is sent to OpenCOPI through AppFacade, the facade responsible for

receiving requests of all applications. Then, the request is sent to WorkflowManager

(message 2), which generates the possible execution plans and asks AdaptUbiFlow

(message 3), to select one of the generated execution plans. Next, AdaptUbiFlow queries

ContextInformationRepository about the service metadata (message 4), receives the query

response (message 5) and calculates which execution plan has the best quality (this process

will be presented in Section 4). After this step, AdaptUbiFlow sends the selected execution

Figure 14. Partial OWL description of an execution plan.

Figure 15. Execution of a workflow in OpenCOPI.

International Journal of Parallel, Emergent and Distributed Systems 195

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

plan to WorkflowManager (message 6). In the next step, WorkflowManager starts the

execution of the selected execution plan through service invocations (messages 7 and 11).

These invocations are performed through UnderlayIntegrationFacade and forwarded to the

providers of the corresponding services. These invocations are represented by messages 8

and 12. The responses of those requests are represented by messages 9, 10, 13 and 14.

4. AdaptUbiFlow

AdaptUbiFlow is the component responsible for the selection and adaptation processes in

OpenCOPI. For each workflow, after creating the execution plans, AdaptUbiFlow selects

the best execution plan (i.e. the plan with the best quality) to be executed. In addition, as

we have already mentioned, ubiquitous environments are highly susceptible to changes

and many of them are unpredictable. Thereby, another responsibility of AdaptUbiFlow is

to support adaptation in the workflow execution. This component directly interacts with

the MetadataMonitor and WorkflowManager components in order to identify faults.

In case of a fault, it is necessary to automatically change the execution flow to another

execution plan. In addition, AdaptUbiFlow can perform adaptation in other cases, such as:

(i) when the user leaves the service’s operation area due to his/her mobility; (ii) when the

quality of a service provider decreases to a compromising level or (iii) when new services

with higher quality become available. This section presents the execution plan selection

and the adaptation processes.

4.1 Service metadata

OpenCOPI selects execution plans according to the quality metadata of services that

compose each execution plan. These parameters are categorised (for didactical purposes)

in two types: QoC and QoS. Although QoC describes the quality of the contextual

information provided by a service, QoS describes the quality of the service. The meaning

of each parameter is shown below, separated by category.

OpenCOPI considers the following QoC parameters, as proposed by Buchholz et al. [9]:

(1) Precision, which denotes the level of accuracy of the information provided by a given

technology/technique for context provision. For example, a GPS receiver or anRFID

reader can provide the location of a personwith precision of few centimetres, while a

triangulation algorithmbased in 802.11 signal strength can provide a precision of few

metres.

(2) Correctness, which denotes the probability that a piece of context information is

correct. For example, consider a temperature sensor in a room. Internal problems in

such sensor can generate wrong temperature values (e.g. measuring 308C while the

correct temperature would be 208C). Thus, this parameter estimates how often a

context information provided by a source will be unintentionally wrong due to

internal problems.

(3) Resolution, which describes the granularity of the context information. For example, a

service announces the room temperature as 258C, but the room temperature can vary in

different room’s regions. If there are few thermometers in the room, the service is not

able to supply the information with a proper granularity level.

(4) Freshness, which represents the time elapsed between the generation of the context

data and the retrieval of this data by applications.Thus, a particular context datamaybe

prioritised whether it is newer than other similar data.

F. Lopes et al.196

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

The QoS parameters considered in our work are as follows:

(1) Response time, which represents the time between sending a service request to a

service provider and receiving the response.

(2) Availability, which represents the probability that the service provider is up and

the service is running, i.e. the service is ready for immediate use.

(3) Performance, which describes the number of service requests fulfilled by the

service provider at a given period of time.

4.2 Service selection

As in general there are more than one execution plan for each workflow and the number of

these execution plans depends on the amount of available services with the same

functionality in the environment (at a given moment), it is necessary a service selection

algorithm to choose which execution plan should be executed. This section presents the

service selection algorithm supported by AdaptUbiFlow.

4.2.1 Aggregation functions

The process of selecting an execution plan begins with the calculation of the quality

of each plan. The quality of an execution plan is determined by the quality parameter

(QoS and QoC) values of all services contained in the execution plan. Before computing

the execution plan quality, it is necessary to compute the global quality of each quality

parameter. Global quality of a parameter means the quality parameter value for the whole

execution plan, i.e. the value that represents the parameter of all services of this execution

plan. The global quality of each parameter can be computed by aggregating the

corresponding values for such parameter of all services in the respective execution plans.

Different aggregation functions [2,39] are necessary to compute the global value of each

parameter. Typical quality parameter aggregation functions are addition, multiplication,

minimum and average relation (see Table 1). For instance, Response time is the QoS

parameter used to measure the response time to execute each service. Thus, the value of

the Response time parameter for an execution plan EP (qR(EP)) is the sum of the Response

time values of all services s (qR(s)) that compose EP. The Availability QoS parameter can

be aggregated through a multiplication function of the availability value of each services

of the execution plan EP (qA(EP)). The Performance QoS parameter describes the number

of service requests served by the service provider at a given period of time. Thus, the

performance of an execution plan EP (qP(EP)) is limited to the service with the smaller

value for Performance attribute. Freshness QoC parameter describes the life span of

Table 1. Aggregation functions.

Type Parameter Function

Addition Response time qRðEPÞ ¼
Pm

s¼1 qRðsÞ
Multiplication Availability qAðEPÞ ¼

Qm
s¼1 qAðsÞ

Minimum Performance qPðEPÞ ¼ min m
s¼1 qPðsÞ

Average Freshness qFðEPÞ ¼ 1
m

Pm
s¼1 qFðsÞ

� �

Multiplication Correctness qCðEPÞ ¼
Qm

s¼1 qCðsÞ
Multiplicationþ Resolution qRSðEPÞ ¼

Qm
s¼1

qRSðsÞ
qRSmax

Multiplicationþ Precision qPRðEPÞ ¼
Qm

s¼1
qPRðsÞ
qPRmax

International Journal of Parallel, Emergent and Distributed Systems 197

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

context information, i.e. how long time ago the context information was created. Thus, the

value of this QoC parameter for an execution plan EP (qF(EP)) is the average of context

life span of all services of EP. Similar to the Availability parameter, the aggregation

function for the Correctness parameter is also a multiplication; however, it refers to the

correctness level of context information provided by the execution plan’s services. Finally,

the Resolution QoC parameter can be aggregated (qRS(EP)) through a special

multiplication, in which the operators are the ratio between the resolution of each service

and the highest resolution of equivalent services. For instance, being A, B and C equivalent

services and C the service with biggest resolution among these three services, the operator

value for service A is (qRS(A)/qRS(C)). This is necessary because each service type has its

own unit for the resolution parameter. For example, luminosity sensors gather luminosity

intensity in lux unit and location sensors gather user location in metres unit. This approach

allows that service resolution of services that compose an execution be aggregated,

resulting in the resolution of the execution plan. The same approach is used for Precision

parameter.

4.2.2 Normalisation of quality parameters

Once the values of all global (or aggregated) quality parameters were calculated, and

considering that different quality parameters have different units and ranges, it is necessary to

normalise these attributes into the same range to allow a unified and uniformmeasurement of

the quality of the execution plans. Some quality parameters could be positive, i.e. a parameter

in which the quality is better if the value is greater (e.g. Correctness parameter). Other

parameters are negative, i.e. the quality is better if the quality value is smaller (e.g. the

Response time parameter).12 This normalisation process of quality parameters is used by

several authors [2,39,40].

Equations (1) and (2) present the formulae used to normalise positive and negative

parameters, respectively. In these equations, qNi is the normalised value of the parameter i;

qi is the global value of this parameter for the current execution plan; qmax and qmin are,

respectively, the biggest and the smallest global values of this parameter for all considered

execution plans (if qmax ¼ qmin, then qNi ¼ 1). In this process, each normalised value

results in a value between 0 and 1:

qNi ¼ qi 2 qmin

qmax 2 qmin

; qmax – qmin ; ð1Þ

qNi ¼ qmax 2 qi

qmax 2 qmin

; qmax – qmin : ð2Þ

4.2.3 Utility of execution plans

The normalisation process is followed by a weighting process to consider the user priority

and preferences. Thus, users can prioritise some quality parameters and minimise the

importance of other quality parameters according to their needs. To do this, the user

assigns a weight wi to each quality parameter i, which must be between 0 and 1 and the sum

of all of these weights must be 1. Equation (3) presents the function to calculate the

execution plan quality according to a set of QoS and QoC parameters. In this formula, qEP
is the quality of the execution plan, and it is calculated through a weighted sum between

F. Lopes et al.198

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

these normalised values of the m parameters and their respective weights:

qEP ¼
Xm

i¼1

qNi*wi

� �
: ð3Þ

Figure 16 shows an example of XML configuration file in which the disponibility

QoS parameter has weight 0.3 (30%); the correctness QoC parameter has weight 0.2

(20%); the precision, performance, responsing and freshness quality parameters have

weights 0.1 (10%) each one and the resolution QoC parameter has weight 0.0 (0%), thus

being disregarded from the selection process.

At the selection phase, the utility of each execution plan is just the quality of the

respective execution plan. The execution with biggest quality is selected. In case of the

adaptation phase, the utility is represented for both: execution plan quality and adaptation

cost for the respective execution plan (see Section 4.3).

Figure 16. XML configuration file with the weights assigned to the quality parameters.

International Journal of Parallel, Emergent and Distributed Systems 199

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

4.3 Adaptation

Changes occurred at run-time may affect the application execution and performance.

When a change happens, some actions may be necessary to ensure that the application

continues running. If an adaptation is required, AdaptUbiFlow analyses the best strategy

for this adaptation with minimal user awareness (thus promoting the autonomy of the

application). This section presents the types of changes that can trigger an adaptation

process and the techniques used by OpenCOPI to perform this adaptation.

In the OpenCOPI architecture, a service is considered in fault when there is a problem

that prevents it to meet/reply to a received request. Examples of service failures are as

follows: (i) a service provider that loses the connection with OpenCOPI and therefore

cannot reply to the service requests; (ii) a service that crashes due to internal errors in the

service provider; (iii) a sensor device that has its energy depleted and (iv) a service that

comes out of reach of the user due to user mobility.

Services failures are hard to handle, thus requiring the replacement of faulty services

by other equivalent services. Besides failures, the services and service providers are

subjected to quality degradation. In highly dynamic environments, the service quality can

significantly degenerate due to fluctuations in the network bandwidth, extensive use of a

service, etc. This is a less severe problem since such degradation does not necessarily

mean a fault; it means that some quality parameters (QoS and/or QoC) may have

deteriorated at run-time. In addition, the emergence of new available services also needs to

be taken into account since these new services can have better quality than services

previously selected. Finally, although mobility can make some services unreachable, other

services with better quality may become reachable. When the quality degradation of a

service is detected, new services emerge or services become reachable due to user

mobility, it is necessary to assess the need of reconfiguring the application execution.

4.3.1 Factors that affect adaptation

The adaptation process performed by AdaptUbiFlow chooses an execution plan for

replacing the current one in case of workflow adaptation. Section 4.2 presented the process

for computing the quality of an execution plan. It was mentioned that the execution plan

with the best quality is selected to be executed. In the adaptation process, an alternative

(not the first choice) execution plan needs to be selected to replace the running execution

plan. Thus, the selection of the new execution plan in the adaptation process is based not

only on the quality of this execution plan but also on the cost of the adaptation process with

the purpose of reducing the adaptation overhead, i.e. in order to improve the efficiency of

adaptation. Our adaptation approach tries to reuse the services already executed before the

need to adapt. The adaptation cost of the substitute execution plans is variable and consists

of the number of services to be performed after adaptation (including services to be

executed after the change of the execution plan), services that require rollback and services

that require compensatory actions. Thus, we have defined a relationship between the

quality of these substitute execution plans and the cost to replace the current execution

plan by them.

Quality of execution plan. The quality (QoS/QoC) of an execution plan is used in this

replacement process. Although it is a very important factor, it is not enough to ensure an

efficient adaptation. In cases where some services have already been executed in the

application workflow, a choice of an execution plan that is very similar to the current one

may be a better option than an execution plan with the best quality. Therefore, a similar

execution plan can reuse the output of the services executed before the beginning of the

F. Lopes et al.200

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

adaptation process without violating services dependencies and performing rollbacks, thus

decreasing the adaptation cost.

Adaptation cost for each execution plan. The factors which influence the computation

of the adaptation cost are as follows: (i) reuse of service execution – some services can be

used in two or more execution plans, so that it may be advantageous to give priority to

execution plans that reuse the result of services already executed by the current execution

plan, in case of adaptation; (ii) service dependencies – in case of a service fault, all

execution plans that use this service and/or its dependent services cannot be chosen to

replace the current plan; (iii) rollback – in case of replacement of an execution plan, some

services that have already been executed may require a rollback to return to the previous

execution state (these services are named rollbackable13 services) and (iv) compensatory

action – in case of replacement of an execution plan, if a service needs to return to a

previous execution state, but this service does not support rollback, then a compensatory

action can be provided by the driver that handles the communication between OpenCOPI

and the respective service provider since drivers can store the original state (that can be

recovered, if necessary) of a service before the service execution.

To calculate the adaptation cost regarding an execution plan, it is necessary to take into

account its absolute adaptation cost, as defined in Equation (4). This absolute adaptation

cost cEPabs is defined as the sum between the number of services to be executed after

changing the execution plan (e) (i.e. defined by the reuse of services and the dependencies

between services), the number of services that require rollbacks (r) and the number of

services that require compensatory actions (c):

cEPabs ¼ eþ r þ c: ð4Þ

In turn, Equation (5) presents the formula used to calculate the adaptation cost cEP to

be minimised since a smaller cEP value means a better adaptation quality. In Equation (5),

cEPmax is the biggest absolute adaptation cost value among the available execution plans:

cEP ¼ 12
cEPabs

cEPmax

: ð5Þ

These factors can have different degrees of importance in the adaptation process; such

importance depends on the application configuration that is made by the user. Section

4.3.3 presents how the user can influence the adaptation process so that the efficiency

(cost) of the adaptation can be trade by the final quality of service delivered to the user.

4.3.2 Adaptation process

The adaptation process is composed of two phases. The first phase consists of selecting a

substitute execution plan to replace the current one. The second phase consists of

restarting the execution.

Selection of a substitute execution plan. The choice of a new execution plan to replace

the current one uses two categories of parameters: the quality of the execution plan and the

adaptation cost. The first one is the quality value (as shown in Section 4.2), for which it is

desired a high value of quality. The second parameter stands for the necessary actions to be

performed in case of adaptation, for which it is desired a low value of adaptation cost.

Users can prioritise these selection parameters according to their needs. To do so,

AdaptUbiFlow adopts an approach based on assigning weights to each parameter. Thus,

users can choose different weights for quality and adaptation cost in the decision about

International Journal of Parallel, Emergent and Distributed Systems 201

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

which execution plan will replace the current one, as explained below. This characteristic

enables to prioritise quality over cost and vice versa, thus tailoring the decision process to

the user’s needs.

Unlike the selection phase, in the adaptation phase, the utility of an execution plan is

also influenced by the adaptation cost. This utility is defined by a weighted sum between

the quality and adaptation cost parameters regarding to the substitute execution plans.

There are five possible configurations for the weights to be assigned to the parameters, thus

producing what we call an adaptation profile, as presented in Table 2.

Equation (6) shows the function to calculate the execution utility (m) of each execution
plan. This function consists of a weighted sum between quality of the execution plan EP

qEP (computed in Section 4.2) and its adaptation cost cEP and the respective weights wSQ

and wAC assigned to them. Thus, the execution plan with the maximum utility is chosen to

replace the current one:

m ¼ qEP*wSQ

� �þ cEP*wACð Þ: ð6Þ

Execution restarting. Once the process of selecting a new execution plan is finished,

the process responsible for changing to the new execution plan is started. This process

consists of making all necessary actions (rollbacks, compensatory actions and restart

execution) in a seamless way for the user.

5. Evaluation

The evaluation of OpenCOPI aimed to (i) assess the performance of service selection,

composition, adaptation and workflow execution; (ii) validate OpenCOPI strategies for

service selection and adaptation and (iii) analyse the implementation effort required for an

application to consume services provided by two distinct context-provision middleware.

All the experiments reported in this section were carried out on Mac OS X

operating system, using a computer with processor Intelw CoreTM 2 Duo 2.4 GHz and

Table 2. Adaptation profiles based on weights assigned to the quality of execution plans and the
adaptation cost.

Weights to the parameters

Adaptation profile Description
Quality of execution

plans (wSQ)
Adaptation
cost (wAC)

Full service quality Full priority to quality of
execution plans

1.00 0.00

Service quality Priority to quality of
execution plans, but
considering the adaptation
cost

0.75 0.25

Balanced Default configuration, with
equal weights to both
parameters

0.50 0.50

Low adaptation cost Priority to adaptation cost, but
considering the quality of
execution plans

0.25 0.75

Lowest adaptation cost Full priority to the
adaptation cost

0.00 1.00

F. Lopes et al.202

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

4 GB of RAM. The experiments were performed considering the case study presented

at Section 2.

5.1 Performance assessment of service selection, composition, adaptation and
workflow execution

This section presents the performance assessment of four important OpenCOPI features,

namely service selection, composition, adaptation and workflow execution. Especially for

the performance evaluation, we have created replicas of some services in order to have a

high number of execution plans. Thus, considering these new replicas, the case study has

the following: (i) six services that perform the six first activities of the workflow

(SubscribeBurden, SearchRegimeOptions, SearchPreviousChanges, ChooseRegi-me-

Option, ChangeRegime and UpdateChange, one service for each of these activities);

(ii) four services that perform the SearchTechnicians activity (four replicas representing

different technologies for user location) and (iii) two services that perform the

SendMsgToEmployee activity. Each service replica has different values for quality

metadata. This configuration resulted in up to 32 distinct execution plans (different

replicas combination) with different qualities.

5.1.1 Execution time for composition, selection and adaptation features

Considering the aforementioned configuration, we executed the workflow with a different

number of possible executions plans: 2, 4, 6, 8, 16 and 32. Figure 17 shows the average

execution time (in milliseconds) for composition (Figure 17(a)), selection and adaptation

(Figure17(b)), each one calculated with a confidence interval of 95%.

Service composition is the process responsible for discovering services to perform

each workflow activity and for creating possible execution plans. For the simplest

configuration (two possible execution plans), the semantic composition time was 1014ms

on average to build both execution plans, and for the more complex configuration

(32 possible execution plans) the composition time was 1657ms on average. The time

to find the possible execution plans is proportional to the number of available services.

This is the most expensive process since it requires analysing the ontologies of each

Figure 17. Average execution time regarding composition, selection and adaptation.

International Journal of Parallel, Emergent and Distributed Systems 203

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

available service. This process includes the time spent to parse XML documents (which is

mandatory due to the use of Web services and Semantic Web technologies). The goal of

this process is to transform an abstract workflow specification into concrete service

compositions, enabling late service selection and decoupling the application from used

services.

The process of selecting an execution plan is the cheapest considering composition and

selection features. For the simplest configuration, the time spent for selection was 1ms on

average, and for the most complex configuration it was about 9ms on average. The

adaptation process (see Section 4) consists of choosing a substitute execution plan and

the adaptation preparation (execution restarting). For the simplest configuration, the

adaptation time was 1.5ms on average, and for the most complex configuration it was

about 12ms on average. Nah [27] states that delays in the order of 2 s are acceptable for

Web applications. Therefore, we can observe that the time intervals spent for the service

composition and for the execution plan selection and adaptation processes are acceptable.

5.1.2 Increase in adaptation execution time

The goal of this evaluation is to analyse the impact in the execution time caused by the

adaptation process (presented in Section 4.3.2). Thus, we executed the following four

distinct versions of the adaptation algorithm, always considering a workflow with eight

possible execution plans: (i) random choice, (ii) considering only the adaptation cost,

(iii) considering only the quality of the execution plans and (iv) considering both quality of

the execution plans and the adaptation cost.

The average execution times found in this evaluation were, respectively, 3.19, 3.31,

3.42 and 3.57ms. Considering these results, we can conclude that the adaptation process

performed by the OpenCOPI is computationally cheap even considering the quality of the

execution plans and the adaptation cost. Moreover, we can observe that the difference

among the execution time of all versions of the adaptation algorithm is insignificant.

For instance, the difference between the cheapest and most expensive is only 0.38ms.

5.1.3 Application execution time

Another aspect analysed in the evaluation was the application execution time. Since

OpenCOPI represents an additional layer between ubiquitous applications and services

provided by many platforms, it is expected that the use of OpenCOPI increases the overall

processing time and therefore the response time for users. Thus, it is important to measure

the impact of OpenCOPI in the application execution time and if this impact is either

significant or negligible from the point of view of the user’s experience. For this purpose,

two versions of the case study were built. The first version considered the specification and

execution of a workflow using OpenCOPI. The second version directly invokes the same

services through Java source code in the same sequence followed by the workflow

executed by OpenCOPI. The average execution time of the application without OpenCOPI

was 1.2 s to call all services involved in the case study. In the application that uses

OpenCOPI, the execution time increased by 1.9 s. Again according to Nah [27], the

difference (about 0.7 s) between these two versions was not significant for this type of

application. Moreover, the second version does not take advantage on the benefits

provided by OpenCOPI. For instance, to build the application without OpenCOPI,

139 lines of code (LOC) were necessary only to call all services specified in the workflow.

However, the process to build the workflow using OpenCOPI is simpler since it was not

F. Lopes et al.204

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

necessary to implement source code but only to build the workflow by defining the

applications activities, combining tasks and objects to satisfy the application goal.

Moreover, without OpenCOPI, it is essential to know the services available in the

environment and their interfaces. Consequently, the development is harder, reuse is

laborious and it is difficult to dynamically select services and also to support adaptation.

5.2 Validation of the service selection and adaptation strategies

In this section, we have firstly validated whether the prioritisation of specific quality

parameters really selects the execution plan as expected, i.e. if the selected execution plan is

the best available one regarding the specific parameter. Then, we assessed the effect of using

different adaptation profiles, changing theweights for the quality of the execution plan and the

adaptation cost in order to evaluate if the prioritisation of one of them properly selects the

substitute execution plan. To achieve this goal, some services used in the case study presented

in Section 2 were forced to fail so that the adaptation process is triggered.

Especially for these validations, we modified the services replicas to generate multiple

execution plans (presented in Section 5.1). The services replicated for this validation were

four services that perform the SearchTechnicians activity (four replicas representing

different technologies for user location) and the SendMsgToEmployee activity (two

replicas). Each service replica has different values for quality metadata. This configuration

resulted in eight distinct execution plans (different combinations of replicas) with different

qualities. We named each execution plan EP1, EP2, . . . , EP8 to facilitate the explanation

of the evaluation.

Considering that there are eight possible executions plans, we executed the selection

process 100 times for two approaches (random versus OpenCOPI). The best execution

plan was selected in 13.33% of cases for the random approach. Using OpenCOPI, the best

execution plan was selected for all (100%) execution rounds. We also evaluated whether

the prioritisation of some quality parameter selects the execution as expected. Table 3

presents the utility (or quality) of each execution plan and the selected plan for each

different prioritisation tested. For example, when the maximum priority (weight 1) was

given to the Availability parameter, the execution plan EP4 was selected; when the

Response time parameter was prioritised, the EP5 execution plan was selected; the equal

prioritisation of the Availability (weight 0.5) and Response time (weight 0.5) parameters

resulted in selecting the execution plan EP7 (qEP7 ¼ 0.664). When the same priority was

assigned for all parameters (weight 0.2 for each one), the execution plan EP1 was selected

(qEP1 ¼ 0.785). We found that, for all parameters prioritisation, the selected substitute

plan was the expected plan for that configuration.

For the adaptation process, we validated if each possible adaptation profile (weights

for the quality of execution plans and adaptation cost) selects the best candidate for the

substitute execution plan. Note that distinct adaptation profiles can select distinct

substitute execution plans. Considering that the execution plan EP1 was selected to

execute at the selection phase by assigning equal weights to the parameters (Table 3), we

have forced the failure of a service encompassed in EP1 to trigger the adaptation process.

Table 4 presents the selected substitute plan for each different adaptation profile tested.

For example, for the full service quality, service quality and balanced adaptation profiles,

the execution plan EP4 was selected. In turn, for the low adaptation cost and lowest

adaptation cost adaptation profiles, the execution plan EP2 was selected. We found that,

for all assessed adaptation profiles, the selected substitute plan was the expected plan for

that configuration.

International Journal of Parallel, Emergent and Distributed Systems 205

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

5.3 Implementation effort required to build drivers to different context-provision
middleware

OpenCOPI increases the abstraction level of ubiquitous application specification since

they can be built from abstract activities. Thus, applications are independent of specific

services provided by context-provision middleware. However, without OpenCOPI,

applications need to know how to directly consume services provided by these context-

provision middleware. As mentioned in Section 3.1, part of this abstraction is provided by

OpenCOPI drivers, which are components responsible for abstracting away context-

provision middleware APIs, thus enabling OpenCOPI to integrate the underlying context-

provision middleware. This section assesses the complexity of implementing drivers

through the number of LOC necessary to build them. We have implemented drivers for

two distinct context-provision middleware, namely CT [11] and JCAF (Java context

awareness framework) [3].

CT is a context-provision middleware based on key/value tuples and RMI

communication. JCAF context-provision middleware also uses RMI technology for

communication, but it adopts an object-oriented context model. The JCAF’s context

model is more intuitive than the CT’s model because in JCAF, for instance, the Employee

class represents a context entity while in CT the context attributes are represented only

through primitive data types, thus making impossible the direct relationship between the

context attributes.

The development of the CT driver has required 110 LOC, while the JCAF driver has

required 82 LOC. Part of this difference is due to the object-oriented context model

adopted by JCAF. Although these drivers seem to be simple to implement, this task is hard

and requires a large effort from the application developer since he/she needs to know

implementation details of each context-provision middleware. If the application developer

uses OpenCOPI, all these details of context-provision middleware implementations are

abstracted away.

Table 3. Quality of the execution plans for each configuration.

Execution
plans

Equal priority
(w ¼ 0.2)

Availability
(w ¼ 1.0)

Response time
(w ¼ 1.0)

Availability/response time
(w ¼ 0.5)

EP1 0.785 0.528 0.400 0.464
EP2 0.772 0.660 0.000 0.530
EP3 0.766 0.830 0.400 0.415
EP4 0.760 1.000 0.000 0.500
EP5 0.515 0.528 0.800 0.664
EP6 0.496 0.830 0.400 0.615
EP7 0.480 0.000 1.000 0.500
EP8 0.430 0.150 0.600 0.375

Table 4. Choice of an execution plan based on different configurations of weights in the adaptation
phase.

Adaptation profile Selected execution plan

Full service quality, service quality, balanced EP4
Low adaptation cost, lowest adaptation cost EP2

F. Lopes et al.206

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

6. Related work

This section compares OpenCOPI with two different middleware categories. The first

category consists in context-provision middleware platforms. The focus of OpenCOPI is

not to compete with existing context-provision middleware but to work cooperatively

with them to provide as many services as possible for the applications. However,

OpenCOPI and these middleware share some requirements, e.g. service composition,

selection and adaptation, thus it is important to discuss our work in such context. The

second category consists of integration platforms for context-provision middleware.

There are few platforms for integration of context-provision middleware and to the best

of our knowledge, none of them covers the wide range of features provided by

OpenCOPI. Therefore, the following comparisons justify and motivate the usage of

OpenCOPI.

6.1 Comparison with context-provision middleware

Several workflow-based middleware platforms have emerged over the last years to assist

the development of ubiquitous applications. However, most of them do not meet the wide

range of requirements demanded by highly dynamic and heterogeneous ubiquitous

environments. In general, these proposals do not allow dynamic service composition and

adaptation based in quality metadata. Even few middleware platforms that enable

adaptation do not consider factors that allow an efficient adaptation, such as dependence

between services, rollbacks, service re-execution and so on.

Ranganathan and McFaddin [29] present a workflow approach for modelling and

managing the user interaction with the ubiquitous environment. In such approach,

users can determine their overall goal and preferences and the system generates a

customised workflow describing how various services should interact with one

another. Montagut and Molva [25] present an architecture that supports the distributed

execution of workflows in pervasive environments based on decentralised control.

Both proposals lack mechanisms to allow dynamic service composition and workflow

adaptation.

Tang et al. [32] present a context-adaptive workflow management algorithm, which

can dynamically adjust workflow execution policies in terms of current context

information and supports service selection based in bandwidth and user location. In such

work, context information is limited to bandwidth and location, but user configuration and

workflow adaptation are not supported.

The mechanisms presented in [26] support workflow adaptation but just in case of

service failure. The adaptation process is modelled before workflow execution and it does

not consider QoS to service selection and workflow adaptation.

Marconi et al. [22] presents an interesting set of tools and principles to support context-

aware run-time deviations and changes in the workflow execution, thus allowing workflow

adaptation in case of service failure but it does not enable the user to configure the

adaptation preferences in case of quality degradation of the services. Moreover, unlike

OpenCOPI, it does not consider the cost of adaptation to select the new flow in case of

adaptation.

Differently from all the previously mentioned proposals, this paper investigates how to

automatically manage workflows by selecting the best option of execution plan and

automatic adaptation decisions at run-time according to user preferences. In OpenCOPI,

users can configure the service selection and adaptation process in an easy way through an

XML configuration file.

International Journal of Parallel, Emergent and Distributed Systems 207

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

6.2 Comparison with integration platforms

The platforms presented in this section are focused on context-provision middleware

interoperability. In general, they use bridges or drivers to communicate with many

middleware, thus enabling applications to consume services provided by different

middleware.

AWARENESS [6] is a platform which provides bridges between different context-

provision middleware. It enables applications to acquire context information provided by

many middleware even communicating only with one middleware. These bridges are

responsible for discovering services and mapping communication protocols and context

models. The AWARENESS platform does not standardise communication protocols and

context models once each bridge is implemented to provide unidirectional interoperability

between only a pair of middleware. Thus, a bridge implements context model and

communication protocol of both integrated middleware.

Ubicomp Integration Framework [24] is a framework that is aimed to providing

interoperability between context-provision middleware through middleware-specific

adapters. This platform exposes services provided by many middleware through Web

services and converts the context model of each middleware to its own OWL-based context

model.

Stavropoulos et al. [31] presents aWESoME, a middleware infrastructure for Ambient

Intelligence environments based on Web Services. Although aWESoME does not provide

integration of context-provision middleware, it provides an abstraction layer based on

drivers for integrating mobile devices infrastructures (e.g. ZigBee). Such devices expose

their functionalities and data over WSDL and SOAP to ensure uniform, standardised,

remote and platform independent access to them. aWESoME has drivers for ZigBee and

Z-Wave platforms but drivers for other technologies can be added whenever it is

necessary.

All three aforementioned platforms do not support service composition based on

service quality (QoS and QoC) ‘and’ adaptation. Similarly to OpenCOPI, Ubicomp

Integration Framework and aWESoME adopt standardised communication protocols and

propose an abstraction layer between context-provision middleware and applications.

However, AWARENESS uses an approach in which a context-provision middleware

interacts directly with others, thus requiring a bridge between each pair of middleware

platform. This is a limitation because in order to integrate a large amount of context-

provision middleware a large number of bridges are necessary. In addition, Ubicomp

Integration Framework, aWESoME and AWARENESS do not use the Semantic Web

technology, thus constraining the degree of automation in service discovery and

composition. Moreover, such platforms do not allow that applications are built from

abstract and high-level activities. Using OpenCOPI, the user is able to build its own

application through abstract activities, allowing the users to create their own applications.

ubiSOAP [10] middleware defines a two-layer architecture to provide network-

agnostic connectivity and Web service-oriented communication in ubiquitous

environments. The aim of ubiSOAP is to explore diverse network technologies in order

to create an integrated multi-radio networking environment and select the best network to

connect clients to legacy services. Thus, services can be reached by applications

independent of the underlying mechanism to provide network connectivity.

The ubiSOAP’s network selection is based on QoS quantitative and qualitative attributes.

As OpenCOPI, ubiSOAP supports legacy Web services, thus transparently bringing the

value-added Ubiquitous Computing environments. However, while ubiSOAP middleware

F. Lopes et al.208

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

focuses on providing low-level integration based on a multi-network overlay, OpenCOPI

abstracts network selections, focusing on higher level issues as service selection,

composition and execution adaptation. These distinct focuses can make ubiSOAP and

OpenCOPI complementary platforms.

7. Final remarks

Recent technological advances have made the Ubiquitous Computing a reality in our daily

lives. However, in order to reach the full potential of this new scenario, it is crucial to reduce

the efforts of developing ubiquitous applications. Applications for ubiquitous environments

have a set of requirements that pose new important challenges to developers. Two crucial

requirements are context-awareness and adaptation. There was a growing emergence of

context-provision middleware in the last years, addressing such requirements and handling

different types of contextual information. Such middleware platforms often do not interact

with each other, bringing the need for an additional layer promoting integration and

interoperability among those middleware platforms in order to build complex ubiquitous

applications. In this context, we introduced OpenCOPI, a context middleware platform that

provides a unified ontology-based context services for the development of ubiquitous

applications and integrates services provided by distinct sources. OpenCOPI adopts a SOA-

based approach, decoupling applications from the underlying context-provision middleware.

Moreover, OpenCOPI is built on semantic Web services technology, providing value-added

functionalities of discovering, selecting and composing services that fulfil the application

needs. It also relies on the concept of semantic workflow to provide the coordination and

autonomy required by ubiquitous applications. This paper described OpenCOPI and its

evaluation under different aspects. According to the evaluation, OpenCOPI has the potential

of fulfilling the requirements of ubiquitous applications and leverages the potential benefits

achiever from the seamless integration of computational and communication resources in

our daily lives. OpenCOPI can be downloaded at the following URL: http://consiste.dimap.

ufrn.br/projects/opencopi/.

OpenCOPI has some limitations: (i) in its current version, the integration of new context-

provision middleware to OpenCOPI requires considerable programmer’s effort to manually

develop the required driver and (ii) since the DeviceController and the DeviceManager

components are not fully implemented yet, OpenCOPI capability of managing several user’s

devices is currently limited.

The main future directions of this work are directly related to the above-mentioned

limitations: (i) we intend to implement a strategy to develop drivers in an semi-automatic

way, minimising the programmer effort and (ii) we will finalise the implementation of the

DeviceController and DevicesManager components since those two components will

allow the management of multiple devices from a given user, thus enabling to consume

their services and send the results of application’s operation for distinct devices.

Moreover, we plan to implement a Web-based user interface to make easier the workflow

creation and execution in large-scale environments.

Acknowledgement

This work was partially supported by brazilian funds through ANP – Agência Nacional do Petróleo,
Gás Natural e Biocombustı́veis (PRH-22 Program), CNPq – Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico (grants 310661/2012-9, 485935/2011-2, 311363/2011-
3 and 470586/2011-7) and FAPERJ – Fundac�ão Carlos Chagas Filho de Amparo à Pesquisa do
Estado do Rio de Janeiro. This work also was partially supported by portuguese funds through FCT

International Journal of Parallel, Emergent and Distributed Systems 209

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

– Fundac�ão para a Ciência e a Tecnologia, underprojects PTDC/EIA-EIA/HYPERLINK
“tel:113993%2F2009”113993/2009 and PEst-OE/EEI/LA0021/2011.

Notes

1. Email: fred.lopes@gmail.com
2. Email: fdelicato@gmail.com
3. Email: thaisbatista@gmail.com
4. Email: evertonranielly@gmail.com
5. Email: thiago.inf@gmail.com
6. Email: paulo.f.pires@gmail.com
7. Email: paulo.ferreira@inesc-id.pt
8. Email: jrsmjr@gmail.com
9. QoC stands for any information that describes the quality of information that is used as context,

such as precision, probability of correctness, resolution, up to dateness [9].
10. In some cases, an activity may require a collection of services to satisfy the activity’s

functional requirements.
11. Similar services mean two or more services that meet the same functional requirements but

have distinct quality.
12. It is important to note that we are not saying that the values are negative.
13. This information about whether a service is rollbackable or not is obtained from the semantic

description of the service when it is registered in OpenCOPI. Service providers are responsible
for supporting rollbacks; this is not a responsibility of OpenCOPI.

References

[1] A. Abbasi and Z. Shaikh, A conceptual framework for smart workflow management,
International Conference on Information Management and Engineering (ICIME’09), Kuala
Lumpur, Malaysia, 2009, pp. 574–578.

[2] M. Alrifai, D. Skoutas, and T. Risse, Selecting skyline services for QoS-based Web service
composition, 19th International Conference on World Wide Web (WWW’10), Hong Kong,
2010, pp. 11–20.

[3] J. Bardram, The Java context awareness framework (JCAF) – A service infrastructure and
programming framework for context-aware applications, Pervasive Computing, in Lecture
Notes in Computer Science, Vol. 3468, H.W. Gellersen, R. Want, and A. Schmidt, eds.,
Springer, Berlin/Heidelberg, Germany, 2005, pp. 11–20.

[4] C. Batista, G. Alves, E. Cavalcante, F. Lopes, T. Batista, F.C. Delicato, and P.F. Pires, A
metadata monitoring system for Ubiquitous Computing, 6th International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM 2012),
Barcelona, Spain, 2012, pp. 60–66.

[5] T. Berners-Lee, J. Hendler, and O. Lassila, The semantic web, Sci. Am. Mag. 284(5) (2001),
pp. 34–43.

[6] M. Blackstock, R. Lea, and C. Kraisic, Managing an integrated Ubicomp environment using
ontologies and reasoning, 5th IEEE International Conference on Pervasive Computing and
Communications Workshops (PerComW’07), White Plains, NY, USA, 2007, pp. 45–52.

[7] A. Bottaro and A. Gérodolle, Home SOA – Facing protocol heterogeneity in pervasive
applications, 5th International Conference on Pervasive Services (ICPS’08), Sorrento, Italy,
2008, pp. 73–80.

[8] M. Brito, L. Vale, P. Carvalho, and J. Henriques, A sensor middleware for integration of
heterogeneousmedical devices, 2010Annual InternationalConference of the IEEEEngineering in
Medicine and Biology Society (IEMBS 2010), Buenos Aires, Argentina, 2010, pp. 5189–5192.

[9] T. Buchholz, A. Küpper, and M. Schiffers, Quality of Context: What it is and why we need it,
10th Workshop of the HP OpenView University Association, Geneva, Switzerland, 2003.

[10] M. Caporuscio, P.G. Raverdy, and V. Issarny, ubiSOAP: A service-oriented middleware for
ubiquitous networking, IEEE Trans. Serv. Comput. 5(1) (2012), pp. 86–98.

[11] G. Dey, Abowd, and D. Salber, A conceptual framework and a toolkit for supporting the rapid
prototyping of context-aware applications, Hum. Comput. Interact. 16(2) (2001), pp. 97–166.

[12] T. Erl, SOA Principles of Service Design, Prentice Hall, Upper Saddle River, NJ, 2007.

F. Lopes et al.210

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

[13] T. Gruber, A translation approach to portable ontology specifications, J. Knowl. Acquis. 5(2)
(1993), pp. 199–220.

[14] N. Guarino, Formal ontology and information systems, International Conference on Formal
Ontology and Information Systems (FOIS’98), Trento, Italy, 1998, pp. 3–15.

[15] T. Guo, H.K. Pung, and D.Q. Zhang, A service-oriented middleware for building context-aware
services, J. Netw. Comput. Appl. 28(1) (2005), pp. 1–18.

[16] T. Hasiotis, G. Alyfants, V. Tsetsos, O. Sekkas, and S. Hadjiefthymiades, Sensation:
A middleware integration platform for pervasive applications in wireless sensor networks,
2nd European Workshop on Wireless Sensor Networks (EWSN 2005), Istanbul, Turkey,
2005, pp. 366–377.

[17] V. Issarny, D. Sacchetti, F. Tartanoglu, F. Sailhan, R. Chibout, N. Levy, and A. Talamona,
Developing ambient intelligence systems: A solution based on Web services, Automat. Softw.
Eng. 12 (2005), p. 1.

[18] G. Judd and P. Steenkiste, Providing contextual information to pervasive computing
applications, First IEEE International Conference on Pervasive Computing and Communi-
cations (PERCOM’03), Fort Worth, TX, USA, 2003, pp. 133–142.

[19] A. Keller and H. Ludwig, The WSLA framework: Specifying and monitoring service-level
agreements for web services, J. Netw. Syst. Manag. 11(1) (2003), pp. 57–81.

[20] J. Li, Y. Bu, S. Chen, X. Tao, and J. Lu, FollowMe: On research of pluggable infrastructure for
context-awareness, 20th International Conference on Advanced Information Networking and
Applications (AINA 2006), Vienna, Austria, 2006, pp. 199–204.

[21] F. Lopes, T. Pereira, E. Cavalcante, T. Batista, F. Delicato, P. Pires, and P. Ferreira,
AdaptUbiFlow: Selection and adaptation in workflows for Ubiquitous Computing, 9th IEEE/
IFIP International Conference on Embedded and Ubiquitous Computing (EUC 2011),
Melbourne, Australia, 2011, pp. 63–71.

[22] A. Marconi, M. Pistore, A. Sirbu, H. Eberle, F. Leymann, and T. Unger, Enabling adaptation of
pervasive flows: Built-in contextual adaptation, 7th International Joint Conference on Service-
Oriented Computing (ICSOC-ServiceWave’09), Stockholm, Sweden, in Lecture Notes in
Computer Science, Vol. 5900, L. Baresi, C.H. Chi, and J. Suzuki, eds., Springer, Berlin/
Heidelberg, Germany, 2009, pp. 445–454.

[23] D. Martin, M. Paolucci, S. Mcilraith, M. Burstein, D. Mcdermott, D. Mcguinness, B. Parsia, T.
Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara, Bringing semantics to Web
services: The OWL-S approach, First International Workshop on Semantic Web Services
and Web Process Composition (SWSWPC 2004), in Lecture Notes in Computer Science,
Vol. 3387, J. Cardoso and A. Sheth, eds., Springer, Berlin/Heidelberg, Germany, 2005,
pp. 26–42.

[24] R. Mendes, P. Pires, F. Delicato, T. Batista, J. Taheri, and A. Zomaya, Using semantic Web to
build and execute ad-hoc process, 9th IEEE/ACS International Conference on Computer
Systems and Applications (AICCSA 2011), Sharm El-Sheikh, Egypt, 2011, pp. 233–240.

[25] F. Montagut and R. Molva, Enabling pervasive execution of workflows, 2005 International
Conference on Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom 2005), San Jose, CA, USA, 2005.

[26] L. Mostarda, S. Marinovic, and N. Dulay, Distributed orchestration of pervasive services, 24th
IEEE International Conference on Advanced Information Networking and Applications
(AINA’10), Perth, Australia, 2010, pp. 166–173.

[27] F. Nah, A study on tolerable waiting time: How long are Web users willing to wait? Behav. Inf.
Technol. 23(3) (2004), pp. 153–163.

[28] J. Nakazawa, H. Tokuda, W. Edwards, and U. Ramachandran, A bridging framework for
universal interoperability in pervasive systems, 26th IEEE International Conference on
Distributed Computing Systems (ICDCS’06), Lisbon, Portugal, 2006, pp. 3–12.

[29] A. Ranganathan and S. McFaddin, Using workflows to coordinate Web services in Pervasive
Computing environments, IEEE International Conference on Web Services (ICWS’04),
San Diego, CA, USA, 2004, pp. 288–295.

[30] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo, A. Mamelli, and
U. Scholz,MUSIC: Middleware support for self-adaptation in ubiquitous and service-oriented
environments, Software Engineering for Self-Adaptive Systems, in Lecture Notes in Computer
Science, Vol. 5525, B. Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee, eds., Springer,
Berlin/Heidelberg, Germany, 2009, pp. 164–182.

International Journal of Parallel, Emergent and Distributed Systems 211

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

[31] T.G. Stavropoulos, K. Gottis, D. Vrakas, and I. Vlahavas, aWESoME: A web service
middleware for ambient intelligence, Expert Syst. Appl. 40(11) (2013), pp. 4380–4392.

[32] F. Tang, M. Guo, M. Dong, M. Li, and H. Guan, Towards context-aware workflow management
for Ubiquitous Computing, 2008 International Conference on Embedded Software and Systems
(ICESS’08), Chengdu, China, 2008, pp. 221–228.

[33] H.L. Truong, L. Juszczyk, A. Manzoor, and S. Dudstar, ESCAPE: An adaptive framework for
managing and providing context information in emergency situations, 2nd European
Conference on Smart Sensing and Context (EuroSSC’07), Kendal, UK, in Lecture Notes in
Computer Science, Vol. 4793, G. Kortuem, J. Finney, R. Lea, and V. Sundramoorthy, eds.,
Springer, Berlin/Heidelberg, Germany, 2007, pp. 207–222.

[34] H.L. Truong, R. Samborski, and T. Fahringer, Towards a framework for monitoring and
analyzing QoS metrics of grid services, Second IEEE International Conference on e-Science
and Grid Technologies (e-Science 2006), Amsterdam, The Netherlands, 2006.

[35] X. Wang, D. Zhang, T. Gu, and H. Pung,Ontology based context modeling and reasoning using
OWL, Second IEEE Annual Conference on Pervasive Computing and Communication
Workshops (PERCOMW’04), Orlando, FL, USA, 2004, pp. 18–22.

[36] World Wide Web Consortium (W3C). Web Ontology Language (OWL), (2003), Available at
http://www.w3.org/2004/OWL/

[37] World Wide Web Consortium (W3C). OWL-S: Semantic markup for web services, (2004),
Available at http://www.w3.org/Submission/OWL-S/.

[38] H.I. Yang, R. Bose, A. Helal, J. Xia, and C. Chang, Fault-resilient pervasive service
composition, in Advanced Intelligent Environments, A. Kameas, V. Callagan, H. Hagras,
M. Weber, and W. Minker, eds., Springer, New York, NY, 2009, pp. 195–223.

[39] Z. Yanwei, N. Hong, D. Haojiang, and L. Lei, A dynamic Web services selection based on
decomposition of global QoS constraints, 2010 IEEE Youth Conference on Information
Computing and Telecommunications (YC-ICT 2010), Beijing, China, 2010, pp. 77–80.

[40] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and H. Chang, QoS-aware
middleware for Web services composition, IEEE Trans. Softw. Eng. 30(5) (2004), pp. 311–327.

F. Lopes et al.212

D
ow

nl
oa

de
d

by
 [

b-
on

: B
ib

lio
te

ca
 d

o
co

nh
ec

im
en

to
 o

nl
in

e
U

T
L

]
at

 1
6:

16
 2

3
M

ay
 2

01
4

	Abstract
	1. Introduction
	2. Running example
	3. OpenCOPI
	3.1 Architecture
	3.1.1 ServiceLayer
	3.1.2 UnderlayIntegrationLayer

	3.2 Context model
	3.3 Managing workflows
	3.4 Workflow specification
	3.5 Creating execution plans
	3.6 Executing a workflow

	4. AdaptUbiFlow
	4.1 Service metadata
	4.2 Service selection
	4.2.1 Aggregation functions
	4.2.2 Normalisation of quality parameters
	4.2.3 Utility of execution plans

	4.3 Adaptation
	4.3.1 Factors that affect adaptation
	4.3.2 Adaptation process

	5. Evaluation
	5.1 Performance assessment of service selection, composition, adaptation and workflow execution
	5.1.1 Execution time for composition, selection and adaptation features
	5.1.2 Increase in adaptation execution time
	5.1.3 Application execution time

	5.2 Validation of the service selection and adaptation strategies
	5.3 Implementation effort required to build drivers to different context-provision middleware

	6. Related work
	6.1 Comparison with context-provision middleware
	6.2 Comparison with integration platforms

	7. Final remarks
	Acknowledgements
	Notes
	References

