
Bicycle Mode Activity Detection
with Bluetooth Low Energy Beacons*

Paulo Ferreira
Department of Informatics

University of Oslo
Oslo, Norway

paulofe@ifi.uio.no

Andriy Zabolotny and João Barreto
Department of Computer Science and Engineering

IST/UL/INESC ID
Lisboa, Portugal

andriyzabolotnyy@tecnico.ulisboa.pt and joao.barreto@tecnico.ulisboa.pt

Abstract—In a growing number of cities, cycling is being seri-
ously considered to help solving traffic congestion, parking, etc.
It is also a cleaner and healthier mean of urban transportation.
However, changing users behavior (e.g., using a bicycle instead
of a car) is not simple. Thus, to promote and motivate cycling
we propose Biklio, a cycling rewarding system that, based on
the use of a smartphone, detects when a user starts cycling
and makes her/him eligible for rewards. This solution uses a
smartphone application that includes a bicycle usage detection
component. This component is both highly accurate and cheap,
while respecting other requirements, and is based on the use of
a Bluetooth Low Energy (BLE) sensor, installed on each bicycle,
which is detected by smartphones. The system is implemented
and running, and the results obtained are very encouraging.

Index Terms—smartphone, BLE sensor, mobile, bicycle.

I. INTRODUCTION

In urban environments, cycling may help to solve traffic
delays or interruptions, parking, etc., being at the same time
a cleaner and healthier means of urban transportation. Thus,
several approaches are being taken to increase cycling in
urban areas [5]. One such approach, Biklio (www.biklio.com),
takes advantage of the availability of smartphones and it aims
at motivating users to cycle by rewarding such an activity.
In fact, current smartphones have many sensors (e.g., GPS,
accelerometer, gyroscope, etc.) and exist in large numbers
(in most developed countries, smartphone penetration reaches
more than 80% of the population [1]) making them an inter-
esting and relevant platform for collecting users data [2], [3],
[7], [9].

The Biklio system includes a smartphone app (for short,
BiklioApp), a Bluetooth Low Energy (BLE) sensor, a web
server, and a database. The BiklioApp runs in both Android
and iOS smartphones; it detects when a user starts cycling
and makes her/him eligible for rewards that can be claimed at
the associated shops (inserted by their owners into the Biklio
system using a browser that interacts with the web server
mentioned above). When a user gets close to or enters into
such a shop, the BiklioApp detects it and allows the user to

This work was partially supported by national funds through Fundação para
a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2019 (INESC-
ID), FCT scholarships SFRH/BD/ 103745/2014, SFRH/BSAB/135197/2017,
and project PTDC/EEI-COM/30644/2017.

easily claim the benefit. The Biklio database stores all the
data related to the associated shops (e.g., their name, location,
logo, reward given to cyclists, etc.) as well as Biklio users
(e.g., email, trajectories, etc.)

The goal of this article is to describe the design, implemen-
tation and evaluation of the Biklio module aimed at detecting
user cycling activity with a high confidence level (ideally
100%), within a limited amount of time (i.e., less than 30
sec. after having stopped cycling), while being aware of the
resource-constrained characteristics of smartphones, energy-
wise in particular. Note that Biklio is a system much bigger
than the cycling activity detection module. However, in this
paper we focus on the BiklioApp and, particularly, on the
cycling activity detection solution.

Solutions aiming at detecting human activity recognition
(HAR), in particular the transports used, currently use smart-
phones to collect data from users. The activity data collected
is processed either remotely (i.e., on a server) or locally (i.e.,
in the smartphone). On one hand, remote data analysis means
that data is gathered in some server (e.g., in the cloud) where
a machine-learning algorithm is executed, and a conclusion
is reached with some confidence level (which currently is
always less than 100%); obviously, regarding responsiveness,
such a conclusion (the transport mode) is reached long after
the activity takes place. In addition, such a solution requires
a smartphone to connect to the network and receive the
result; this obviously adds more time to the detection (when
compared to a detection on the smartphone itself) or may not
even be possible.

On the other hand, local data analysis means that data is
collected and, even if it is processed in some server (e.g.,
training a machine learning algorithm that then generates
a classifier), the detection itself (e.g., done by a classifier)
is done in the smartphone. The algorithm used (e.g., the
classifier mentioned above) must be adapted to a resource-
constrained device (when compared to a cloud server) and
provides a conclusion regarding the activity being performed
(the transport mode in this case) almost instantaneously with
some level of confidence (which currently is always less than
100%).

Most existing solutions (both remote and local) do not
consider the use of a bicycle as a transport mode. However,978-1-7281-2522-0/19/31.00 ©2019IEEE



Fig. 1. High level global view of Biklio.

bicycles are more and more prevalent in urban environments,
as urban planners and citizens agree about the key role of
the bicycle towards more efficient, livable and sustainable
cities [8].

To guarantee correct rewarding, i.e. giving rewards to users
who have effectively ridden a bicycle for a pre-determined
time and/or distance, the BiklioApp needs to detect the cycling
activity, and determine a user’s location, to ensure that she/he
is close to a given shop. User’s location is out of scope of this
article and several solutions exist that can be used [4], [6], [10];
currently, we use either GPS (available in most smartphones)
or Bluetooth Low Energy sensors for proximity detection (e.g,
from Estimote), but others could be used.

To detect cycling activity, the BiklioApp uses a BLE
bicycle-mounted sensor. This sensor pairs with a smartphone
so that, when both are close to each other, the smartphone
detects the sensor; thus, the BiklioApp running on the smart-
phone detects the bicycle’s proximity. In addition, the Bik-
lioApp running on the smartphone, while the bicycle is being
used, receives data from the BLE sensor that allows it to
calculate the bicycle’s speed.

The remainder of this paper is organized as follows. Sec-
tion II describes the architecture of the BiklioApp and the most
relevant aspects of its implementation. Section III presents
some evaluation results. The paper ends with a section on
conclusions.

II. BIKLIO ARCHITECTURE AND IMPLEMENTATION

In Biklio, the web platform (see Figure 1) allows shop
owners to register their shops and become part of the reward-
ing program. During the registration, basic shop information
is requested, such as name, type, address and logo. The
shop owner also specifies the reward it is offered to cycling
customers (e.g., a 5% or 10% discount, free coffee, etc.).

The backend plays an intermediary role since it handles
requests both from the web platform and from the mobile
application. It stores in a database all the application relevant
data, such as users, registered shops information, etc. The
BiklioApp opportunistically synchronizes with the backend
(i.e., when there is an active Internet connection). For example,
if a user runs the BiklioApp in off-line mode and her/his
route is tracked, the registered route trajectory (set of of GPS

Fig. 2. Biklio bicycle-mounted sensor.

coordinates) is only uploaded to the backend when network
connection becomes available.

The BiklioApp provides information about nearby shops
that joined the rewarding program, which are shown in the
app main screen, that users see upon opening the BiklioApp;
it presents a map with the nearby shops (with respect to
a user’s location) with the corresponding reward description
and distance. When opening the ”Map” tab, the application
presents a map with the nearby shops. Then, specific shop
information can be found in the screen.

The BiklioApp has the notion of eligibility for each type of
reward; this means that a reward can be claimed (at some shop)
when a user becomes eligible for the corresponding reward.
This happens once the BiklioApp detects the cycling activity
during a certain period of time. Currently, this is a very short
time (1.5 minutes) given that we are interested on encouraging
people to use the application.

When a user is close to or enters one of the associated
shops, and is eligible for a reward, the BiklioApp notifies
her/him that there is an available benefit to claim. Then,
upon opening the application, a benefit claim screen pops up
that contains the information about the detected shop and the
reward description. To claim the benefit, all the user needs
to do is press the ”Claim Your Benefit” button and show
the corresponding screen to the shop cashier, who will give
the user the benefit. The claimed benefit screen shown in the
BiklioApp contains the shop logo, the reward description, and
the moment at which the benefit was claimed.

A. Cycling Detection

Biklio’s cycling detection uses a BLE bicycle sensor that is
attached to a bicycle frame and contains two components: one
magnet attached to the pedal, and another attached to the rear
wheel spoke (Fig. 2 shows the sensor we currently use).

So, the first step requires a user to establish a pair-
wise relation between the bicycle-mounted sensor and her/his
smartphone. Note this step is done only once, i.e., when the
bicycle-mounted sensor is used for the first time (e.g., when the
sensor is installed), and is similar to the pairing done between
a smartphone and an audio car system. Thus, we believe this
is a simple step for any user.



(a) wheelRevolutions = currentWheelRevolutions - previousWheelRevolutions
(b) crankRevolutions = currentCranksRevolutions - previousCrankRevolutions
(c) wheelEventElapsedTime = currentLastWheelEventTime - previousLastWheelEventTime
(d) crankEventElapsedTime = currentLastCrankEventTime - previousLastCrankEventTime
(e) instantaneousSpeed = (wheelRevolutions * CIRCUMFERENCE) / (wheelEventElapsedTime*1024*3.6)
(f) instantaneousCadence = (crankRevolutions/crankEventElapsedTime)*1024*60

TABLE I
FORMULAS USED IN BIKLIO.

The BLE Manager module in BiklioApp manages the
connection and the communication with the BLE bicycle-
mounted sensor. It scans for nearby BLE devices, establishes a
connection with a specific device, and receives device updated
data. This data is sent by the sensor once it is activated through
pedal or wheel revolution. So, after a connection is established,
the BLE Manager starts receiving sensor data, and routes it
to the Cycling Detector module. The latter has no knowledge
about the sensors and simply has the function of interpreting
the sensor data to determine the cycling state.

Note that the connection between the BiklioApp and a
bicycle-mounted sensor just means that a user is nearby a
bicycle, and not necessarily cycling. To detect the cycling
activity, the BiklioApp uses the instantaneous cadence and
speed values that are calculated on the basis of the data
received from the sensor (as described later).

The sensor data mentioned above contains four cumulative
values: the total counts of crank and wheel revolutions, and
the times the last crank and wheel revolutions occurred. We
designate them Crank Revolutions, Wheel Revolutions, Last
Crank Event Time, and Last Wheel Event Time, respectively.
Each one of the counters starts with the value 0, i.e. when the
sensor is activated for the first time after being bought, and is
always incremented.

As previously mentioned, there is a magnet attached to the
pedal and another to the rear wheel. When the user cycles, each
pedal revolution makes the magnet pass near the sensor, thus
incrementing the Crank Revolutions counter by 1. Similarly,
the sensor increments the Wheel Revolutions counter with
each wheel revolution. The Last Crank Event Time and Last
Wheel Event Time are incremented with the elapsed time in
units of 1/1024 of a second, every time there is a crank and
a wheel revolution, respectively. For example, if a revolution
takes 2 seconds, the value is incremented by 2048.

The bicycle-mounted sensor periodically sends the values of
each one of its four cumulative counters within a single data
packet. Using simple math, the Cycling Detector module de-
termines the instantaneous wheel and crank revolution speeds,
as described next. Let us consider two consecutive received
data packets, and use ”previous” and ”current” to identify the
counters values contained within each packet. The expressions
in Table I (formulas a-d) show how to determine the number
of revolutions and the elapsed time, between two sequential
received packets, by simply subtracting their counters.

To determine the instantaneous wheel speed, the BiklioApp
multiplies the previously calculated wheelRevolutions by the
wheel circumference (in meters), which gives the traveled

distance, and then divide it by wheelEventElapsedTime (see
Table I-e). Given that the time is in units of 1/1024 of a
second, and the traveled distance is in meters, the BiklioApp
multiplies by 1024 and 3.6 to get the instantaneous speed
in km/h. To determine the instantaneous cadence value (see
Table I-f) the BiklioApp divides crankRevolutions by the
crankEventElapsedTime and finally, multiplies by 1024 and
60 to get the cadence in RPM.

Currently, the BiklioApp uses a value of 210 cm for a
wheel circumference (formula (e) shown in Table I). This value
corresponds to a typical bicycle with a 26-inch wheel size. If
a different bicycle is used, the wheel circumference value is
easily changed in the BiklioApp settings interface.

The Cycling Detector module considers that a user is
cycling when the instantaneous speed and cadence values
exceed 11 km/h and 30 RPM during a determined period of
time. Such values were determined as corresponding to cycling
at a slow speed but faster than walking.

Another circumstance that must be considered is when a
cyclist is effectively using her/his bicycle and stops for a short
moment (e.g., in a red traffic light) and then continues. This
should not be interpreted by the BiklioApp as the user finishing
her/his bicycle trip. Thus, these two scenarios (temporary
intermediate stop, and final stop) are considered as follows.

The Cycling Detector detects that a user is no longer
cycling (having reached her/his final destination) when the
corresponding module does not receive updated sensor data
for a determined period of time. This period of time must be
such that it is able to consider the case in which a user just
stops cycling for a few seconds (e.g., in a red traffic light).
If such a detection was done erroneously, that would result
in finishing the cycling detection when the user did not end
the trip effectively. Through experiments, we concluded that
a value of 30 seconds for such a period of time is a good fit.

Note that with respect to tracking the route of a cyclist (e.g.,
when the reward depends on the distance cycled) there is no
significant relevance on the chosen timeout value. Even if the
timeout elapses, the tracking for that particular route finishes
but it will instantly start again as soon as the user resumes
cycling. Thus, the total tracked distance will still be the same,
not affecting the eligibility for the cycled-distance rewards, in
particular.

Another relevant aspect is related to the fact that, sometimes,
a user may abruptly push her/his bicycle resulting in high
instantaneous values sent by the sensor; this clearly does not
correspond to a user cycling as it is a spurious event. Thus, to
deal with such a situation, the BiklioApp uses a time period



within which the instantaneous cadence and speed values can
be higher than the thresholds. Our experiments have shown
that a period of 5 seconds is adequate.

B. Implementation

The BiklioApp is developed in a cross-platform fashion
using Xamarin (https://www.xamarin.com/) as it allows de-
velopers to write, using the C# programming language, both
Android and iOS apps, and share code across multiple plat-
forms. More specific (low-level) code requires either Swift or
Java programming (for iOS and Android, respectively).

For cycling detection, the BiklioApp uses a bicycle attach-
able BLE sensor from BTWIN. Figure 2 shows the sensor
mounted on a bicycle. The application was tested on an iPhone
5s with iOS 10.3.2; the evaluation results presented in the next
section use the above mentioned equipment.

III. EVALUATION

We evaluated the following aspects of the cycling detec-
tion solution in the BiklioApp: i) accuracy of the detection
itself (i.e., the capability of the system to detect that a user
is effectively cycling with neither false positives nor false
negatives), ii) the time it takes to connect the BiklioApp,
running on the smartphone, to the bicycle-mounted sensor,
iii) the time that the BiklioApp takes to detect the cycling
activity, iv) the battery consumption induced by the BiklioApp
on the smartphone due to the cycling activity detection, and
v) the usability of the BiklioApp. For lack of space, we only
present the accuracy of the detection and a summary of the
battery consumption. Note that the other results do respect the
requirements.

A. Cycling Detection Accuracy

The tests done (more than 10 trips) have shown a result
that did not change with the number of users and trips:
100% correct results. Thus, each time a user started cycling,
the BiklioApp (either running in the background or in the
foreground) managed to detect cycling activity with no errors.
Note that 100% is not a surprising result; as a matter fact,
this is equivalent to the establishment of a pair-wise relation
between a Bluetooth device and the audio system of a car, and
the corresponding usage to make and answer phone calls.

B. Battery Consumption

First, we observe the power consumption of a smartphone
in standby (i.e., without running any application); this is the
reference value. Then, we determine the power consumption
of the BiklioApp when the smartphone is idle, and when a
user is cycling.

We left the smartphone overnight registering the battery
level changes into a logfile for the two scenarios mentioned
above: i) not running any application, and ii) running Biklio
when the smartphone is idle. In both scenarios, we consider
the battery consumption over a period of 12 hours. The results
for battery consumption/hour obtained are the following: i) no
application: 0.40%, and ii) the BiklioApp (with BLE sensor):

0.74%. The results show that when the smartphone is idle (no
application is running), its shows less power consumption than
with the BiklioApp (0.40%). However, we can also see that
the continuous background BLE scanning does not introduce
a big power consumption overhead, as the consumption just
increases by 0.34% (up to 0.74%).

We also developed a GPS based solution to compare its
battery consumption with Biklio sensor based approach. Under
the same circumstances, the battery consumption for this case
is 2.75% which, as expected, it is clearly much higher than
the solution used in the BiklioApp with the BLE sensor. In
addition, the accuracy of the GPS solution is less than 100%
as obtained with the BiklioApp (with the bicycle-mounted
sensor).

IV. CONCLUSIONS

This paper presents Biklio with a focus on the cycling
detection performed by the BiklioApp. Such detection has
very strict requirements which are all respected by the current
system. It is based on a Bluetooth sensor attached to each
bicycle which is read by any BLE smartphone capable of
running the BiklioApp. The results obtained show that the
solution provides high accuracy on cycling activity detection,
it is easy to deploy, it requires low or no maintenance, it
is user-friendly and minimally intrusive, it has low battery
consumption, it is responsive, and it is cheap as it uses a off-
the-shelf BLE sensor.

REFERENCES

[1] Global mobile consumer trends, 2nd edition. Technical report, 2017.
[2] O. C. Ann and L. B. Theng. Human activity recognition: A review.

In 2014 IEEE International Conference on Control System, Computing
and Engineering (ICCSCE 2014), pages 389–393, Nov 2014.

[3] M. A. Ayu, S. A. Ismail, A. F. A. Matin, and T. Mantoro. A comparison
study of classifier algorithms for mobile-phone’s accelerometer based
activity recognition. Procedia Engineering, 41:224 – 229, 2012. Inter-
national Symposium on Robotics and Intelligent Sensors (IRIS 2012).

[4] S. Bricka and C. R. Bhat. A comparative analysis of GPS-based and
travel survey-based data. Transportation Research Record, (1972):9–20,
2006.

[5] J. Hrnčı́ř, P. Z̆ilecký, Q. Song, and M. Jakob. Practical multicriteria
urban bicycle routing. IEEE Transactions on Intelligent Transportation
Systems, 18(3):493–504, March 2017.

[6] A. Lari. Automated Transportation Mode Detection Using Smart Phone
Applications via Machine Learning: Case Study Mega City of Tehran.
Transportation Research Board 94th Annual Meeting, 6147, 2015.

[7] M. Nikolic and M. Bierlaire. Review of transportation mode detection
approaches based on smartphone data. 2017.

[8] M. S. Rusman., N. M. P. Toyong, K. N. M. Yusuff, and M. F. Ka-
maruzaman. Role of bicycle as a sustainable transportation in universiti
teknologi mara. In 2013 IEEE Business Engineering and Industrial
Applications Colloquium (BEIAC), pages 780–783, April 2013.

[9] M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J. Havinga. A
survey of online activity recognition using mobile phones. Sensors,
15(1):2059–2085, 2015.

[10] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma. Understanding mobility
based on GPS data. Proceedings of the 10th international conference
on Ubiquitous computing - UbiComp ’08, (49):312, 2008.


