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Abstract
Big Data applications suffer from unpredictable and unacceptably

high pause times due to bad memory management (Garbage Col-

lection, GC) decisions. This is a problem for all applications but

it is even more important for applications with low pause time

requirements such as credit-card fraud detection or targeted web-

site advertisement systems, which can easily fail to comply with

Service Level Agreements due to long GC cycles (during which the

application is stopped). This problem has been previously identified

and is related to Big Data applications keeping in memory (for a

long period of time, from the GC’s perspective) massive amounts

of data objects.

Memory management approaches have been proposed to reduce

the GC pause time by allocating objects with similar lifetimes close

to each other. However, they either do not provide a general solution

for all types of Big Data applications (thus only solving the problem

for a specific set of applications), and/or require programmer effort

and knowledge to change/annotate the application code.

This paper proposes POLM2, a profiler that automatically: i) es-

timates application allocation profiles based on execution records,

and ii) instruments application bytecode to help the GC taking

advantage of the profiling information. Thus, no programmer effort

is required to change the source code to allocate objects according

to their lifetimes. POLM2 is implemented for the OpenJDK HotSpot

Java Virtual Machine 8 and uses NG2C, a recently proposed GC

which supports multi-generational pretenuring. Results show that

POLM2 is able to: i) achieve pauses as low as NG2C (which requires

manual source code modification), and ii) significantly reduce appli-

cation pauses by up to 80% when compared to G1 (default collector

in OpenJDK). POLM2 does not negatively impact neither applica-

tion throughput nor memory utilization.
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1 Introduction
Big Data applications suffer from unpredictable and unaccept-

ably high pause times due to automatic memory management,

i.e., Garbage Collection (GC). Therefore, applications such as credit-

card fraud detection or targeted website advertisement systems,

that rely on fast access to data stored/processed by underlying

Big Data platforms (BGPLATs), such as graph-based computing or

in-memory databases, can easily fail to comply with their target re-

sponse time (usually specified in Service Level Agreements, SLAs).

This problem is even more important if multiple platforms work

together (for example in a stack of BGPLATs, one depending on the

output of the other to produce output). In this scenario, the proba-

bility of incurring into a long GC pause (and potentially failing an

SLA) increases with the number of BGPLATs in the stack.

High GC pauses in HotSpot applications is a well studied prob-

lem [10, 20, 21]. Its root cause can be decomposed in two sub-

problems: i) Big Data applications hold large volumes of data in

memory (e.g., to provide fast access), and ii) data stays in memory

for a long period of time (from the GC perspective), violating the

widely accepted assumption that most objects die young and only

a negligible amount of objects become old [31, 49]. Holding large

amounts of middle to long-lived objects in memory leads to an

extreme GC effort mainly due to en masse object promotion (i.e.,

copying objects into older generations) and compaction (compact-

ing memory to reduce fragmentation). This results in long and

frequent applications pauses (during which the GC is promoting or

compacting objects) compromising applications’ SLAs.

To solve this problem (reducing application pauses due to an

extreme GC effort to promote objects and compact memory), previ-

ous works propose the use of: i) off-heap memory
1
[37, 39, 42], ii)

scope limited allocation regions [4, 9, 18, 19, 23–25, 28, 32, 42, 46],

or iii) multiple generations [7, 10, 29, 38, 45]. While the use of off-

heap memory can reduce some GC effort by reducing the number

of objects managed by the GC, it has two main drawbacks: i) it

forces the programmer to allocate and deallocate memory explic-

itly (which is error prone), and ii) it does not completely solve the

problem since objects describing data stored off-heap remain in the

GC-managed heap (as shown in Bruno et al. [10]). Regarding scope-

based allocation spaces (in which all objects allocated in a particular

scope are deallocated at once, freeing the GC from handling those

objects), this technique cannot be used for a wide spectrum of BG-

PLATs, in particular storage oriented platforms, since data objects

typically live across many scopes [10]. For example, if a storage

oriented platform keeps an in-memory data structure (such as a

data cache/table), objects placed in the data structure have a lifetime

that is independent of the duration of the scope where the objects

were created (typically these objects escape the scope where they

1
Off-heap is a way to allocate objects outside the scope of the automatic memory

management system (i.e., Garbage Collector). While using off-heap memory, the

programmer is responsible for collecting memory (by deallocating allocated objects).
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were created). Finally, using multiple generations can effectively

reduce the GC effort by organizing the heap accordingly [10], i.e.,

each generation containing objects with similar lifetimes (more

details in Section 2). However, this solution has two drawbacks: i)

programmers’ knowledge and effort is required to change/anno-

tate the application code in order to tell the GC which objects live

longer than others (this can be a long and difficult task that needs

to be redone every time the application code is updated), and ii)

it requires code access, which can be non trivial if the code to be

changed/annotated is located in third-party libraries (or inside the

Java Development Kit).

This paper proposes a solution (POLM2) for the above mentioned

problems. POLM2 is: i) an off-line profiler that automatically gathers

application allocation profiling information, and ii) an application

bytecode instrumenter that instruments the application to take

advantage of the profiling information to help the GC taking better

decisions. POLM2 strives to reduce HotSpot applications’ pause

time (due to GC en masse object promotion and compaction) with-

out requiring any programmers’ effort, and for any type of Big Data

applications. In addition, no source code access is required in order

for POLM2 to work. POLM2 must reduce application pause times

while not degrading other performance metrics such as throughput

and memory usage.

Automatically adapting memory management decisions for a

particular application is non-trivial, and two challenges can be eas-

ily identified. First, one must extract and analyze an application

allocation profile, i.e., identify which data objects are being held in

memory for a long time (thus putting extra effort on the GC), and

where they are allocated. This is a hard task since it is difficult to

efficiently record each object allocation and also be able to identify

when each object dies (i.e., it is no longer reachable). Second, one

must process all the gathered information and instrument the ap-

plication in order to improve memory management decisions (to

take into consideration its allocation profile).

POLM2 builds upon NG2C [10], a GC algorithm which, with the

help of the programmer, allocates objects with similar lifetimes close

to each other (in the same generation to be more specific), leading

to much reduced GC effort and, consequently, reduced application

pauses. To free the programmer from having to change/annotate

the application code, POLM2 automatically instruments application

bytecode based on off-line profiling information.

The proposed solution includes four components: i) a Recorder
that records object allocations and informs the Heap Dumper (de-

scribed next) when it should create a new heap snapshot; ii) a

Dumper that creates heap snapshots (containing all living objects);

iii) an Analyzer, a component that processes both allocation records

and heap dumps to estimate object lifetimes per allocation site,

producing an allocation profile for the application/workload; iv)

an Instrumenter, a component that, taking as input the application

allocation profile, instruments the application bytecode (at load

time) in order to give the GC (i.e., NG2C) the necessary information

to allocate application objects in specific generations (according to

their lifetime), thus reducing GC effort to manage them (resulting

in shorter application pauses).

Using POLM2 is divided in two phases: i) profiling, and ii) produc-

tion. During the profiling phase, the goal is to learn the application

allocation profile. For this purpose, the Recorder, Dumper, and the

Analyzer are necessary to record allocations, dump heap objects,

and analyze all this information. The output of the profiling phase is

an application allocation profile that is the input for the production

phase. In the production phase, the Instrumenter rewrites applica-
tion bytecode (at load time) in order to make memory management

lifetime-aware, leading to reduced application pause times.

In short, POLM2 makes Big Data applications to better use the

underlying GC, with shorter pauses, without imposing any effort on

the programmer. The profiller is instrumental to attain the overall

goal.

POLM2 is implemented for the OpenJDK 8 HotSpot JVM and

uses NG2C, a recently proposed GC for HotSpot that supports

multi-generational pretenuring (i.e., allocating an object in any

generation). Java Agents (a Java Agent is a pluggable component

that runs attached to the JVM) are used to implement the Recorder
and the Instrumenter, that changes the bytecode at load time, either

to record allocations (Recorder) or to use NG2C’s API (Instrumenter).
The Dumper is built on top of CRIU, a Checkpoint-Restore tool for

Linux. Using CRIU, it is possible to efficiently create incremental

JVM heap snapshots.

Evaluation results are very encouraging as POLM2 can provide

application pause times very similar to the ones achieved using

NG2C (which requires developers’ effort). In addition, POLM2 sig-

nificantly reduces application pause timeswhen compared toGarbage

First (G1) [16], the new by-default GC for OpenJDK HotSpot JVM.

POLM2
2
represents an important contribution as it provides

a way to automatically perform object lifetime-aware memory

management. Thus, POLM2 solves the two main problems of NG2C:

i) requiring developer’s effort and knowledge, and ii) requiring

source code access. This system and its usefulness are demonstrated

through thorough evaluation experiments using real BGPLATs:

Apache Cassandra [35], GraphChi [34], and Apache Lucene [40].

The paper is organized as follows. Section 2 gives a concise

background, introducing important concepts in which POLM2 is

built upon. Section 3 presents POLM2 by discussing its architec-

ture, used algorithms, and how to use it. Sections 4 and 5 contain

a short description of the implementation details and the evalua-

tion experiments (respectively). The paper closes with a study of

the state-of-the-art and with some conclusions and future work

directions.

2 Background
This section provides the necessary background to understand the

motivation, goal, and design decisions in POLM2. The section starts

with some background on generational GC, explaining its key in-

sights and why most implementations, available in industrial JVMs,

are not suited for low-latency BGPLATs. Then, we describe NG2C,

a recently proposed pretenuring multi-generational collector.

2.1 Generational Garbage Collection
Nowadays, generational GC is a widely used solution [30]. It is

based on the observation that objects have different lifetimes and

that, in order to optimize the collection process, objects with shorter

lifetimes should be collected more frequently than middle to long-

lived objects (simply because the short lived objects die first when

compared to middle and long-lived objects). To take advantage

of this observation, generational collectors divide the heap (mem-

ory space where application objects live) into generations, from

youngest to oldest. Most generational collectors allocate all objects

2
POLM2’s code is available at github.com/rodrigo-bruno/polm2.
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in the youngest generation and, as objects survive collections, sur-

vivor objects are copied to older generations, which are collected

less frequently.

Most popular JVMs, and specifically the most recent HotSpot

collector, Garbage First (G1) [16], also takes advantage of the weak

generational hypothesis [49] that, as previously mentioned, states

that most objects die young. By relying on this hypothesis, G1

divides heaps in two generations, young (where all objects are

allocated in) and old (where all objects that survive a configurable

number of collections are promoted/copied to).

While this solution works well for applications that follow the

weak generational hypothesis, it raises some problems to applica-

tions that handle many middle to long-lived objects. These objects

(which do not die young) will be promoted and compacted through

time until they become unreachable (i.e., garbage). In the case of

BGPLATs that hold massive amounts of middle to long-lived objects

in memory, the cost of promoting and compacting these objects be-

comes prohibitive, leading to long and frequent application pauses.

In sum, all generational collectors either assume or estimate the

lifetime of an object. Most common collectors simply assume that

most objects will die young, and pay the price of promoting and

compacting survivor objects. As discussed next, some collectors, in

particular NG2C, require application-level knowledge to decide in

which generation to allocate an object. By allocating objects directly

into a specific generation (and not assuming that all objects die

young), NG2C is able to greatly reduce the amount of promotion and

compaction effort, reducing the number and duration of application

pauses.

2.2 NG2C - Pretenuring GC with Dynamic Generations
NG2C [10] extends 2-generational collectors (which only contain

two generations: young and old) into N generations (an arbitrary

number dynamically changed at runtime). In addition, it allows

objects to be pretenured into any of the N generations, i.e., objects

can be allocated directly into any generation.

To decide where to allocate objects, NG2C relies mostly on pro-

grammer knowledge and effort to change application code. By de-

fault, i.e., with no code modification, all objects are allocated in the

youngest generation (young generation). In order to allocate objects

in older generations, NG2C provides a special code annotation @Gen
and three JVM calls: System.newGeneration, System.getGenera-
tion, and System.setGeneration. The annotation must be used

to annotate allocation sites that allocate objects that should be allo-

cated in a old generation. To control in which generation objects

are allocated into, NG2C uses the concept of target generation, a

thread-local variable that indicates where objects annotated with

@Gen should be allocated in. To change a thread’s target generation,
System.setGeneration must be used. Finally, it is also possible

to create an arbitrary number of generations at runtime by calling

System.newGeneration.
As presented by the authors of NG2C, pretenuring objects with

similar lifetimes into the same generation leads to significant re-

duction in the number of object promotions and less compaction

cost, leading to reduced application pauses times. However, in or-

der to present good results, NG2C relies on source code changes

that require programmer’s effort and knowledge to correctly un-

derstand how the code must be changed. In addition, it is very

Figure 1. POLM2 Architecture and Workflow

difficult to annotate/change application code that resides in third-

party libraries/frameworks or even inside the Java Development

Kit code.

3 Automatic Object Lifetime-aware GC
To reduce application pause times, POLM2 automatically instructs

the GC to allocate objects with similar lifetimes in the same heap

location (generation). By optimizing object distribution in the heap

(partitioning objects by estimated lifetime), POLM2 reduces GC

effort to promote and compact objects in memory (both the two

main causes for frequent and long application pauses).

POLM2 works in two separate phases (more details in Section

3.5): profiling, and production. First, during the profiling phase,

the application is monitored in order to perceive its allocation

profile. Secondly, in the production phase, the application runs in a

production setting while having its memory management decisions

taken accordingly to its allocation profile (output of the profiling

phase). As described in the next section, different components play

distinct roles in each different phase.

NG2C [10], a recently proposed GC that supports object allo-

cation in specific generations (i.e., pretenuring), is used to take

advantage of the profiling information automatically extracted by

POLM2. To take advantage of NG2C, POLM2 instruments the appli-

cation bytecode (while it is being loaded into the JVM) to instruct

NG2C on how to efficiently organize objects according to their

estimated lifetime (thus reducing the GC effort, and consequently,

application pause times number and duration). This is performed

without any programmer intervention and with no source code

modification. This process is explained in detail in the next sections.

3.1 Architecture
POLM2 is composed of several components which, combined, pro-

duce the application allocation profile (profiling phase), and change

the application bytecode to give instructions to the collector regard-

ing how objects should be placed in the heap (production phase).

These two tasks are handled by four main components (see Figure

1):

Recorder - this component runs attached to the JVM where the

application runs. It is responsible for two tasks: i) recording object

allocations (i.e., the stack trace of the allocation plus a unique

identifier of the allocated object), and ii) informing the Dumper
component on when it should create a new heap snapshot (more

details in Section 3.2);

Dumper - upon request from the Recorder, creates a JVM mem-

ory snapshot. The memory snapshots are incremental (regarding
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the previous one) and do not include unreachable objects (more

details in Section 3.2);

Analyzer - this component takes as input: i) the allocation

records created by the Recorder (that states which objects were

allocated and where) and, ii) the memory snapshots created by

the Dumper. By analyzing a sequence of memory snapshots, the

Analyzer is able to detect when objects start and stop being in-

cluded in the snapshot, meaning that it is possible to perceive the

lifetime of every application object. By combining this information

with the allocation records, it is possible to estimate the lifetime

distribution for each allocation site (more details in Section 3.3).

This information composes the application allocation profile;

Instrumenter - taking as input the application allocation profile
produced by the Analyzer, this component instruments (rewrites)

the application bytecode while it is being loaded into the JVM.

Based on the allocation profile, the Instrumenter instructs the GC
on how to improve the distribution of objects in the heap (more

details in Section 3.4);

3.2 Object Lifetime Recording
To record object lifetimes, two pieces of information are required.

First, all object allocations must be recorded, i.e., for each object

allocation, both a unique object identifier and the stack trace of

the corresponding allocation site must be included in the alloca-

tion record. Second, information regarding how long each allocated

object lives is gathered through periodic memory snapshots, that in-

clude all live objects; thus, for each memory snapshot, it is possible

to determine which objects are still reachable or not. By combining

these two sources of information (where objects are allocated, and

how long they live), POLM2 is able to estimate, for each alloca-

tion site, the lifetime distribution of objects allocated through that

allocation site. This information is then used to instruct NG2C.

Allocation records are created by the Recorder, a component that

runs attached to the JVM. The Recorder has twomain purposes. First,

it instruments application bytecode (during application bytecode

loading) to add calls to the Recorder logging methods. This ensures

that whenever an application thread allocates an object, that thread

will immediately (after allocating the object) call the Recorder code
to log the allocation. Upon each allocation log call, the Recorder
records the current stack trace plus the id of the object that is being

allocated (more details on how the id is obtained in Section 4).

To avoid extreme memory and CPU overhead, the Recorder only
keeps in memory a table with all the stack traces that have been

used for allocations (i.e., allocation sites) and continuously writes

(to disk) the ids of the allocated objects (using a separate stream

for each allocation site). Allocation stack traces are only flushed to

disk at the end of the application execution (in the profiling phase).

This ensures that POLM2 writes each allocation stack trace once to

disk.

Apart from logging allocations, the Recorder is also responsible

for periodically requesting new memory snapshots (by calling the

Dumper component). By default (this is configurable), the Recorder
asks for a new memory snapshot at the end of every GC cycle.

In other words, after each heap collection (which collects all un-

reachable objects), a new memory snapshot is created. In order to

optimize this process of creating a memory snapshot (which can

take a long time for large heaps and, since collections can occur

very frequently), POLM2 offers two optimizations:

• the snapshot includes memory that contains only reachable

data. To accomplish this optimization, the NG2C collector

is modified to include an additional method call (accessible

to the Recorder) that marks (more details in Section 4) all

heap memory pages which contain no reachable objects (i.e.,

unused heap memory). Thus, before calling the Dumper
for creating a new memory snapshot, the Recorder calls

NG2C to mark all unused pages. Upon snapshot creation,

the Dumper is able to detect which pages are marked or not,

and simply avoids marked pages;

• only memory modified since the last snapshot is included

in the current one. Every time the Dumper creates a new
memory snapshot, all memory pages that were part of the

previous one, are marked clean (more details in Section

4). During application execution, changed memory pages

are automatically marked dirty. Upon a new snapshot, the

Dumper is able to create an incremental snapshot that con-

tains only the pages dirtied since the last snapshot. This

results in much smaller snapshots (containing only modified

memory pages) that are much faster to create.

Using these two optimizations, the time required to take a JVM

memory snapshot is greatly reduced (evidence of this performance

optimization is shown in Section 5). Thus, by reducing the time

required to take a memory snapshot, POLM2 reduces the negative

impact on application profiling (more details in Section 3.5).

3.3 Estimating Object Lifetime Per Allocation Site
After profiling an application for some time, the Analyzer can be

started, taking as input: i) allocation records that include, per al-

location site, the corresponding stack traces and allocated object

ids (provided by the Recorder), and ii) memory snapshots (created

by the Dumper). Using this information, it is possible to obtain an

object lifetime distribution for each allocation site, which enables

the Analyzer to estimate the optimal generation to allocate objects

per allocation site.

In order to determine the optimal generation for each allocation

site, the Analyzer implements an algorithm with the following

steps:

• load allocation stack traces and, for each one, associate a

sequence of buckets/sets (each one representing a genera-

tion);

• load allocated object ids and insert them into the first bucket

(generation zero) associated to the corresponding stack trace

(where the object was allocated);

• load JVM memory snapshots (sorted by time of creation)

and, for each reachable object included in the snapshot,

move the object id into the next bucket.

After these steps, it is possible to know, for each stack trace, how

many objects survived up to N collections (representing the number

of created memory snapshots). With this information, it is possible

to obtain the number of collections that most objects allocated in a

particular stack trace survive, which is a good estimation for the

optimal generation to use for objects allocated in the allocation site.

However, one problem remains: it is possible to have two stack

traces, with different estimated generations, sharing the same al-

location site. For example, if two different code locations use the

same sequence of method calls to allocate objects with very dif-

ferent lifetimes, both stack traces will share the final stack trace
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Listing 1. Original Class1 Code
1 class Class1 {
2

3 public int[] methodD(int sz) {
4 return new int[sz];
5 }
6

7 public int[] methodC(boolean var) {
8 int[] arr = methodD(z);
9 if (var) {
10 int[] tmp = methodD(sz);
11 ...
12 }
13 ...
14 return arr;
15 }
16

17 public void methodB(int sz) {
18 int[] arr;
19 if(...) {
20 ...
21 arr = methodC(true);
22 ...
23 }
24 else {
25 ...
26 arr = methodC(false);
27 ...
28 }
29 ...
30 }
31

32 public void methodA() {
33 ...
34 methodB();
35 ...
36 }
37 }

Figure 2. STTree for Class1 Source Code Allocations

elements, thus creating a conflict. An example of such a scenario

can be found in Listing 1, where method methodD is used by a se-

quence of methods that allocate objects with possibly very different

lifetimes.

To solve this problem, a stack trace tree (STTree) is built by the

Analyzer to find a solution for each conflict. The STTree organizes

stack traces as paths composed of a number of nodes. Each node

is associated to a 4-tuple composed of: i) class name, ii) method

Algorithm 1 STTree Conflict Detection and Resolution

1: procedure Detect Conflicts(sttree)
2: seen_4tuples← empty

3: conflicts← empty

4: for leaf in sttree do
5: if leaf in seen_tuples then
6: conflicts.add(leaf.4tuple, leaf)

7: returnconflicts

8: procedure Solve Conflicts(sttree, conflicts)
9: for conflict in conflicts do
10: while true do
11: for node in conflict.nodes do
12: conflicts.replace(node, node.parent)

13: for node in conflict.nodes do
14: if noConflic(node, conflict.nodes) then
15: conflicts.remote(node)
16: sttree.update(conflict, node)

17: procedure noConflict(tnode, nodes)
18: for node in nodes do
19: if tnode not node then
20: if tnode.4tuple = node.4tuple then
21: returnfalse
22: returntrue

name, iii) line number, and iv) target generation. Nodes can either

be intermediate (method call) or leaf (object allocation). Starting

from any leaf, it is possible to reconstruct the allocation path (stack

trace) of any allocation. By default, the target generation of all

the intermediate nodes is zero (meaning that objects should be

allocated in the youngest generation). Leaf nodes’ target generation

is obtained by using the estimated target generation that results

from analyzing the objects included in the memory snapshots.

If one or more conflicts exist, it means that one or more leaf

nodes belonging to different sub-trees contain the same class name,

method name, and line number, but different target generations. By

design, these conflicting nodes belong to different sub-trees, mean-

ing that it is possible to find at least one node in the allocation path

that differs between each conflicting sub-trees. To solve existing

conflicts, each of the conflicting nodes must push to its parent node

its target generation. This operation must be repeated until parent

nodes pointing to different code locations (combination of class

name, method name, and line number) are found for each of the

conflicting leaf nodes.

The resulting STTree for the code presented in Listing 1 is shown

in Figure 2. Note that leaf nodes point to the same code location

(class name, method name, and line of code) but contain different

target generations. To solve this conflict, each leaf node propagates

its target generation to the parent node until a node pointing to a

different code location is found.

The pseudocode of the algorithm used for detecting and solving

conflicts is presented in Algorithm 1. The code is divided in two

main procedures that detect and solve conflicts. Detection (Detect
Conflicts) is done by searching for leaf nodes with identical 4-tuple

values. Once a set of identical leafs has been found, the Solve Con-
flicts procedure is used to identify, for each leaf node, a parent node
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Listing 2. Class1 Code after Byte Code Instrumentation

1 class Class1 {
2

3 public int[] methodD(int sz) { return new @Gen
int[sz]; }

4

5 public int[] methodC(boolean var) {
6 int[] arr = methodD(z);
7 if (var) {
8 Generation gen = setGeneration(Gen1);
9 int[] tmp = methodD(sz);
10 setAllocGen(gen);
11 ...
12 }
13 ...
14 return arr;
15 }
16

17 public void methodB(int sz) {
18 int[] arr;
19 if(...) {
20 Generation gen = setGeneneration(Gen2);
21 arr = methodC(true);
22 setAllocGen(gen);
23 }
24 else {
25 Generation gen = setGeneration(Gen3);
26 arr = methodC(false);
27 setAllocGen(gen);
28 }
29 ...
30 }
31

32 public void methodA() {
33 ...
34 methodB();
35 ...
36 }
37 }

belonging to its allocation path which is unique. This parent node

will be used to solve the conflict.

In Figure 2, each subtree associated with a different target gen-

eration is painted with a different color. For example, all leaf nodes

that fall within the subtree painted in red (dotted line) will allocate

objects in generation three. Also note that it is possible to override

the target generation for a particular subtree, as it is illustrated in

the subtree painted in yellow (dashed line), that allocates objects in

generation one, although being part of the blue subtree (solid line,

that allocates objects in the generation two).

3.4 Application Bytecode Instrumentation
Up until now, POLM2 is able (during the profiling phase) to profile

and extract application allocation profiles. This section describes

how to apply a given application allocation profile (during produc-

tion phase) into the application bytecode at load time.

As mentioned before, POLM2 uses NG2C, a recently proposed

GC that supports multi-generational pretenuring, meaning that it

can pretenure (allocate) objects in multiple generations. NG2C pro-

vides a simple API that contains three methods: i) newGeneration,

that creates a new generation; ii) getGeneration, that returns the
actual target generation for allocations; iii) setGeneration, that
sets the current generation (and returns the previous one).

In addition to these methods, NG2C provides an annotation

(@Gen) that is used to annotate allocation sites. Object allocated

through allocation sites annotated with @Gen are pretenured/allo-
cated in the target generation (that was previously set with one of

the methods of the provided API). Non-annotated object allocations

are not pretenured, and are allocated in the youngest generation.

To automatically take advantage of an application allocation

profile, POLM2 proposes the Instrumenter, a component that inter-

sects bytecode loading and rewrites/instruments it to and insert

calls (and annotations) to instruct NG2C. Following the previous

example of Listing 1 and Figure 2, Listing 2 presents the Java code

representation of the bytecode generated by the Instrumenter. Note
that POLM2 does not change/require access to the Java source code;

the listing is shown just for clarifying the description; it would be

obtained if the bytecodes were disassembled.

Taking into consideration the application allocation profile, the

Instrumenter added a @Gen annotation in line 3 that results in the

pretenuring of an Integer array into the current generation. The

current generation is controlled by calling setGeneration in lines

8, 10, 20, 22, 25, and 27. These calls are used whenever the execution

steps into a subtree (from the STTree described in Figure 2) that

contains a different color (target generation) regarding the current

one.

The generations necessary to accommodate application objects

(Gen1, Gen2, and Gen3) are automatically created (by calling the

newGeneration NG2C API call) at launch time, and are available

to use in any point of the application.

3.5 Profiling and Production Phases
As already mentioned, using POLM2 can be divided in two phases:

i) profiling, and ii) production. The profiling phase is necessary to

monitor the application in order to extract its allocation profile.

During this phase, the Recorder, Dumper, and Analyzer components

record allocation data and analyze it. The output of the profiling

phase is a file containing all the code locations that will be instru-

mented and how (annotate allocation site or set current generation).

The production phase represents the execution of the application

in production environments. During this phase, only the Instru-
menter component is required to instrument the bytecode according

to the provided allocation profile. The instrumentation overhead

is only present while the application is loading (during which the

bytecode is being loaded and instrumented). After a short period,

most of the code of the application is already loaded, and the per-

formance overhead associated to the Instrumenter is negligible (see
Section 5).

The separation between these two phases (profiling and produc-

tion) is important for one main reason: a profiling phase generates

an allocation profile for a particular combination of application

and workload, meaning that whenever a particular workload is

expected in the production phase, an already existing allocation

profile can be used. This also means that it is possible to create

multiple allocation profiles for the same application, one for each

possible workload. Then, whenever the application is launched in

the production phase, one allocation profile can be chosen accord-

ing to the estimated workload (for example, depending on the client

for which the application is running).
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4 Implementation
POLM2 is composed of a collection of components that, as described

in Section 3, work towards the same goal. This section describes

some implementation techniques that are relevant for POLM2 being

efficiently implemented.

4.1 Java Agents
Both the Recorder and Instrumenter are implemented as Java Agents.

These are pluggable components that run attached to the JVM.

Both agents (Recorder and Instrumenter) use ASM3
, a Java bytecode

manipulation library, to rewrite bytecode at load time. The Recorder
uses ASM to add callbacks to the recording code on every object

allocation while the Instrumenter uses NG2C API to direct object

allocations to different generations.

In addition to recording allocations, the Recorder also serves

a second purpose. It prepares the heap for a memory snapshot,

and signals the Dumper component for creating a new snapshot.

By default (this is configurable), upon each GC cycle finish, the

Recorder instructs the Dumper to create a new snapshot. However,

to avoid snapshotting memory pages that are not being used by

the application and therefore to reduce the size of the snapshot,

the Recorder traverses the Java heap and sets a special bit in the

kernel page table (from here on called no-need bit) for all pages

containing no live objects. This no-need bit that is set using the

madvise system call, is used by the Dumper to avoid pages with

the bit set (i.e., unnecessary pages) while creating the memory

snapshot.

4.2 Efficient JVM Snapshots with CRIU
To perform JVM snapshots, POLM2 uses CRIU

4
. CRIU allows any

process to be checkpointed, i.e., all its resources (including its mem-

ory pages) are captured in a snapshot.

CRIU supports incremental checkpoints by relying on a kernel

memory page table dirty bit that indicates if a particular page was

dirtied or not, since the last snapshot. Upon each memory snapshot,

CRIU cleans the bit and therefore, when a new snapshot is requested

again, only pages with the dirty bit captured into the snapshot.

Finally, CRIU also ignores pages which are marked as not neces-

sary by checking the no-need bit in the page table of a particular

process. This no-need bit is set by the Recorder and is used to discard
every page that contains no live objects.

By combining CRIU with the Recorder, POLM2 is able to create

snapshots whose size (and consequently the time necessary to

create them) is greatly reduced when compared to a usual approach

using usual JVM tools such as jmap5 (see results in Section 5).

4.3 Finding Recorded Objects in JVM Snapshots
Matching the objects’ ids recorded by the Recorder with the ids of

the objects included in the JVM memory snapshot is also a non-

trivial implementation challenge. In particular, simply using the

jmap tool would not be possible because the ids of objects included

in the heap dumps produced by jmap change over time as they

are generated using their corresponding memory addresses. Since

an object might be moved (promoted or compacted), its id might

change, therefore breaking the goal of tracking the object until

3
ASM is a bytecode manipulation library that is available at asm.ow2.org

4
CRIU is a Checkpoint-Restore tool for Linux processes. It is available at criu.org.

5
Java Memory Map, or jmap, is a tool for Java applications that can create application

heap dumps.

it becomes unreachable. Thus, in order to properly match the ids

provided by the Recorder and the Dumper, another solution is used.

The objects’ ids recorded by the Recorder are obtained by calling

the method System.identityHashCode for each recorded object.

Each id is generated by hashing the corresponding object and is

stored internally in the JVM in the object’s header. In order to

successfully match object ids included in the snapshot, the Analyzer
must read each object header in order to extract the object id and

match it with the ids reported by the Recorder. Note, however, that
it is possible that many objects recorded by the Recorder did not

appear in the JVM snapshots since the Analyzer only traverses live

objects.

4.4 Reducing Changes Between Generations
As discussed in Section 3.4, for each STTree leaf node (object alloca-
tion) that is not included in any conflict, there are two calls to the

NG2C API: one to change the target generation of the leaf node,

and one to go back to the previous target generation.

In order to reduce the overhead associated to calling NG2C

multiple times, POLM2 avoids many of these calls by pushing the

target generation to parent nodes in the hope that other leaf nodes

in the same subtree also share the same target generation. Thus,

if no conflicts are created, the target generation is set only when

the execution enters into a specific subtree, and all the leaf nodes

included in the subtree inherit the target generation; thus, there is

no need to call NG2C multiple times.

This optimization leads to a significant reduction in the number

of calls to NG2C, therefore reducing the overhead associated with

selecting the correct generation for object allocations.

4.5 Profiling Information for Generational GCs
As already mentioned, the overall goal of this work is to reduce Big

Data application pause times by performing lifetime-aware memory

management. To this end, POLM2 uses NG2C, a GC which exports

an API to specify where objects should be allocated, decision that

must take into consideration the expected lifetime of each object.

However, it is important to note that POLM2 is completely inde-

pendent of the GC that is being used. In other words, POLM2 can

be used with any generational GC that supports pretenuring. The

only code that would have to be changed is the GC-specific code in

the Instrumenter (that specifies in which generation objects should

be allocated in).

5 Evaluation
This section presents the results of several experiments regarding

the three most relevant metrics for POLM2: i) the size of JVM

snapshots, and the time to create them; ii) application pause times;

and iii) application throughput and memory usage.

Thus, for the first set of results, we compare the size and time

to create JVM snapshots with Dumper, and the widely used JVM

tool jmap. Then, application pause times obtained with POLM2 are

analyzed and compared to the pauses obtained with: i) NG2C with

manual code modifications, i.e. with programmers’ knowledge of

the application and the corresponding source code modifications

(to allocate objects with similar lifetimes close to each other), and

ii) G1, the default collector for recent OpenJDK versions that uses

no profiling information or programmers’ help to estimate objects

lifetime, and therefore simply assumes that most objects die young.

Note that the use of NG2C with manual code modifications should
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Workload # Instrumented Alloc Sites # Used Generations # Conflicts Encoutered

Cassandra-WI 11/11 4/N 2/2

Cassandra-RW 11/11 4/N 2/2

Cassandra-RI 10/11 4/N 3/2

Lucene 2/8 2/2 2/0

GraphChi-CC 9/9 2/2 1/0

GraphChi-PR 9/9 2/2 1/0

Table 1. Application Profiling Metrics for POLM2/NG2C

correspond to the best performance results that can be obtained as

the programmer knows the application code and requires objects to

be allocated in a way that minimizes pause times. Although we also

use C4 [47] in our experiments, pause time results are not shown

as there are no significant pause times (the duration of all pauses

fall below 10 ms).

We use three relevant platforms (that are used in large-scale

environments) to exercise each collector: i) Apache Cassandra 2.1.8

[35], a large-scale Key-Value store, ii) Apache Lucene 6.1.0 [40],

a high performance text search engine, and iii) GraphChi 0.2.2

[34], a large-scale graph computation engine. Section 5.2 presents

a complete description of each workload.

The main goal of these evaluation experiments is to show that

POLM2: i) greatly reduces application pause times when compared

to current industrial collectors (such as G1); ii) does not have a neg-

ative effect neither on throughput nor on memory utilization; and

iii) replaces programmer’s knowledge by automatic profiling, thus

achieving equivalent performance or even outperforming NG2C.

5.1 Evaluation Setup
The evaluation was performed using a server equipped with an Intel

Xeon E5505, with 16 GB of RAM. The server runs Linux 3.13. Each

experiment runs in complete isolation for at least 5 times (i.e., to

be able to identify outliers). All workloads run for 30 minutes each.

When running each experiment, the first five minutes of execution

are ignored; this ensures minimal interference from JVM loading,

JIT compilation, etc.

Fixed heap and young generation sizes are always enforced

(12GB and 2GB, respectively). We found that these sizes are enough

to hold the working set in memory and to avoid premature enmasse

promotion of objects to older generations. Besides, according to our

experience, leaving young generation or total heap sizes unlimited

leads to non-optimal pause times since the JVM will always try to

limit/reduce memory utilization, eventually leading to extra GC

effort that results in longer pause times.

5.2 Workload Description
This section provides a complete description of the workloads used

to evaluate POLM2.

5.2.1 Cassandra
Cassandra is used with three different workloads: i) write intensive

workload, from here on Cassandra WI, (2500 read queries and

7500 write queries per second); iii) write-read workload, from here

on Cassandra WR, (5000 read queries and 5000 write queries per

second); and iv) read intensive workload, from here on Cassandra RI,

(7500 read queries and 2500write queries per second). All workloads

are synthetic but mirror real-world settings by the YCSB benchmark

tool.
6

5.2.2 Lucene
Lucene is used to build an in-memory text index using a Wikipedia

dump from 2012.
7
The dump has 31GB and is divided in several

33M documents. Each document is loaded into Lucene and can be

searched. The workload is composed of 20000 writes (document

updates) and 5000 reads (document searches) per second; note

that this is a write intensive workload that represents a worst case

scenario for GC pauses. For reads (document queries), the test loops

through the 500 top words in the dump; this also represents a worst

case scenario for GC pauses.

5.2.3 GraphChi
When compared to the previous systems (Cassandra and Lucene),

GraphChi is a more throughput oriented system (and not latency

oriented). GraphChi is used for two reasons: i) first, it is important to

show that POLM2 does not significantly decrease throughput even

in a throughput oriented system; and ii) with POLM2, systems such

as GraphChi can now be used for applications providing latency

oriented services, besides performing throughput oriented graph

computations.

For the evaluation of POLM2, we use two well-known algo-

rithms: i) page rank (GraphChi PR), and ii) connected components

(GraphChi CC). Both algorithms use as input a 2010 twitter graph

[33] consisting of 42 millions vertexes and 1.5 billions edges. These

vertexes (and the corresponding edges) are loaded in batches into

memory; GraphChi calculates a memory budget to determine the

number of edges to load into memory before the next batch. This

represents an iterative process; in each iteration a new batch of

vertexes is loaded and processed.

5.3 Application Profiling
This section shows the results obtained during the profiling phase

(while the next section present results obtained during the produc-

tion phase).

Because each workload stabilizes very fast after the JVM loading,

we found that profiling each workload for only five minutes is

sufficient (the first minute of execution is always ignored to avoid

load-time noise; hence, the profiling phase lasts for six minutes

per workload). If other workloads take more time to stabilize, the

duration of the profiling phase might increase.

6
The Yahoo! Cloud Serving Benchmark (YCSB) is an open-source benchmarking tool

often used to compare NoSQL database systems.

7
Wikipedia dumps are available at dumps.wikimedia.org
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5.3.1 Profiling Allocation Sites
For each application and workload, a number of allocation sites are

identified as candidates for instrumentation. Each allocation site

can be selected for a different generation, according to the estimated

lifetime of objects allocated through that particular allocation site.

Finally, encountered conflicts are also solved, resulting in additional

code changes (see Section 3.3 for more details).

Table 1 shows the abovementioned applications profilingmetrics

for each workload, for both POLM2 and NG2C (with manual code

modifications). Regarding the number of instrumented allocation

sites, both POLM2 and NG2C are very similar. For Cassandra-RI

and Lucene, POLM2 did not consider as many allocation sites as

NG2C which, as discussed in the next sections, is a correct decision.

Regarding the number of generations used, the only difference is on

how Cassandra workloads are handled; POLM2 uses only four gen-

erations while NG2C uses an undetermined number of generations

(in fact, NG2C creates one generation each time a memory table

is flushed; the new generation is used to accommodate the new

memory table). As can be seen in the next sections, this difference

has no performance impact (neither positive nor negative).

Finally, POLM2 is able to detect conflicts in Lucene, GraphChi-

CC, and GraphChi-PR, that were not correctly identified in NG2C.

As discussed in the next section, this leads to some performance

penalties for NG2C.

5.3.2 JVM Memory Snapshots
As discussed in Section 3.2, the Dumper component uses two opti-

mizations to reduce the overhead associated to taking snapshots: i)

it avoids pages with no reachable objects, and ii) it avoids pages that

were not modified since the last snapshot. Figures 3 and 4 show

the results for the first 20 memory snapshots obtained for each

workload. Both plots compare the performance of the Dumper with
jmap, a widely used tool that takes JVM heap dumps (in this case,

only live objects are dumped with jmap). Results are normalized to

jmap.
From both figures, it is clear that, when compared to jmap,

POLM2: i) is more efficient creating memory snapshots as it reduces

the time necessary to take a snapshot by more than 90% for all work-

loads, and ii) reduces the size of the snapshots by approximately

60% for all workloads. By enabling faster and cheaper memory

snapshots, POLM2 reduces the time applications are stopped to let

the profiler snapshot the memory, thus reducing the profiler impact

on application performance. As an example, GraphChi (both PR and

CC) snapshotted using jmap results in a 3.8GB heap dump (on aver-

age), taking 22 minutes to create the snapshot (on average). Using

the Dumper, the size of the snapshot is reduced to approximately

700 MB, taking approximately 32 seconds to create the snapshot.

5.4 GC Pause Times
This section shows results for the GC pause times, i.e., the amount of

time during which an application is stopped to let the collector work

(collect dead objects). The goal of this section is to demonstrate that,

with POLM2, the GC pause times are: i) shorter when compared to

G1 (which uses no information regarding objects lifetimes), and ii)

as good as those obtained with NG2C (which requires manual code

changes).

Figure 3. Memory Snapshot Time using Dumper normalized to

jmap

Figure 4.Memory Snapshot Size usingDumper normalized to jmap

5.4.1 Pause Time Percentiles
Figure 5 presents the results for application pauses times across

all workloads for POLM2, NG2C, and G1. Pauses are presented in

milliseconds and are organized by percentiles (from percentile 50

to percentile 99.999). The worst observable pause is also included.

As can be seen in Figure 5, POLM2 clearly outperforms G1, the

default collector in OpenJDK HotSpot JVM, across all pause time

percentiles. For Cassandra, the worst observable pause times are

reduced by 55%, 67 %, and 78% (for WI, RW, and RI respectively).

The same applies to the other workloads, where POLM2 also out-

performs G1: 78%, 80%, and 58% reduction in the worst observable

pause time for GraphChi CC, GraphChi PR, and Lucene (respec-

tively).

When comparing POLM2 to NG2C, it is possible to conclude that

both solutions achieve similar pause times across all percentiles.

However, note that with POLM2, the programmer does not have

to change the code; we believe that this is a very important aspect

as long as the overall performance of applications is not affected

(which is the case). The two workloads that have slightly differ-

ent results are Cassandra RI, and Lucene. For these workloads,

POLM2 is able to outperform NG2C for most percentiles. After

analyzing the results, it was possible to determine that the reason

behind this difference is related to some misplaced manual code

changes.

This an interesting result; it shows that it is very difficult, even for

an experienced developer who spends many hours working on the

code, to be able to accurately tell: i) which objects live longer than

others, and ii) how to set the target generation for each allocation

site, taking into consideration that the same allocation site might

be used through different allocation paths. This problem is solved

by POLM2 using STTrees (as described in Section 3.3) that detects

these conflicts and properly place calls into NG2C to change the

current generation.

In sum, even experienced developers can (and will probably) fail

to take into account all the possible allocation paths into a given

allocation site. This will result in less optimal object location in

the heap, leading to long application pauses. POLM2 solves this

problem automatically with no programmer effort.
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(a) Cassandra WI (b) Cassandra WR (c) Cassandra RI

(d) Lucene (e) GraphChi CC (f) GraphChi PR

Figure 5. Pause Time Percentiles (ms)

(a) Cassandra WI (b) Cassandra WR (c) Cassandra RI

(d) Lucene (e) GraphChi CC (f) GraphChi PR

Figure 6. Number of Application Pauses Per Duration Interval (ms)

5.4.2 Pause Time Distribution
The previous section presented application pause times organized

by percentiles, which is good for analyzing worst case scenarios

but might hide the real pause time distribution. Hence, this section

presents the same metric (pause times) but organized in pause time

intervals. Figure 6 presents the number application pauses that

occur in each pause time interval. Pauses with shorter durations

appear in intervals to the left while longer pauses appear in intervals

to the right. In other words, the less pauses to the right, the better.

As seen in the pause time percentiles, POLM2 brings significant

improvements when compared to G1 as it leads to less application

pauses in longer pause intervals. This is true for all workloads.

This is an important result because it shows that POLM2 leads to

reduced application pauses not only in worst case scenarios (higher

percentiles) but also in shorter pause intervals. Thus, it is possible

to conclude that POLM2 automatically reduces the duration of all

pauses and not only the longer ones.

When comparing POLM2with NG2C, the same conclusion taken

in the previous section holds: POLM2 outperforms NG2C for Cas-

sandra RI and Lucene because of the difficulty in correctly applying

NG2C calls/annotations; this can be extremely tricky because of

multiple allocation paths for the same allocation site.

5.5 Throughput and Memory Usage
This section shows results on application throughput and max

memory usage for G1, NG2C, and POLM2. In addition, throughput

results for C4 are also shown for Cassandra workloads. Results for

max memory usage are not presented for C4 since this collector

pre-reserves all the available memory at launch time, meaning that,

in practice, its memory usage is equal to the max available memory
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Figure 7. Application throughput normalized to G1

(a) Cassandra WI

(b) Cassandra WR

(c) Cassandra RI

Figure 8. Cassandra Throughput (transactions/second) - 10 min-

utes sample

at all time. The goal of this section is to demonstrate that POLM2:

i) does not inflict a negative throughput impact, and ii) does not

negatively impacts the max memory usage.

Figure 7 shows the application throughput for NG2C, C4, and

POLM2. Results are normalized to G1 (meaning that if G1 was also

plotted, it would have one in all bars). Results show that, not only

POLM2 does not negatively impacts throughput, but even improves

it. Comparing POLM2 to G1, POLM2 is able to improve throughput

by 1%, 11%, and 18% for Cassandra WI, WR, and RI, respectively.

G1 leads to improved performance in Lucene (1% loss), GraphChi

PR (5% loss), and GraphChi (4% loss). The throughput achieved

with POLM2 and NG2C is very similar, with no relevant positive

or negative impact on any workload. Once again, the difference is

that with POLM2 there is no extra programmer effort. C4 is the

collector with worst performance. This overhead comes from the

fact that C4 relies on several techniques such as a combination of

read and write barriers to provide near to zero pause times.

Figure 8 shows more detailed throughput values for all three

Cassandra workloads (WI, WR, and RI). Each plot presents a 10

minute sample containing the number of executed transactions per

second. The main conclusion to take from these plots is that the

throughput is approximately the same for each approach (G1, NG2C,

Figure 9. Application Max Memory Usage normalized to G1

and POLM2). This means that, for Cassandra, POLM2 does not

present any throughput limitation; therefore, it is a better solution

compared to NG2C (that requires developer effort), and it is a better

solution than G1 since is reduces application pauses. As pointed

previously, C4 is the collector with worst performance.

Finally, Figure 9 presents the results for max memory usage

across all workloads. Again, results are normalized to G1 (meaning

that it would have one in all columns). For this particular metric, G1,

NG2C, and POLM2 lead to very similar memory usages, meaning

that the memory needed to run each workload is not increased by

any of the solutions. This is an interesting result because it shows

that it is possible to perform a lifetime-aware memory manage-

ment without increasing the application memory footprint. This

also means that the effect of fragmentation (that can happen if

many generations are being used) is not noticeable and therefore is

negligible. C4 results are not shown as it pre-reserves all available

memory at launch time. If plotted, results for C4 would be close to

2 for Cassandra benchmarks.

6 Related Work
Profiling plays a key role in managed runtimes, either for code opti-

mization or memory management decisions [1, 2, 26, 27, 44, 51, 52].

This work focus on getting quality profiling information to drive

object pretenuring, taking advantage of application behavior to

adapt automatic memorymanagement in applications that use large

heaps. POLM2 is, to the best of our knowledge, the first profiler

that automatically adapts memory management to make it object

lifetime-aware. This section compares the proposed work with

state-of-art profilers (either online or offline) that improve memory

management to reduce the impact of GC in the application perfor-

mance. It ends with a comparative analysis of systems that demand

a more profound change, either to the application/framework or

the runtime itself, in some cases manipulating application-defined

types and/or organizing the heap in special purpose regions, and

placing data directly in an off-heap space.

6.1 Application Allocation Profiling
Hertz et al. [27] introduced an algorithm where an object lifetime

is tracked based on timestamps assigned when the object looses an

incoming reference, and when the GC identifies it as an unreach-

able object. This is implemented in a tracing tool called Merlin;

compared to a non-profiled run, when Merlin analyzes a program,

it makes the application execution up to 300 times slower. Ricci

et al. [44] uses the same algorithm but adds new functionalities to

his Elephant Tracks tool in terms of precision and comprehensive-

ness of reference sources (i.e., weak references). Another system,

Resurrector [51], relaxes on precision to provide faster profiling
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but still introduces a 3 to 40 times slowdown depending on the

workload.

Blackburn et al. [6] extends the profile-based pretenuring of

Cheng et al. [12] using the Merlin tracing tool [27]. Blackburn’s

solution has a two stage profiling. The first stage happens during

the build of the JVM. Profiling at this stage is used to improve the

performance of JVM itself, since Jikes RVM, formerly known as

Jalapeño [1], is a meta-circular JVM.

Li et al. [36] proposes a set of metrics to drive object lifetime

profiling and characterizes the local and global memory behavior

regarding object reachability and death, giving average counts of

live and dead objects, across program execution divided in windows.

Armed with this information, the system running on top of Merlin

and Elephant Tracks is able to determine the best nursery and full

heap sizes, that optimize GC frequency. It is complex and although

additional overhead is limited, it incurs in baseline overhead due to

Elephant Tracks (up to 500 times slowdown) and the approach has

only been tested with DaCapo [5] programs with small input.

Cohen and Petrank [15] extends the operation of the Immix

garbage collector in Jikes RVM [8], via programmer hints, with type-

awareness in order to manage application data structures (namely

collections) more efficiently. These hints include Java annotations

(e.g., to identify collection node types) and invocation of specific

API methods (e.g., to notify after removing an item from a collection,

helpful for performance but not required to uphold safety). The

main advantages come from reducing the occurrence of highly

entangled deep-shaped data structures lay-out in memory, thus

improving performance of parallel tracing.

A few systems employ online profiling. Clifford et al. [14] per-

forms online profiling to optimize memory allocation operations;

it performs a single allocation of a block big enough to fit multi-

ple objects that are allocated in sequence. Objects need not have

parent-child or sibling relationships among them because it is the

control-flow relations between hot code flows and locations that

are monitored. So, while allocations may take place in different

methods, equivalent GC behavior is ensured. However, while doing

online profiling, this solution only addresses initial allocation and

not the issue of pretenuring objects.

Memento [13] gathers online temporal feedback regarding ob-

ject lifetime by instrumenting allocations, and leaving mementos
alongside objects in the nursery, so that the allocation site of an

object can be recorded. When objects are eventually tenured, Me-

mento is able to avoid later the overhead of scanning and copying

for objects allocated in the same allocation site. As in our work,

it attempts to allocate these objects directly in the tenure space,

as they will be long lived; however, it is only able to manage one

tenured space, therefore applying a binary decision that will still

potentially co-locate objects with possibly very different lifetimes,

incurring in additional later compaction effort. Our work manages

multiple spaces; therefore, it is able to allocate objects directly in

the space where objects with similar lifetime will also reside.

To sum up, many proposed solutions, with many different tech-

niques have been proposed to acquire information of the application

and apply it to improve its performance. Comparing POLM2 with

previous works, no solution provides techniques: i) to determine

the lifetime distribution for each allocation site without disrupting

application behavior, and ii) that take advantage of allocation pro-

filing information, and use recent GCs to automatically perform

lifetime-aware memory management in BGPLATs.

6.2 Big Data-oriented Memory Management
Others system employ a less transparent approach (from the source

code perspective) to handle large heaps while taking into account

the organization of typical big data applications. These systems

either depend on: i) largemodifications to the heap organization and

collection, and/or ii) an important collaboration of the programmer

to mark parts of the code (in some cases the framework) to be

treated specially.

Facade [42] is a compiler — an extension to Soot [50] — that re-

duces the number of objects in the heap by separating data (fields)

from control (methods), and puts data objects in an off-heap struc-

ture without the need to maintain the bloat-causing header [11].

However, the programmer is responsible for a time consuming task,

which has to be repeated for each new application or framework:

to identify the control path and the list of classes that make up the

data path.

A similar approach is followed by Gog et al. [22] in Broom where

the heap is split in regions [48], explicitly created by the program-

mer who knows best which codebase creates related objects.

Yak [41] minimizes this effort but still relies on the programmer

to identify epochs, which is another way to identify objects that

have a similar lifetime. These objects can be allocated in the same

region, avoiding a full heap or generation tracing to identify dead

objects. However, it requires not only the programmer to have

access to the source code and understand where to place the limits

of each region/epoch, but also new bookkeeping structures for

inter-reference spaces to be put in place.

POLM2’s observable benefit is the reduction of application pause

times. Note that our contribution is orthogonal to other techniques

used to implement low pause time collections such as incremental

(e.g., Immix [8] and G1 [17]) or concurrent compaction (e.g., C4

[47]), and to real-time collectors (e.g., the work in Fiji VM [43] and

the Metronome [3] collector).

To conclude, POLM2 represents a significant improvement re-

garding other Big Data-oriented approaches since it does not re-

quire programmer effort and knowledge to improvement memory

management decisions.

7 Conclusions
This paper presents POLM2, a profiler that analyzes application

allocation behavior and, based on recorded data during a profiling

phase, creates an application profile. This profile is used in the

production phase to improve memory management decisions by

making it object lifetime-aware. POLM2 is implemented for the

OpenJDK 8 and uses NG2C, a recently proposed GC that is able to

pretenure objects into multiple generations. Results are very en-

couraging as POLM2 automatically achieves significant reductions

in application pause times. In addition, POLM2 does not have any

negative impact neither on application throughput nor on memory

usage.
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