
Exploiting Off-the-Shelf Virtual Memory Mechanisms to Boost Software
Transactional Memory

Amin Mohtasham

⇤
, Paulo Ferreira

†
, and João Barreto

‡

Instituto Superior Técnico - Universidade Técnica de Lisboa/INESC-ID

Abstract

Transactional memory (TM) is known as a promising suc-
cessor for traditional lock-based mutual exclusion methods.
Amongst different approaches to design TMs, software trans-
actional memory (STM) has gained a reputation for be-
ing flexible and portable. However, as a result of extra in-
strumentation for loading and storing data in shared mem-
ory, many STMs exhibit considerable sequential overheads,
which incur in poor performance in low concurrency work-
loads. We claim that the hardware and kernel-level mech-
anisms that already support virtual memory on commodity
computers can also play an unexpected role: to fulfill the
core concurrency control needs of an STM. By taking ad-
vantage of such powerful and fast hardware mechanisms that
the traditional STM design neglects, this approach enables
us to devise novel STMs with unprecedentedly low sequential
overheads. In this work we propose one such method. Pre-
liminary evaluation results show that our method is promis-
ing and can alleviate STMs sequential overhead.

1 Introduction

With the advent of Chip Multi Processors, parallel pro-
gramming has become increasingly important. The vast
amount of research in the field has yielded new program-
ming paradigms that help non-expert programmers exploit
the available hardware parallelism.

Traditional synchronization methods are based on explicit
locks and suffer from their trade-off between complexity and
performance [11]. On the other hand, Transactional Mem-
ory (TM) has built up a promising reputation due to its
ease of use and scalability [10]. In contrast with explicit
lock-based methods, which require the programmer to be
an expert in designing an efficient parallel application, TMs
offer a simple programming interface for the non-expert pro-
grammers. This helps them to take the advantage of avail-
able hardware parallelism power without concerning about
complex synchronization issues.

One can distinguish two different approaches to imple-
ment a transactional memory system: hardware transac-
tionl memory (HTM) and software transactional memory
(STM) [8]. HTM suffers from high implementation and ver-
ification costs, as well as limitations to run diverse sets of
transactional workloads [3]. Although there are next gen-
eration processors with built-in TM support, such as IBM
BlueGene/Q [7], IBM zEC12 [13] and Intel Haswell proces-
sors [12], it is still highly uncertain whether and when pro-
cessors with built-in TM support will become the norm in
all categories of parallel computing devices.

STM, on the other hand, does not rely on sophisticated
hardware and supports flexible transactional programming.
However state-of-the-art STMs exhibit considerably higher
sequential overhead than HTM and lock-based mutual ex-
clusion methods. This stems from their inherent extra over-
head in loading and storing shared memory objects inside
a transaction (e.g. maintaining extensive read/write sets

⇤
amohtasham@gsd.inesc-id.pt

†
paulo.ferreira@inesc-id.pt

‡
joao.barreto@inesc-id.pt

and validating them at commit time) [3]. In fact, a recent
research on STM shows increasing concerns with the sequen-
tial overhead of STM algorithms [3, 4, 14, 9]. For instance,
Spear et. al [14] propose TML, a transactional framework
with a very low sequential overhead. TML is assumed to be
applied with read-dominated workloads where, to the best
of our knowledge, outperforms all off-the-shelf STMs. Of
course, STM relies on hardware primitives that are widely
supported by commodity CMPs, from simple load/store in-
structions to atomic instructions such as compare-and-swap
or load-linked/store-conditional [5, 2, 6].

In this paper, we advocate that STM algorithms ought to
take advantage of another component that, despite widely
available in today’s machines, is neglected by mainstream
STM: the page-level protection and translation mechanisms
that the memory management unit (MMU) offers for virtual
memory support. We claim that one can significantly reduce
the sequential overhead of STM by taking advantage of the
page-level support of the MMU. More precisely, we propose
a novel approach that, by relying on the page-level mecha-
nisms offered by the MMU, can boost most mainstream STM
algorithms. The key insight of our approach is that a care-
ful use of page-level protection mechanisms can substantially
reduce the number of read accesses to shared locations that
actually require running the expensive STM read barriers.
Instead, STM access barriers are only run in write accesses
and read accesses that are suspected to be conflict-prone.

As a proof-of-concept of our approach, we have designed,
implemented and evaluated PGSTM, a simple STM which
relies on available virtual memory management system. We
describe how PGSTM takes advantage of MMU to achieve
reductions in sequential overhead for read/write accesses.

The idea of having memory management hardware lock
pages in order to synchronize concurrent tasks is not new.
Abadi et al. [1], use that approach to add strong atomicity
to an STM offering weak atomicity. They split the pro-
cess virtual memory space into a transactional and a non-
transactional region and use hardware page protection tools
to achieve their goal.

2 A proof-of-concept: PGTML

At each moment, each active transaction in PGSTM can
be either read-only or read-write. Initially, all transactions
start as read-only transactions. As soon as a transaction
tries to write to a memory address, it acquires a global write-
lock, turns into a read-write transaction and remains until it
commits.

PGSTM relies on a fundamental assumption: that, at each
moment, there can only exist one read-write transaction and
the rest are doomed to fail. If a transaction is currently in
read-write mode (thus all other transactions are currently
read-only), it has full access to all shared data. In contrast,
read-only transactions can only read data that has not been
written by the currently active read-write transaction.

The access separation between read-write and read-only
transactions is done by splitting virtual memory into two
regions, both pointing at same physical memory frames but
with different access bits (Fig. 1). Whenever a read-write
transaction intends to write to a memory address, it first

1

pjpf
Typewriter
Joint Euro-TM/MEDIAN Workshop on Dependable Multicore and Transactional Memory Systems (DMTM), in conjunction with 9th International Conference on High-Performance, Embedded Architectures and Compilers (HiPEAC 2014), Vienna, Austria, January, 2014.

pjpf
Typewriter



��������	
���
�

��
������	
���
�

	���
�����


����
����

����
����

����
�

Figure 1: PGSTM’s memory model






























Figure 2: Throughput for different contention
levels [64 threads, 10% write-load]

clears the read permission in the page table entry of the cor-
responding page in the read-only memory region. By doing
that, it prohibits read-only transactions accessing that mem-
ory page. Then, the read-write transaction can safely write
the value.

The advantage of this approach is that we eliminate any
need for software-based validation before or after read ac-
cesses by read-only transactions. In fact, a read-only trans-
action can just perform the read directly. In case there is
a conflict with the read-write transaction, the underlying
memory management unit will automatically throw a trap,
which will then cause the read-only transaction to abort and
restart.

3 Evaluation

We have implemented PGTML and evaluated it in a host
environment consisting of a quad AMD Opteron6272 with
64 cores total. We measure the system throughput in terms
of transactions/second. We use a trivial list look-up bench-
mark. In this benchmark, each transaction tries to search an
element in a list. R/W transactions update the found value
to a new value. We define write-load as the probability that
a transaction is read-write.

We compare our results with those of TML [14], a simple
STM that, to the best of our knowledge, achieves the lowest
sequential overhead amongst all STM algorithms proposed
so far.

In Figure 2, we show how PGSTM behaves at differ-
ent contention levels and 64 simultaneous threads. In high
contention scenarios (i.e. small list sizes), PGSTM shows
lower throughput, which is due to incurred overhead by page
faults. However, as the list size increases, PGTSM starts to
outperform TML with a high slope, while TML throughput
remains steady. Hence, we can infer PGSTM is more fitted
for medium and low contention scenarios.

4 Conclusion and Future Work

In this paper, we explored the feasibility of using hardware
memory management unit with STMs to lower their sequen-
tial overhead and improve their throughput. Toward this
end, we proposed PGSTM. PGTSM reduces the cost of read
operations by taking advantage of commodity memory pro-
tection hardware. This algorithm is just a preliminary step,
a mere proof that relying on MMU page-level mechanisms
can boost the sequential overhead of STM.

In future, we intend to is to extend this work towards a
generic approach that can generically boost the sequential
performance of any mainstream STM solution.

References

[1] M. Abadi, T. Harris, and M. Mehrara. Transac-
tional memory with strong atomicity using off-the-shelf
memory protection hardware. ACM Sigplan Notices,
44(4):185–196, 2009.

[2] J. Barreto, A. Dragojevic, P. Ferreira, R. Filipe, and
R. Guerraoui. Unifying thread-level speculation and
transactional memory. In Proceedings of the 13th
International Middleware Conference, pages 187–207.
Springer-Verlag New York, Inc., 2012.

[3] C. Cascaval, C. Blundell, M. Michael, H. W. Cain,
P. Wu, S. Chiras, and S. Chatterjee. Software transac-
tional memory: Why is it only a research toy? Queue,
6(5):46–58, 2008.

[4] L. Dalessandro, M. F. Spear, and M. L. Scott. Norec:
streamlining stm by abolishing ownership records. In
ACM Sigplan Notices, volume 45, pages 67–78. ACM,
2010.

[5] A. Dragojević, R. Guerraoui, and M. Kapalka. Stretch-
ing transactional memory. In ACM Sigplan Notices,
volume 44, pages 155–165. ACM, 2009.

[6] K. Fraser and T. Harris. Concurrent programming with-
out locks. ACM Transactions on Computer Systems
(TOCS), 25(2):5, 2007.

[7] R. Haring and B. Team. The blue gene/q compute chip.
In Hot Chips, volume 23, 2011.

[8] T. Harris, J. Larus, and R. Rajwar. Transactional
memory. Synthesis Lectures on Computer Architecture,
5(1):1–263, 2010.

[9] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Op-
timizing memory transactions. In ACM SIGPLAN No-
tices, volume 41, pages 14–25. ACM, 2006.

[10] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures, vol-
ume 21. ACM, 1993.

[11] R. Rajwar and J. R. Goodman. Transactional lock-free
execution of lock-based programs. In ACM SIGOPS
Operating Systems Review, volume 36, pages 5–17.
ACM, 2002.

[12] J. Reinders. Transactional synchronization in haswell.
Intel Software Network, 2012.

[13] C. Shum, F. Busaba, and C. Jacobi. Ibm zec12: The 3rd
generation high frequency mainframe microprocessor.
2013.

[14] M. F. Spear, A. Shriraman, L. Dalessandro, and M. L.
Scott. Transactional mutex locks. In SIGPLAN Work-
shop on Transactional Computing, 2009.

2




